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Towards instruction-level parallelism
• All processors since about 1985 use pipelining to 

overlap the execution of instructions and improve 
performance. 

• This potential overlap among instructions is called 
instruction-level parallelism (ILP), since the 
instructions can be evaluated in parallel. 

• Here we look at a wide range of techniques for 
extending the basic pipelining concepts by 
increasing the amount of parallelism exploited 
among instructions.



18/04/2010 UNYT-UoG

Hardware and Software Approach
• There are two largely separable approaches to 

exploiting ILP: 
– An approach that relies on hardware to help discover and 

exploit the parallelism dynamically and
– An approach that relies on software technology to find 

parallelism, statically at compile time. 

• Processors using the dynamic, hardware-based 
approach, including the Intel Pentium series, 
dominate in the market. 

• Those using the static approach, including the Intel 
Itanium, have more limited uses in scientific or 
application-specific environments.
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Pipeline CPI
• The value of the CPI (cycles per instruction) for a pipelined 

processor is the sum of the base CPI and all contributions 
from stalls:

Pipeline CPI = Ideal pipeline CPI + Structural stalls + Data 
hazard stalls + Control stalls

• The ideal pipeline CPI is a measure of the maximum 
performance attainable by the implementation. 

• By reducing each of the terms of the right-hand side, we 
minimize the overall pipeline CPI or, alternatively, increase 
the IPC (instructions per clock).
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What Is Instruction-Level Parallelism?
• The simplest and most common way to increase the ILP is to 

exploit parallelism among iterations of a loop. 
• This type of parallelism is often called loop-level parallelism. 
• Here is a simple example of a loop, which adds two 1000-element 

arrays, that is completely parallel:
for(i=1; i<=1000; i=i+1)
x[i] = x[i] + y[i];

• Every iteration of the loop can overlap with any other iteration, 
although within each loop iteration there is little or no opportunity 
for overlap.

• There are a number of techniques we will examine for converting 
such loop-level parallelism into instruction-level parallelism. 
Basically, such techniques work by unrolling the loop either 
statically by the compiler or dynamically by the hardware.
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Data Dependences and Hazards
• Determining how one instruction depends on another is critical to 

determining how much parallelism exists in a program and how 
that parallelism can be exploited. 

• In particular, to exploit instruction-level parallelism we must 
determine which instructions can be executed in parallel. 

• If two instructions are parallel, they can execute simultaneously in 
a pipeline of arbitrary depth without causing any stalls, assuming 
the pipeline has sufficient resources (and hence no structural 
hazards exist). 

• If two instructions are dependent, they are not parallel and must be 
executed in order, although they may often be partially 
overlapped.
The key in both cases is to determine whether an instruction is 
dependent on another instruction.
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Data Dependences
• There are three different types of dependences: data 

dependences (also called true data dependences), name 
dependences, and control dependences

• An instruction j is data dependent on instruction i if either of 
the following holds: 
– instruction i produces a result that may be used by 

instruction j, or  
– instruction j is data dependent on instruction k, and 

instruction k is data dependent on instruction i.
• The second condition simply states that one instruction is 

dependent on another if there exists a chain of dependences 
of the first type between the two instructions.
– This dependence chain can be as long as the entire 

program.
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Example
• For example, consider the following MIPS code sequence that 

increments a vector of values in memory (starting at 0(R1), and with the 
last element at 8(R2)), by a scalar in register F2.
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Data dependent instructions
• If two instructions are data dependent, they cannot execute 

simultaneously or be completely overlapped. 
• The dependence implies that there would be a chain of one 

or more data hazards between the two instructions. 
• Executing the instructions simultaneously will cause a 

processor with pipeline interlocks (and a pipeline depth 
longer than the distance between the instructions in cycles) 
to detect a hazard and stall, thereby reducing or eliminating 
the overlap.

• In a processor without interlocks that relies on compiler 
scheduling, the compiler cannot schedule dependent 
instructions in such a way that they completely overlap, 
since the program will not execute correctly.
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Overcoming limits of data dependence
• Since a data dependence can limit the amount of instruction-

level parallelism we can exploit, a major focus is 
overcoming these limitations. 

• A dependence can be overcome in two different ways: 
– maintaining the dependence but avoiding a hazard
– eliminating a dependence by transforming the code.

• Scheduling the code is the primary method used to avoid a 
hazard without altering a dependence, and such scheduling 
can be done both by the compiler and by the hardware.
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Detecting dependencies
• A data value may flow between instructions either through 

registers or through memory locations. 
• When the data flow occurs in a register, detecting the dependence 

is straightforward since the register names are fixed in the 
instructions, although it gets more complicated when branches 
intervene and correctness concerns force a compiler or hardware 
to be conservative.

• Dependences that flow through memory locations are more 
difficult to detect, since two addresses may refer to the same 
location but look different: For example, 100(R4) and 20(R6) may
be identical memory addresses. 

• In addition, the effective address of a load or store may change
from one execution of the instruction to another (so that 20(R4)
and 20(R4) may be different), further complicating the detection
of a dependence.
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Name Dependences
• The second type of dependence is a name 

dependence.
• A name dependence occurs when two instructions 

use the same register or memory location, called a 
name, but there is no flow of data between the 
instructions associated with that name. 

• There are two types of name dependences between 
an instruction i that precedes instruction j in 
program order:
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Antidependence
1. An antidependence between instruction i and instruction j 

occurs when instruction j writes a register or memory 
location that instruction i reads. 

• The original ordering must be preserved to ensure that i 
reads the correct value.
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Output dependence
2.  An output dependence occurs when instruction i 

and instruction j write the same register or memory 
location. 

• The ordering between the instructions must be 
preserved to ensure that the value finally written 
corresponds to instruction j.
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Register renaming
• Both antidependences and output dependences are name 

dependences, as opposed to true data dependences, since 
there is no value being transmitted between the instructions. 

• Since a name dependence is not a true dependence, 
instructions involved in a name dependence can execute 
simultaneously or be reordered, if the name (register number 
or memory location) used in the instructions is changed so 
the instructions do not conflict.

• This renaming can be more easily done for register operands, 
where it is called register renaming. 

• Register renaming can be done either statically by a compiler 
or dynamically by the hardware.
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Data Hazards
• A hazard is created whenever there is a dependence between 

instructions, and they are close enough that the overlap 
during execution would change the order of access to the 
operand involved in the dependence. 

• Because of the dependence, we must preserve what is called 
program order, that is, the order that the instructions would 
execute if executed sequentially one at a time as determined 
by the original source program. 

• The goal of both software and hardware techniques is to 
exploit parallelism by preserving program order only where 
it affects the outcome of the program.

• Detecting and avoiding hazards ensures that necessary 
program order is preserved.



18/04/2010 UNYT-UoG

Data Hazards
• Consider two instructions i and j, with i preceding j in program 

order. The possible data hazards are:
• RAW (read after write) — j tries to read a source before i writes 

it, so j incorrectly gets the old value. This hazard is the most 
common type and corresponds to a true data dependence. Program 
order must be preserved to ensure that j receives the value from i.

• WAW (write after write) — j tries to write an operand before it is 
written by i. The writes end up being performed in the wrong 
order, leaving the value written by i rather than the value written 
by j in the destination. 
– This hazard corresponds to an output dependence. WAW 

hazards are present only in pipelines that write in more than 
one pipe stage or allow an instruction to proceed even when a 
previous instruction is stalled.
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Data Hazards
• WAR (write after read) — j tries to write a destination 

before it is read by i, so i incorrectly gets the new value. 
• WAR hazards cannot occur in most static issue pipelines —

even deeper pipelines or floating-point pipelines — because 
all reads are early (in ID) and all writes are late (in WB). 

• A WAR hazard occurs either when there are some 
instructions that write results early in the instruction pipeline 
and other instructions that read a source late in the pipeline, 
or when instructions are reordered => our case here.
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Control Dependences
• A control dependence determines the ordering of an 

instruction, i, with respect to a branch instruction so that the 
instruction i is executed in correct program order and only 
when it should be.

• Every instruction, except for those in the first basic block of 
the program, is control dependent on some set of branches, 
and, in general, these control dependences must be preserved 
to preserve program order. 

• One of the simplest examples of a control dependence is the 
dependence of the statements in the “then” part of an “if”
statement on the branch.
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Control Dependences: Example
• For example, in the code segment
if p1 {

S1;
};
if p2 {

S2;
}
• S1 is control dependent on p1, and S2 is control dependent 

on p2 but not on p1.
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Control dependences
• In general, there are two constraints imposed by 

control dependences:
1. An instruction that is control dependent on a 

branch cannot be moved before the branch so that 
its execution is no longer controlled by the branch. 
– For example, we cannot take an instruction from the 

then portion of an if statement and move it before the if
statement.

2. An instruction that is not control dependent on a 
branch cannot be moved after the branch so that its 
execution is controlled by the branch. 

– For example, we cannot take a statement before the if 
statement and move it into the then portion.
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Programs critical properties
• When processors preserve strict program order, they ensure 

that control dependences are also preserved. 
• We may be willing to execute instructions that should not 

have been executed, however, (thereby violating the control 
dependences), if we can do so without affecting the 
correctness of the program. 

• Control dependence is not the critical property that must be 
preserved. 
– Instead, the two properties critical to program correctness 

— and normally preserved by maintaining both data and 
control dependence — are the exception behavior and the 
data flow.
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Programs critical properties
• Preserving the exception behavior means that any changes in the 

ordering of instruction execution must not change how exceptions
are raised in the program. 
– Often this is relaxed to mean that the reordering of instruction

execution must not cause any new exceptions in the program.
• The data flow is the actual flow of data values among instructions 

that produce results and those that consume them. 
• Branches make the data flow dynamic, since they allow the source

of data for a given instruction to come from many points. 

Program order is ensured by maintaining the control dependences.
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Basic Pipeline Scheduling and Loop 
Unrolling

• To keep a pipeline full, parallelism among instructions must 
be exploited by finding sequences of unrelated instructions 
that can be overlapped in the pipeline. 

• To avoid a pipeline stall, a dependent instruction must be 
separated from the source instruction by a distance in clock 
cycles equal to the pipeline latency of that source 
instruction. 

• A compiler’s ability to perform this scheduling depends both 
on the amount of ILP available in the program and on the 
latencies of the functional units in the pipeline
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Latencies of FP operations
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Loop unrolling
• A simple scheme for increasing performance is loop 

unrolling. 

• Unrolling simply replicates the loop body multiple times, 
adjusting the loop termination code.

• Loop unrolling can also be used to improve scheduling. 
Because it eliminates the branch, it allows instructions from 
different iterations to be scheduled together.
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Decisions for Loop Unrolling and Scheduling

• To obtain the final unrolled code the following 
decisions and transformations could be made:
– Determine that unrolling the loop would be 

useful by finding that the loop iterations were 
independent, except for the loop maintenance 
code.

– Use different registers to avoid unnecessary 
constraints that would be forced by using the 
same registers for different computations.

– Eliminate the extra test and branch instructions 
and adjust the loop termination and iteration 
code.
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Decisions for Loop Unrolling and Scheduling

– Determine that the loads and stores in the 
unrolled loop can be interchanged by observing 
that the loads and stores from different iterations 
are independent.

– This transformation requires analyzing the 
memory addresses and finding that they do not 
refer to the same address.

– Schedule the code, preserving any dependences 
needed to yield the same result as the original 
code.
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Limits of Loop Unrolling
• A decrease in the amount of overhead amortized 

with each unroll
– The more you unroll, the more the amortized overhead is 

reduced

• Code size limitations
– A second limit to unrolling is the growth in code 

size that results. For larger loops, the code size 
growth may be a concern particularly if it causes 
an increase in the instruction cache miss rate.

• Compiler limitations
– Effect caused: Register Pressure
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Register Pressure
• Aggressive unrolling and scheduling can cause potential 

shortfall in registers. 
• This secondary effect that results from instruction scheduling 

in large code segments is called register pressure. 
• It arises because scheduling code to increase ILP causes the 

number of live values to increase. 
• After aggressive instruction scheduling, it may not be 

possible to allocate all the live values to registers.
• The transformed code, while theoretically faster, may lose 

some or all of its advantage because it generates a shortage 
of registers.
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Branches
• Branches hurt pipeline performance. 
• Loop unrolling is one way to reduce the number of branch 

hazards. 
• We can also reduce the performance losses of branches by 

predicting how they will behave.
• The behavior of branches can be predicted both statically at 

compile time and dynamically by the hardware at execution 
time. 

• Static branch predictors are sometimes used in processors 
where the expectation is that branch behavior is highly 
predictable at compile time; 

• Static prediction can also be used to assist dynamic 
predictors.



18/04/2010 UNYT-UoG

Static Branch Prediction
• To reorder code around branches so that it runs faster, we 

need to predict the branch statically when we compile the 
program. 

• There are several different methods to statically predict 
branch behavior. 

• The simplest scheme is to predict a branch as taken. 
• This scheme has an average misprediction rate that is equal 

to the untaken branch frequency, which for the SPEC 
programs is 34%. 

• Unfortunately, the misprediction rate for the SPEC programs 
ranges from not very accurate (59%) to highly accurate 
(9%).
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Profile-based prediction
• A more accurate technique is to predict branches on the 

basis of profile information collected from earlier runs. 

• The key observation that makes this worthwhile is that 
the behavior of branches is often bimodally distributed:
– An individual branch is often highly biased toward taken or 

untaken.
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Profile-based prediction
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Dynamic Branch Prediction
• The simplest dynamic branch-prediction scheme is a branch-

prediction buffer or branch history table. 
• A branch-prediction buffer is a small memory that contains a 

bit that says whether the branch was recently taken or not. 
• This scheme is the simplest sort of buffer.
• With such a buffer, we don’t know, in fact, if the prediction 

is correct. 
– But this doesn’t matter. The prediction is a hint that is 

assumed to be correct, and fetching begins in the 
predicted direction. 

– If the hint turns out to be wrong, the prediction bit is 
inverted and stored back.
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2-bit prediction
• The simple 1-bit prediction scheme has a performance 

shortcoming: 
Even if a branch is almost always taken, we will likely 
predict incorrectly twice, rather than once, when it is not 
taken, since the misprediction causes the prediction bit to be 
flipped.

• To remedy this weakness, 2-bit prediction schemes are often 
used. 

• In a 2-bit scheme, a prediction must miss twice before it is 
changed. 
(This scheme can be generalized to the n-bit scheme)
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A finite-state processor for a 
2-bit prediction scheme.
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Performance of 2-bit prediction 
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Correlating Branch Predictors
• The 2-bit predictor schemes use only the recent 

behavior of a single branch to predict the future 
behavior of that branch. 

• It may be possible to improve the prediction 
accuracy if we also look at the recent behavior of 
other branches rather than just the branch we are 
trying to predict.

• Example:
if (aa==2)

aa=0;
if (bb==2)

bb=0;
if (aa!=bb) {
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Correlating Branch Predictors

• The key observation is that the behavior of branch b3 is correlated with 
the behavior of branches b1 and b2. 

• If branches b1 and b2 are both not taken (i.e., if the conditions both 
evaluate to true and aa and bb are both assigned 0), then b3 will be taken, 
since aa and bb are clearly equal. 

• A predictor that uses only the behavior of a single branch to predict the 
outcome of that branch can never capture this behavior.
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Correlating predictors or two-level predictors

• Branch predictors that use the behavior of other branches to 
make a prediction are called correlating predictors or two-
level predictors. 

• Existing correlating predictors add information about the 
behavior of the most recent branches to decide how to 
predict a given branch.

• For example, a (1,2) predictor uses the behavior of the last 
branch to choose from among a pair of 2-bit branch 
predictors in predicting a particular branch. 

• In the general case an (m,n) predictor uses the behavior of 
the last m branches to choose from 2m branch predictors, 
each of which is an n-bit predictor for a single branch.
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Tournament Predictors
• The primary motivation for correlating branch predictors 

came from the observation that the standard 2-bit 
predictor using only local information failed on some 
important branches and that, by adding global 
information, the performance could be improved. 

• Tournament predictors take this insight to the next level, 
by using multiple predictors, usually one based on global 
information and one based on local information, and 
combining them with a selector.

• Existing tournament predictors use a 2-bit scheme per 
branch to choose among two different predictors based on 
which predictor (local, global, or even some mix) was 
most effective in recent predictions.
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Comparison of predictors
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Advantages of Dynamic Scheduling
• It enables handling some cases when dependences are 

unknown at compile time (for example, because they may 
involve a memory reference), and it simplifies the compiler.

• It allows the processor to tolerate unpredictable delays such 
as cache misses, by executing other code while waiting for 
the miss to resolve.

• It allows code that was compiled with one pipeline in mind 
to run efficiently on a different pipeline.

• However, advantages of dynamic scheduling are gained at a 
cost of a significant increase in hardware complexity.
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Static Vs. Dynamic Scheduling
• Although a dynamically scheduled processor cannot change 

the data flow, it tries to avoid stalling when dependences are 
present. 

• In contrast, static pipeline scheduling by the compiler tries to
minimize stalls by separating dependent instructions so that 
they will not lead to hazards. 

• Of course, compiler pipeline scheduling can also be used on 
code destined to run on a processor with a dynamically 
scheduled pipeline.
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Dynamic Scheduling: The Idea
• A major limitation of simple pipelining techniques is that 

they use in-order instruction issue and execution: 
– Instructions are issued in program order, and if an 

instruction is stalled in the pipeline, no later instructions 
can proceed. 

– Thus, if there is a dependence between two closely 
spaced instructions in the pipeline, this will lead to a 
hazard and a stall will result. 

• If there are multiple functional units, these units could lie 
idle. 

• If instruction j depends on a long-running instruction i, 
currently in execution in the pipeline, then all instructions 
after j must be stalled until i is finished and j can execute.
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Example
• Consider this program:

DIV.D F0,F2,F4
ADD.D F10,F0,F8
SUB.D F12,F8,F14

• The SUB.D instruction cannot execute because the 
dependence of ADD.D on DIV.D causes the pipeline to stall; 
yet SUB.D is not data dependent on anything in the pipeline. 

• This hazard creates a performance limitation that can be 
eliminated by not requiring instructions to execute in 
program order.
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Out-of-order execution
• To allow us to begin executing the SUB.D in the example, 

we must separate the issue process into two parts: 
– checking for any structural hazards and
– waiting for the absence of a data hazard. 

• Thus, we still use in-order instruction issue (i.e., instructions 
issued in program order), but we want an instruction to begin 
execution as soon as its data operands are available. 

• Such a pipeline does out-of-order execution, which implies 
out-of-order completion.
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Problem!
• Out-of-order execution introduces the possibility of 

WAR and WAW hazards, which do not exist in the 
five-stage integer pipeline and its logical extension 
to an in-order floating-point pipeline.

• Example – next slide
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Problem example
DIV.D F0,F2,F4
ADD.D F6,F0,F8
SUB.D F8,F10,F14
MUL.D F6,F10,F8

• There is an antidependence between the ADD.D and the 
SUB.D, and if the pipeline executes the SUB.D before the 
ADD.D (which is waiting for the DIV.D), it will violate the 
antidependence, yielding a WAR hazard. 

• Likewise, to avoid violating output dependences, such as the 
write of F6 by MUL.D, WAW hazards must be handled. 
(both these hazards are avoided by the use of register 
renaming, explained later)
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Out-of-order execution and exceptions
• Out-of-order completion also creates major complications in 

handling exceptions.

• Dynamic scheduling with out-of-order completion must 
preserve exception behavior in the sense that exactly those 
exceptions that would arise if the program were executed in 
strict program order actually do arise. 

• Dynamically scheduled processors preserve exception 
behavior by ensuring that no instruction can generate an 
exception until the processor knows that the instruction 
raising the exception will be executed.



18/04/2010 UNYT-UoG

Out-order execution and imprecise exceptions

• Although exception behavior must be preserved, 
dynamically scheduled processors may generate imprecise
exceptions.

• Imprecise exceptions can occur because of two 
possibilities:

1. The pipeline may have already completed instructions 
that are later in program order than the instruction 
causing the exception.

2. The pipeline may have not yet completed some 
instructions that are earlier in program order than the 
instruction causing the exception.
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Implementing out-of-order execution
• To allow out-of-order execution, we essentially split the ID 

pipe stage of a simple five-stage pipeline into two stages:
1. Issue — Decode instructions, check for structural 

hazards.
2. Read operands — Wait until no data hazards, then read 

operands.

• In a dynamically scheduled pipeline, all instructions pass 
through the issue stage in order (in-order issue); 

• However, they can be stalled or bypass each other in the 
second stage (read operands) and thus enter execution out of 
order.
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Dynamic Scheduling Using 
Tomasulo’s Approach

• The IBM 360/91 floating-point unit used a sophisticated 
scheme to allow out-of order execution. 

• This scheme, invented by Robert Tomasulo, tracks when 
operands for instructions are available, to minimize RAW 
hazards, and introduces register renaming, to minimize 
WAW and WAR hazards.

• IBM’s goal was to achieve high floating-point performance 
from an instruction set and from compilers designed for the 
entire 360 computer family, rather than from specialized 
compilers for the high-end processors.
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Avoiding Hazards
• As we will see, RAW hazards are avoided by executing an 

instruction only when its operands are available. 

• WAR and WAW hazards, which arise from name 
dependences, are eliminated by register renaming. 

• Register renaming eliminates these hazards by renaming all 
destination registers, including those with a pending read or 
write for an earlier instruction, so that the out-of-order write 
does not affect any instructions that depend on an earlier 
value of an operand.
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Eliminating Hazards
• Consider the following example:

DIV.D F0,F2,F4
ADD.D F6,F0,F8
S.D F6,0(R1)
SUB.D F8,F10,F14
MUL.D F6,F10,F8

• There is an antidependence between the ADD.D and the 
SUB.D and an output dependence between the ADD.D and 
the MUL.D, leading to two possible hazards: a WAR hazard 
on the use of F8 by ADD.D and a WAW hazard on the use 
of F6 since the ADD.D may finish later than the MUL.D. 
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Eliminating Hazards
• The two name dependences can both be eliminated by 

register renaming.
• For simplicity, assume the existence of two temporary 

registers, S and T. Using S and T, the sequence can be 
rewritten without any dependences as:
DIV.D F0,F2,F4
ADD.D S,F0,F8
S.D S,0(R1)
SUB.D T,F10,F14
MUL.D F6,F10,T

• In addition, any subsequent uses of F8 must be replaced by 
the register T. In this code segment, the renaming process 
can be done statically by the compiler.
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Reservation Stations
• In Tomasulo’s scheme, register renaming is provided by 

reservation stations, which buffer the operands of 
instructions waiting to issue. 

• The basic idea is that a reservation station fetches and 
buffers an operand as soon as it is available, eliminating the 
need to get the operand from a register. 

• In addition, pending instructions designate the reservation 
station that will provide their input.
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Properties of Reservation Stations
• The use of reservation stations, rather than a centralized 

register file, leads to two other important properties. 
1. First, hazard detection and execution control are 

distributed: The information held in the reservation 
stations at each functional unit determine when an 
instruction can begin execution at that unit. 

2. Second, results are passed directly to functional units 
from the reservation stations where they are buffered, 
rather than going through the registers. 
• This bypassing is done with a common result bus

that allows all units waiting for an operand to be 
loaded simultaneously (on the 360/91 this is called 
the common data bus, or CDB).
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MIPS floating-point unit 
using Tomasulo’s algorithm
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Fields of Reservation Stations
• Each reservation station has seven fields:

• Op — The operation to perform on source operands S1 and 
S2.

• Qj, Qk — The reservation stations that will produce the 
corresponding source operand; a value of zero indicates that 
the source operand is already available in Vj or Vk, or is 
unnecessary. 

• Vj, Vk — The value of the source operands. Note that only 
one of the V field or the Q field is valid for each operand. 
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Fields of Reservation Stations
• A — Used to hold information for the memory address 

calculation for a load or store.

• Busy — Indicates that this reservation station and its 
accompanying functional unit are occupied.

• The register file has a field, Qi — The number of the 
reservation station that contains the operation whose result 
should be stored into this register. 
– If the value of Qi is blank (or 0), no currently active 

instruction is computing a result destined for this register, 
meaning that the value is simply the register contents.
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Dynamic Scheduling: Example 1
• Consider the program:

1. L.D F6,32(R2)
2. L.D F2,44(R3)
3. MUL.D F0,F2,F4
4. SUB.D F8,F2,F6
5. DIV.D F10,F0,F6
6. ADD.D F6,F8,F2

• Let’s show what the information tables look like for the code sequence 
when only the first load has completed and written its result:

(assume the following latencies: load is 1 clock cycle, add is 2 clock 
cycles, multiply is 6 clock cycles, and divide is 12 clock cycles.)
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Reservation stations in Tomasulo’s approach

The code sequence issues both the DIV.D and the ADD.D, even though there is a 
WAR hazard involving F6. The hazard is eliminated in one of two ways => next slide
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Using reservation stations
1. First, if the instruction providing the value for the DIV.D 

has completed, then Vk will store the result, allowing 
DIV.D to execute independent of the ADD.D (this is the 
case shown). 

2. On the other hand, if the L.D had not completed, then Qk
would point to the Load1 reservation station, and the DIV.D 
instruction would be independent of the ADD.D. 
• Thus, in either case, the ADD.D can issue and begin 

executing. 
• Any uses of the result of the DIV.D would point to the 

reservation station, allowing the ADD.D to complete and 
store its value into the registers without affecting the 
DIV.D.
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Dynamic Scheduling: Example 2
• Using the same code segment as in the previous example, we 

show what the status tables look like when the MUL.D is 
ready to write its result => next slide
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Reservation stations in Tomasulo’s approach

• ADD.D has completed 
since the operands of 
DIV.D were copied, 
thereby overcoming the 
WAR hazard. 

• Notice that even if the 
load of F6 was delayed, 
the add into F6 could 
be executed without 
triggering a WAW 
hazard.
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Tomasulo’s Algorithm
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Speculation
• Overcoming control dependence is done by speculating on the 

outcome of branches and executing the program as if our guesses 
were correct. 

• This mechanism represents a subtle, but important, extension over 
branch prediction with dynamic scheduling. 

• In particular, with speculation, we fetch, issue, and execute 
instructions, as if our branch predictions were always correct; 
dynamic scheduling only fetches and issues such instructions. 

• Of course, we need mechanisms to handle the situation where the 
speculation is incorrect. 
– There are a variety of mechanisms for supporting speculation 

by the compiler.
• In this section, we explore hardware speculation, which extends 

the ideas of dynamic scheduling.
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Hardware-based speculation
Hardware-based speculation combines three key ideas: 

1. dynamic branch prediction to choose which instructions 
to execute, 

2. speculation to allow the execution of instructions 
before the control dependences are resolved (with the 
ability to undo the effects of an incorrectly speculated 
sequence), 

3. dynamic scheduling to deal with the scheduling of 
different combinations of basic blocks.
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Data flow execution
• Hardware-based speculation follows the predicted flow of data 

values to choose when to execute instructions. 
• This method of executing programs is essentially a data flow 

execution: Operations execute as soon as their operands are 
available.

• To extend Tomasulo’s algorithm to support speculation, we must 
separate the bypassing of results among instructions, which is 
needed to execute an instruction speculatively, from the actual 
completion of an instruction. 

• By making this separation, we can allow an instruction to execute 
and to bypass its results to other instructions, without allowing the 
instruction to perform any updates that cannot be undone, until we 
know that the instruction is no longer speculative.
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Instruction commit
• Using the bypassed value is like performing a speculative 

register read, since we do not know whether the instruction 
providing the source register value is providing the correct 
result until the instruction is no longer speculative. 

• When an instruction is no longer speculative, we allow it to 
update the register file or memory; 
– we call this additional step in the instruction execution 

sequence instruction commit.
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Implementing Speculation
• The key idea behind implementing speculation is to allow 

instructions to execute out of order but to force them to commit in 
order and to prevent any irrevocable action (such as updating state 
or taking an exception) until an instruction commits. 

• Hence, when we add speculation, we need to separate the process 
of completing execution from instruction commit, since 
instructions may finish execution considerably before they are 
ready to commit.

• Adding this commit phase to the instruction execution sequence 
requires an additional set of hardware buffers that hold the results 
of instructions that have finished execution but have not 
committed. 

• This hardware buffer, which we call the reorder buffer, is also 
used to pass results among instructions that may be speculated.
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Reorder buffer (ROB)
• The reorder buffer (ROB) provides additional registers in the same 

way as the reservation stations in Tomasulo’s algorithm extend the 
register set. 

• The ROB holds the result of an instruction between the time the 
operation associated with the instruction completes and the time
the instruction commits. 

• Hence, the ROB is a source of operands for instructions, just as
the reservation stations provide operands in Tomasulo’s
algorithm. 

• The key difference is that in Tomasulo’s algorithm, once an 
instruction writes its result, any subsequently issued instructions 
will find the result in the register file. 

• With speculation, the register file is not updated until the 
instruction commits.



18/04/2010 UNYT-UoG

ROB Fields
Each entry in the ROB contains four fields: 
1. The instruction type indicates whether the instruction is a branch 

(and has no destination result), a store (which has a memory 
address destination), or a register operation (ALU operation or 
load, which has register destinations). 

2. The destination field supplies the register number (for loads and 
ALU operations) or the memory address (for stores where the 
instruction result should be written. 

3. The value field is used to hold the value of the instruction result 
until the instruction commits.

4. The ready field indicates that the instruction has completed 
execution, and the value is ready.
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FP Unit with Speculation
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Speculation: Example
• Assume latencies for the floating-point functional units are: 

add is 2 clock cycles, multiply is 6 clock cycles, and divide 
is 12 clock cycles.

• Consider the program:
L.D F6,32(R2)
L.D F2,44(R3)
MUL.D F0,F2,F4
SUB.D F8,F6,F2
DIV.D F10,F0,F6
ADD.D F6,F8,F2

• Show what the status tables look like when the MUL.D is 
ready to go to commit.
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ROBs
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ROB Vs. Tomasulo
• The key difference is that, with ROB, no instruction after the earliest 

uncompleted instruction (MUL.D above) is allowed to complete. 
• In contrast, with Tomasulo, the SUB.D and ADD.D instructions have 

also completed.
One implication of this difference is that the processor with the ROB can 
dynamically execute code while maintaining a precise interrupt model. 

• For example, if the MUL.D instruction caused an interrupt, we could 
simply wait until it reached the head of the ROB and take the interrupt, 
flushing any other pending instructions from the ROB. 

• Because instruction commit happens in order, this yields a precise 
exception.

• By contrast, in the example using Tomasulo’s algorithm, the SUB.D and 
ADD.D instructions could both complete before the MUL.D raised the 
exception.
– The result is that the registers F8 and F6 (destinations of the SUB.D 

and ADD.D instructions) could be overwritten, and the interrupt 
would be imprecise.
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Speculation Algorithm
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Multiple Issue
• The techniques we have seen until now can be used to 

eliminate data and control stalls and achieve an ideal CPI of 
one. 

• To improve performance further we would like to decrease 
the CPI to less than one. 

• But the CPI cannot be reduced below one if we issue only 
one instruction every clock cycle.

• The goal of the multiple-issue processors, is to allow 
multiple instructions to issue in a clock cycle. Multiple-issue 
processors come in three major flavors:
1. statically scheduled superscalar processors
2. VLIW (very long instruction word) processors
3. dynamically scheduled superscalar processors



18/04/2010 UNYT-UoG

Multiple Issue
• Superscalar processors issue varying numbers of instructions 

per clock and use in-order execution if they are statically 
scheduled or out-of-order execution if they are dynamically 
scheduled.

• VLIW processors, in contrast, issue a fixed number of 
instructions formatted either as one large instruction or as a
fixed instruction packet with the parallelism among 
instructions explicitly indicated by the instruction. 
– VLIW processors are inherently statically scheduled by 

the compiler. 
• When Intel and HP created the IA-64 architecture, they also 

introduced the name EPIC — explicitly parallel instruction 
computer — for this architectural style.
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Superscalar and VLIW processors
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Static Vs. Dynamic Scheduling
• Although statically scheduled superscalars issue a varying 

rather than a fixed number of instructions per clock, they are 
actually closer in concept to VLIWs, since both approaches 
rely on the compiler to schedule code for the processor.

• Because of the diminishing advantages of a statically 
scheduled superscalar as the issue width grows, statically 
scheduled superscalars are used primarily for narrow issue 
widths, normally just two instructions. 

• Beyond that width, most designers choose to implement 
either a VLIW or a dynamically scheduled superscalar.
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The VLIW Approach
• VLIWs use multiple, independent functional units. 
• Rather than attempting to issue multiple, independent 

instructions to the units, a VLIW packages the multiple 
operations into one very long instruction, or requires 
that the instructions in the issue packet satisfy the same 
constraints.
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Local and Global Scheduling
• Let’s consider a VLIW processor with instructions that contain five 

operations, including one integer operation (which could also be a 
branch), two floating-point operations, and two memory references.

• To keep the functional units busy, there must be enough parallelism
in a code sequence to fill the available operation slots. This 
parallelism is uncovered by unrolling loops and scheduling the code
within the single larger loop body. 

• If the unrolling generates straight-line code, then local scheduling 
techniques, which operate on a single basic block, can be used. 

• If finding and exploiting the parallelism requires scheduling code 
across branches, a substantially more complex global scheduling 
algorithm must be used. 

• Global scheduling algorithms are not only more complex in structure, 
but they also must deal with significantly more complicated trade-
offs in optimization, since moving code across branches is expensive.
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VLIW Example
• Suppose we have a VLIW that could issue two memory references, two 

FP operations, and one integer operation or branch in every clock cycle. 
Show an unrolled version of the loop x[i] = x[i] + s for such a processor. 
Unroll as many times as necessary to eliminate any stalls.

• Ignore delayed branches.
for (i=1000; i>0; i=i–1)
x[i] = x[i] + s;

Loop: L.D F0,0(R1) ;F0=array element
ADD.D F4,F0,F2 ;add scalar in F2
S.D F4,0(R1) ;store result
DADDUI R1,R1,#-8 ;decrement pointer 

;8 bytes (per DW)
BNE R1,R2,Loop ;branch R1!=R2
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VLIW Execution
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ILP Using Dynamic Scheduling, Multiple 
Issue, and Speculation

• So far, we have seen how the individual mechanisms of 
dynamic scheduling, multiple issue, and speculation work. 

• How about putting them all three together?
• This would yield a microarchitecture quite similar to those in 

modern microprocessors.
• For simplicity, we consider here only an issue rate of two 

instructions per clock, but the concepts are no different from 
modern processors that issue three or more instructions per 
clock.
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ILP Using Dynamic Scheduling, Multiple 
Issue, and Speculation

• Let’s assume we want to extend Tomasulo’s algorithm to support 
a two-issue superscalar pipeline with a separate integer and 
floating-point unit, each of which can initiate an operation on 
every clock. 

• To gain the full advantage of dynamic scheduling we will allow 
the pipeline to issue any combination of two instructions in a 
clock, using the scheduling hardware to actually assign operations 
to the integer and floating-point unit. 

• Because the interaction of the integer and floating-point 
instructions is crucial, we also extend Tomasulo’s scheme to deal 
with both the integer and floating-point functional units and 
registers, as well as incorporating speculative execution.
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Combining Multiple Instructions with 
Dynamic Scheduling

• Two different approaches have been used to issue multiple 
instructions per clock in a dynamically scheduled processor, 
and both rely on the observation that the key is assigning a 
reservation station and updating the pipeline control tables.

• One approach is to run this step in half a clock cycle, so that 
two instructions can be processed in one clock cycle. 

• A second alternative is to build the logic necessary to handle 
two instructions at once, including any possible dependences 
between the instructions. 

• Modern superscalar processors that issue four or more 
instructions per clock often include both approaches: 
They both pipeline and widen the issue logic.



18/04/2010 UNYT-UoG

Putting together speculative dynamic 
scheduling with multiple issue

• Putting together speculative dynamic scheduling with 
multiple issue requires overcoming one additional challenge 
at the back end of the pipeline: we must be able to complete 
and commit multiple instructions per clock. 

• Like the challenge of issuing multiple instructions, the 
concepts are simple, although the implementation may be 
challenging in the same manner as the issue and register 
renaming process. 



18/04/2010 UNYT-UoG

Example
• Consider the execution of the following loop, which increments each 

element of an integer array, on a two-issue processor, once without 
speculation and once with speculation:

Loop: LD R2,0(R1) ;R2=array element
DADDIU R2,R2,#1 ;increment R2
SD R2,0(R1) ;store result
DADDIU R1,R1,#8 ;increment pointer
BNE R2,R3,LOOP ;branch if not last element

• Assume that there are separate integer functional units for effective 
address calculation, for ALU operations, and for branch condition 
evaluation. 

• Let’s create a table for the first three iterations of this loop for both 
processors. 

• We assume that up to two instructions of any type can commit per clock 
cycle.
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Pipeline with dual-issue and 
without speculation

19 Cycles for three loops
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Pipeline with dual-issue and 
with speculation

It is executed in clock cycle 
19 without speculation.
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Increasing Instruction Fetch Bandwidth
• A multiple issue processor will require that the average 

number of instructions fetched every clock cycle be at least 
as large as the average throughput. 

• Fetching these instructions requires wide enough paths to the 
instruction cache, but the most difficult aspect is handling 
branches.
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Branch-Target Buffers
• To reduce the branch penalty for our simple five-stage 

pipeline, as well as for deeper pipelines, we must know 
whether the as-yet-undecoded instruction is a branch 
and, if so, what the next PC should be. 

• If the instruction is a branch and we know what the next 
PC should be, we can have a branch penalty of zero. 

• A branch-prediction cache that stores the predicted 
address for the next instruction after a branch is called a 
branch-target buffer or branch-target cache.
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Structure of Branch-Target Buffers

Prediction 
for the 
next PC
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Steps with a branch-target buffer

Pipeline stages
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Penalties of branch-target buffer
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Determining Penalty: Example
• Determine the total branch penalty for a branch-target buffer 

assuming the penalty cycles for individual mispredictions
from previous slide. 

• We make the following assumptions about the prediction 
accuracy and hit rate:
– Prediction accuracy is 90% (for instructions in the 

buffer).
– Hit rate in the buffer is 90% (for branches predicted 

taken).
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Computing Penalty
• We compute the penalty by looking at the probability of two 

events: the branch is predicted taken but ends up being not 
taken, and the branch is taken but is not found in the buffer. 
Both carry a penalty of 2 cycles.

Probability (branch in buffer, but actually not taken) = Percent
buffer hit rate × Percent incorrect predictions = 90% × 10% 
= 0.09

Probability (branch not in buffer, but actually taken) = 10%
Branch penalty = (0.09 + 0.10) × 2
Branch penalty = 0.38 clock cycles
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Integrated Instruction Fetch Units
• To meet the demands of multiple-issue processors, many 

recent designers have chosen to implement an integrated 
instruction fetch unit, as a separate autonomous unit that 
feeds instructions to the rest of the pipeline. 

• Essentially, this amounts to recognizing that characterizing 
instruction fetch as a simple single pipe stage given the 
complexities of multiple issue is no longer valid.
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Design of Integrated 
Instruction Fetch Unit

Recent designs have used an integrated instruction fetch 
unit that integrates several functions:

1. Integrated branch prediction — The branch predictor 
becomes part of the instruction fetch unit and is 
constantly predicting branches, so as to drive the fetch 
pipeline.

2. Instruction prefetch — To deliver multiple instructions 
per clock, the instruction fetch unit will likely need to 
fetch ahead. 
– The unit autonomously manages the prefetching of 

instructions, integrating it with branch prediction.
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Design of Integrated 
Instruction Fetch Unit

3. Instruction memory access and buffering—When fetching 
multiple instructions per cycle a variety of complexities are 
encountered, including the difficulty that fetching multiple 
instructions may require accessing multiple cache lines. 
– The instruction fetch unit encapsulates this complexity, 

using prefetch to try to hide the cost of crossing cache 
blocks. 

– The instruction fetch unit also provides buffering, 
essentially acting as an on-demand unit to provide 
instructions to the issue stage as needed and in the 
quantity needed.
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The fetch unit: the future bottleneck
• As designers try to increase the number of instructions 

executed per clock, instruction fetch will become an 
ever more significant bottleneck, and clever new ideas 
will be needed to deliver instructions at the necessary 
rate.
– Research challenge for students of CS!
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Value Prediction
• One technique for increasing the amount of ILP available in a 

program is value prediction. 
• Value prediction attempts to predict the value that will be 

produced by an instruction. Obviously, since most instructions 
produce a different value every time they are executed (or at least 
a different value from a set of values), value prediction can have 
only limited success. 

• There are, however, certain instructions for which it is easier to 
predict the resulting value — for example: 
– loads that load from a constant pool, or 
– loads that load a value that changes infrequently 

• In addition, when an instruction produces a value chosen from a 
small set of potential values, it may be possible to predict the 
resulting value.
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Value Prediction
• Much of the focus of research on value prediction has been 

on loads. 
• We can estimate the maximum accuracy of a load value 

predictor by examining how often a load returns a value that 
matches a value returned in a recent execution of the load. 

• The simplest case to examine is when the load returns a 
value that matches the value on the last execution of the 
load.
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Predicting loads
• Because of the high costs of misprediction and the likely 

case that misprediction rates will be significant (20% to 
50%), researchers have focused on assessing which loads are 
more predictable and only attempting to predict those. 

• This leads to a lower misprediction rate, but also fewer 
candidates for accelerating through prediction. 

• In the limit, if we attempt to predict only those loads that 
always return the same value, it is likely that only 10% to 
15% of the loads can be predicted.

• Research on value prediction continues!!
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Address Aliasing Prediction
• Address aliasing prediction is a simple technique that 

predicts whether two stores or a load and a store refer to the 
same memory address. 

• If two such references do not refer to the same address, then 
they may be safely interchanged. 

• Otherwise, we must wait until the memory addresses 
accessed by the instructions are known. 

• This limited form of address value speculation has been used 
by a few processors.
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Pentium 4

• The Pentium 4 is a processor with a deep pipeline supporting 
multiple issue with speculation.

• It uses an aggressive out-of-order speculative 
microarchitecture, called Netburst, that is deeply pipelined 
with the goal of achieving high instruction throughput by 
combining multiple issue and high clock rates. 

• Like the microarchitecture used in the Pentium III, a front-
end decoder translates each IA-32 instruction to a series of 
micro-operations (uops), which are similar to typical RISC 
instructions. 

• The uops are then executed by a dynamically scheduled 
speculative pipeline.
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Trace Cache in Pentium 4
• The Pentium 4 uses a novel execution trace cache to 

generate the uop instruction stream, as opposed to a 
conventional instruction cache that would hold IA-32 
instructions. 

• A trace cache is a type of instruction cache that holds 
sequences of instructions to be executed including 
nonadjacent instructions separated by branches; 

• A trace cache tries to exploit the temporal sequencing of 
instruction execution rather than the spatial locality exploited 
in a normal cache.
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Execution in Pentium 4
• After fetching from the execution trace cache, the uops are 

executed by an out-of-order speculative pipeline, but using 
register renaming rather than a reorder buffer. 

• Up to three uops per clock can be renamed and dispatched to 
the functional unit queues, and three uops can be committed 
each clock cycle. 

• There are four dispatch ports, which allow a total of six uops
to be dispatched to the functional units every clock cycle. 

• The load and store units each have their own dispatch port, 
another port covers basic ALU operations, and a fourth 
handles FP and integer operations.
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Pentium 4 Microarchitecture
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L2 Cache in Pentium 4
• With deep pipelines and aggressive clock rates the cost of 

cache misses and branch mispredictions are both very high. 
• A two-level cache is used to minimize the frequency of 

DRAM accesses. 
• Branch prediction is done with a branch-target buffer using a 

two-level predictor with both local and global branch 
histories; 
– In the most recent Pentium 4, the size of the branch-target 

buffer was increased, and the static predictor, used when 
the branch-target buffer misses, was improved.
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Evolution: Pentium 4  640
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An Analysis of the Performance of the 
Pentium 4

• The deep pipeline of the Pentium 4 makes the use of 
speculation, and its dependence on branch prediction, critical 
to achieving high performance. 

• Likewise, performance is very dependent on the memory 
system.

• Because of the importance of branch prediction and cache 
misses, we focus our attention on these two areas. 

• We use five of the integer SPEC CPU2000 benchmarks and 
five of the FP benchmarks, and the data is captured using 
counters within the Pentium 4 designed for performance 
monitoring.

• The processor is a Pentium 4 640 running at 3.2 GHz with an 
800 MHz system bus and 667 MHz DDR2 DRAMs for main 
memory.
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Branch mispredictions per instruction

The misprediction rate per instruction for the integer benchmarks is more 
than 8 times higher than the rate for the FP benchmarks.
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Misspeculation in Pentium 4

Branch-prediction accuracy is crucial in speculative processors, since incorrect
speculation requires recovery time and wastes energy pursuing the wrong
path. As we would suspect, the misspeculation rate results look almost
identical to the misprediction rates.
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Cache misses in Pentium 4

Although the miss rate for L1 is about 14 times higher than the miss rate 
for L2, the miss penalty for L2 is comparably higher, and the inability of 
the microarchitecture to hide these very long misses means that L2 misses 
likely are responsible for an equal or greater performance loss than L1 
misses.
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How do the effects of misspeculation and cache 
misses translate to actual performance?

Let’s analyse mcf, vpr and swim: next slide =>
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Analyses of benchmarks
• mcf has a CPI that is more than four times higher than that of 

the four other integer benchmarks. 
– It has the worst misspeculation rate. 
– Equally importantly, mcf has the worst L1 and the worst L2 miss rate 

among any benchmark, integer or floating point, in the SPEC suite. 
– The high cache miss rates make it impossible for the processor to 

hide significant amounts of miss latency.

• vpr achieves a CPI that is 1.6 times higher than three of the 
five integer benchmarks (excluding mcf). 
– This appears to arise from a branch misprediction that is the worst 

among the integer benchmarks (although not much worse than the 
average) together with a high L2 miss rate, second only to mcf
among the integer benchmarks.
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Analyses of benchmarks
• swim is the lowest performing FP benchmark, with a CPI 

that is more than two times the average of the other four FP 
benchmarks. 
– swim’s problems are high L1 and L2 cache miss rates, second only to 

mcf. 
– swim has excellent speculation results, but that success can probably 

not hide the high miss rates, especially in L2. 
– In contrast, several benchmarks with reasonable L1 miss rates and 

low L2 miss rates (such as mgrid and gzip) perform well.
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Pentium 4 and AMD Opteron
• The AMD Opteron and Intel Pentium 4 share a number of 

similarities:
– Both use a dynamically scheduled, speculative pipeline 

capable of issuing and committing three IA-32 
instructions per clock.

– Both use a two-level on-chip cache structure, although 
the Pentium 4 uses a trace cache for the first-level 
instruction cache and recent Pentium 4 implementations 
have larger second-level caches.

– They have similar transistor counts, die size, and power, 
with the Pentium 4 being about 7% to 10% higher on all 
three measures at the highest clock rates available in 2005 
for these two processors.
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Pentium 4 Vs AMD Opteron: CPI
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Pentium 4 Vs AMD Opteron: SPECRatio
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Pentium 4 Vs AMD Opteron: Conclusions

• The Opteron is slightly faster, meaning that the higher clock 
rate of the Pentium 4 is insufficient to overcome the higher 
CPI arising from more pipeline stalls.

• Hence, while the Pentium 4 performs well, it is clear that the 
attempt to achieve both high clock rates via a deep pipeline 
and high instruction throughput via multiple issue is not as 
successful as the designers once believed it would be.
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Outline
• Instruction-Level Parallelism: Concepts and Challenges
• Basic Compiler Techniques for Exposing ILP
• Overcoming Data Hazards with Dynamic Scheduling
• Dynamic Scheduling: Examples and the Algorithm
• Hardware-Based Speculation
• Exploiting ILP Using Multiple Issue and Static Scheduling
• Exploiting ILP Using Dynamic Scheduling, Multiple Issue, 

and Speculation
• Advanced Techniques for Instruction Delivery and 

Speculation
• Putting It All Together: The Intel Pentium 4
• Fallacies and Pitfalls
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Fallacies and Pitfalls
• Fallacy Processors with lower CPIs will always be faster.
• Fallacy Processors with faster clock rates will always be 

faster.
• Although a lower CPI is certainly better, sophisticated 

multiple-issue pipelines typically have slower clock rates 
than processors with simple pipelines. 

• In applications with limited ILP or where the parallelism 
cannot be exploited by the hardware resources, the faster 
clock rate often wins. 

• But, when significant ILP exists, a processor that exploits 
lots of ILP may be better.
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IBM Power5
• The IBM Power5 processor is designed for high-performance 

integer and FP; 
– It contains two processor cores each capable of sustaining four 

instructions per clock, including two FP and two load-store 
instructions. 

– The highest clock rate for a Power5 processor in 2005 is 1.9 
GHz. 

• In comparison, the Pentium 4 offers a single processor with 
multithreading (next lecture). 
– The processor can sustain three instructions per clock with a 

very deep pipeline, and the maximum available clock rate in 
2005 is 3.8 GHz.

Thus, the Power5 will be faster if the product of the instruction 
count and CPI is less than one-half the same product for the 
Pentium 4.
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No one wins
• The CPI × instruction count advantages of the Power5 are 

significant for the FP programs, sometimes by more than a factor
of 2, 

• While for the integer programs the CPI × instruction count 
advantage of the Power5 is usually not enough to overcome the 
clock rate advantage of the Pentium 4. 

• By comparing the SPEC numbers, we find that the product of 
instruction count and CPI advantage for the Power5 is 3.1 times 
on the floating-point programs but only 1.5 times on the integer 
programs. 

• Because the maximum clock rate of the Pentium 4 in 2005 is 
exactly twice that of the Power5, the Power5 is faster by 1.5 on
SPECfp2000 and the Pentium 4 will be faster by 1.3 on 
SPECint2000.
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Intel Pentium 4 Vs. IBM Power5
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Pitfall: Sometimes bigger 
and dumber is better

• Advanced pipelines have focused on novel and increasingly 
sophisticated schemes for improving CPI. 

• The Apha 21264 uses a sophisticated tournament predictor 
with a total of 29K bits, while the earlier 21164 uses a 
simple 2-bit predictor with 2K entries. 

• For the SPEC95 benchmarks, the more sophisticated branch 
predictor of the 21264 outperforms the simpler 2-bit scheme 
on all but one benchmark. 

• On average, for SPECint95, the 21264 has 11.5 
mispredictions per 1000 instructions committed, while the 
21164 has about 16.5 mispredictions.
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Pitfall: Sometimes bigger 
and dumber is better

• Somewhat surprisingly, the simpler 2-bit scheme works better for 
the transaction-processing workload than the sophisticated 21264 
scheme (17 mispredictions versus 19 per 1000 completed 
instructions)! 

• How can a predictor with less than 1/7 the number of bits and a 
much simpler scheme actually work better? 

• The answer lies in the structure of the workload. The transaction-
processing workload has a very large code size (more than an 
order of magnitude larger than any SPEC95 benchmark) with a 
large branch frequency. 

• The ability of the 21164 predictor to hold twice as many branch 
predictions based on purely local behavior (2K versus the 1K local 
predictor in the 21264) seems to provide a slight advantage.
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End of Lecture 3
• Readings

– Book: Chapter 2


