
18/04/2010 UNYT-UoG

Advanced Topics in
Computer Architecture

Lecture 3
Instruction-Level Parallelism and

Its Exploitation

Marenglen Biba
Department of Computer Science
University of New York Tirana

18/04/2010 UNYT-UoG

Outline
• Instruction-Level Parallelism: Concepts and Challenges
• Basic Compiler Techniques for Exposing ILP
• Reducing Branch Costs with Prediction
• Overcoming Data Hazards with Dynamic Scheduling
• Dynamic Scheduling: Examples and the Algorithm
• Hardware-Based Speculation
• Exploiting ILP Using Multiple Issue and Static Scheduling
• Exploiting ILP Using Dynamic Scheduling, Multiple Issue,

and Speculation
• Advanced Techniques for Instruction Delivery and

Speculation
• Putting It All Together: The Intel Pentium 4
• Fallacies and Pitfalls

18/04/2010 UNYT-UoG

Towards instruction-level parallelism
• All processors since about 1985 use pipelining to

overlap the execution of instructions and improve
performance.

• This potential overlap among instructions is called
instruction-level parallelism (ILP), since the
instructions can be evaluated in parallel.

• Here we look at a wide range of techniques for
extending the basic pipelining concepts by
increasing the amount of parallelism exploited
among instructions.

18/04/2010 UNYT-UoG

Hardware and Software Approach
• There are two largely separable approaches to

exploiting ILP:
– An approach that relies on hardware to help discover and

exploit the parallelism dynamically and
– An approach that relies on software technology to find

parallelism, statically at compile time.

• Processors using the dynamic, hardware-based
approach, including the Intel Pentium series,
dominate in the market.

• Those using the static approach, including the Intel
Itanium, have more limited uses in scientific or
application-specific environments.

18/04/2010 UNYT-UoG

Pipeline CPI
• The value of the CPI (cycles per instruction) for a pipelined

processor is the sum of the base CPI and all contributions
from stalls:

Pipeline CPI = Ideal pipeline CPI + Structural stalls + Data
hazard stalls + Control stalls

• The ideal pipeline CPI is a measure of the maximum
performance attainable by the implementation.

• By reducing each of the terms of the right-hand side, we
minimize the overall pipeline CPI or, alternatively, increase
the IPC (instructions per clock).

18/04/2010 UNYT-UoG

What Is Instruction-Level Parallelism?
• The simplest and most common way to increase the ILP is to

exploit parallelism among iterations of a loop.
• This type of parallelism is often called loop-level parallelism.
• Here is a simple example of a loop, which adds two 1000-element

arrays, that is completely parallel:
for(i=1; i<=1000; i=i+1)
x[i] = x[i] + y[i];

• Every iteration of the loop can overlap with any other iteration,
although within each loop iteration there is little or no opportunity
for overlap.

• There are a number of techniques we will examine for converting
such loop-level parallelism into instruction-level parallelism.
Basically, such techniques work by unrolling the loop either
statically by the compiler or dynamically by the hardware.

18/04/2010 UNYT-UoG

Data Dependences and Hazards
• Determining how one instruction depends on another is critical to

determining how much parallelism exists in a program and how
that parallelism can be exploited.

• In particular, to exploit instruction-level parallelism we must
determine which instructions can be executed in parallel.

• If two instructions are parallel, they can execute simultaneously in
a pipeline of arbitrary depth without causing any stalls, assuming
the pipeline has sufficient resources (and hence no structural
hazards exist).

• If two instructions are dependent, they are not parallel and must be
executed in order, although they may often be partially
overlapped.
The key in both cases is to determine whether an instruction is
dependent on another instruction.

18/04/2010 UNYT-UoG

Data Dependences
• There are three different types of dependences: data

dependences (also called true data dependences), name
dependences, and control dependences

• An instruction j is data dependent on instruction i if either of
the following holds:
– instruction i produces a result that may be used by

instruction j, or
– instruction j is data dependent on instruction k, and

instruction k is data dependent on instruction i.
• The second condition simply states that one instruction is

dependent on another if there exists a chain of dependences
of the first type between the two instructions.
– This dependence chain can be as long as the entire

program.

18/04/2010 UNYT-UoG

Example
• For example, consider the following MIPS code sequence that

increments a vector of values in memory (starting at 0(R1), and with the
last element at 8(R2)), by a scalar in register F2.

18/04/2010 UNYT-UoG

Data dependent instructions
• If two instructions are data dependent, they cannot execute

simultaneously or be completely overlapped.
• The dependence implies that there would be a chain of one

or more data hazards between the two instructions.
• Executing the instructions simultaneously will cause a

processor with pipeline interlocks (and a pipeline depth
longer than the distance between the instructions in cycles)
to detect a hazard and stall, thereby reducing or eliminating
the overlap.

• In a processor without interlocks that relies on compiler
scheduling, the compiler cannot schedule dependent
instructions in such a way that they completely overlap,
since the program will not execute correctly.

18/04/2010 UNYT-UoG

Overcoming limits of data dependence
• Since a data dependence can limit the amount of instruction-

level parallelism we can exploit, a major focus is
overcoming these limitations.

• A dependence can be overcome in two different ways:
– maintaining the dependence but avoiding a hazard
– eliminating a dependence by transforming the code.

• Scheduling the code is the primary method used to avoid a
hazard without altering a dependence, and such scheduling
can be done both by the compiler and by the hardware.

18/04/2010 UNYT-UoG

Detecting dependencies
• A data value may flow between instructions either through

registers or through memory locations.
• When the data flow occurs in a register, detecting the dependence

is straightforward since the register names are fixed in the
instructions, although it gets more complicated when branches
intervene and correctness concerns force a compiler or hardware
to be conservative.

• Dependences that flow through memory locations are more
difficult to detect, since two addresses may refer to the same
location but look different: For example, 100(R4) and 20(R6) may
be identical memory addresses.

• In addition, the effective address of a load or store may change
from one execution of the instruction to another (so that 20(R4)
and 20(R4) may be different), further complicating the detection
of a dependence.

18/04/2010 UNYT-UoG

Name Dependences
• The second type of dependence is a name

dependence.
• A name dependence occurs when two instructions

use the same register or memory location, called a
name, but there is no flow of data between the
instructions associated with that name.

• There are two types of name dependences between
an instruction i that precedes instruction j in
program order:

18/04/2010 UNYT-UoG

Antidependence
1. An antidependence between instruction i and instruction j

occurs when instruction j writes a register or memory
location that instruction i reads.

• The original ordering must be preserved to ensure that i
reads the correct value.

18/04/2010 UNYT-UoG

Output dependence
2. An output dependence occurs when instruction i

and instruction j write the same register or memory
location.

• The ordering between the instructions must be
preserved to ensure that the value finally written
corresponds to instruction j.

18/04/2010 UNYT-UoG

Register renaming
• Both antidependences and output dependences are name

dependences, as opposed to true data dependences, since
there is no value being transmitted between the instructions.

• Since a name dependence is not a true dependence,
instructions involved in a name dependence can execute
simultaneously or be reordered, if the name (register number
or memory location) used in the instructions is changed so
the instructions do not conflict.

• This renaming can be more easily done for register operands,
where it is called register renaming.

• Register renaming can be done either statically by a compiler
or dynamically by the hardware.

18/04/2010 UNYT-UoG

Data Hazards
• A hazard is created whenever there is a dependence between

instructions, and they are close enough that the overlap
during execution would change the order of access to the
operand involved in the dependence.

• Because of the dependence, we must preserve what is called
program order, that is, the order that the instructions would
execute if executed sequentially one at a time as determined
by the original source program.

• The goal of both software and hardware techniques is to
exploit parallelism by preserving program order only where
it affects the outcome of the program.

• Detecting and avoiding hazards ensures that necessary
program order is preserved.

18/04/2010 UNYT-UoG

Data Hazards
• Consider two instructions i and j, with i preceding j in program

order. The possible data hazards are:
• RAW (read after write) — j tries to read a source before i writes

it, so j incorrectly gets the old value. This hazard is the most
common type and corresponds to a true data dependence. Program
order must be preserved to ensure that j receives the value from i.

• WAW (write after write) — j tries to write an operand before it is
written by i. The writes end up being performed in the wrong
order, leaving the value written by i rather than the value written
by j in the destination.
– This hazard corresponds to an output dependence. WAW

hazards are present only in pipelines that write in more than
one pipe stage or allow an instruction to proceed even when a
previous instruction is stalled.

18/04/2010 UNYT-UoG

Data Hazards
• WAR (write after read) — j tries to write a destination

before it is read by i, so i incorrectly gets the new value.
• WAR hazards cannot occur in most static issue pipelines —

even deeper pipelines or floating-point pipelines — because
all reads are early (in ID) and all writes are late (in WB).

• A WAR hazard occurs either when there are some
instructions that write results early in the instruction pipeline
and other instructions that read a source late in the pipeline,
or when instructions are reordered => our case here.

18/04/2010 UNYT-UoG

Control Dependences
• A control dependence determines the ordering of an

instruction, i, with respect to a branch instruction so that the
instruction i is executed in correct program order and only
when it should be.

• Every instruction, except for those in the first basic block of
the program, is control dependent on some set of branches,
and, in general, these control dependences must be preserved
to preserve program order.

• One of the simplest examples of a control dependence is the
dependence of the statements in the “then” part of an “if”
statement on the branch.

18/04/2010 UNYT-UoG

Control Dependences: Example
• For example, in the code segment
if p1 {

S1;
};
if p2 {

S2;
}
• S1 is control dependent on p1, and S2 is control dependent

on p2 but not on p1.

18/04/2010 UNYT-UoG

Control dependences
• In general, there are two constraints imposed by

control dependences:
1. An instruction that is control dependent on a

branch cannot be moved before the branch so that
its execution is no longer controlled by the branch.
– For example, we cannot take an instruction from the

then portion of an if statement and move it before the if
statement.

2. An instruction that is not control dependent on a
branch cannot be moved after the branch so that its
execution is controlled by the branch.

– For example, we cannot take a statement before the if
statement and move it into the then portion.

18/04/2010 UNYT-UoG

Programs critical properties
• When processors preserve strict program order, they ensure

that control dependences are also preserved.
• We may be willing to execute instructions that should not

have been executed, however, (thereby violating the control
dependences), if we can do so without affecting the
correctness of the program.

• Control dependence is not the critical property that must be
preserved.
– Instead, the two properties critical to program correctness

— and normally preserved by maintaining both data and
control dependence — are the exception behavior and the
data flow.

18/04/2010 UNYT-UoG

Programs critical properties
• Preserving the exception behavior means that any changes in the

ordering of instruction execution must not change how exceptions
are raised in the program.
– Often this is relaxed to mean that the reordering of instruction

execution must not cause any new exceptions in the program.
• The data flow is the actual flow of data values among instructions

that produce results and those that consume them.
• Branches make the data flow dynamic, since they allow the source

of data for a given instruction to come from many points.

Program order is ensured by maintaining the control dependences.

18/04/2010 UNYT-UoG

Outline
• Instruction-Level Parallelism: Concepts and Challenges
• Basic Compiler Techniques for Exposing ILP
• Reducing Branch Costs with Prediction
• Overcoming Data Hazards with Dynamic Scheduling
• Dynamic Scheduling: Examples and the Algorithm
• Hardware-Based Speculation
• Exploiting ILP Using Multiple Issue and Static Scheduling
• Exploiting ILP Using Dynamic Scheduling, Multiple Issue,

and Speculation
• Advanced Techniques for Instruction Delivery and

Speculation
• Putting It All Together: The Intel Pentium 4
• Fallacies and Pitfalls

18/04/2010 UNYT-UoG

Basic Pipeline Scheduling and Loop
Unrolling

• To keep a pipeline full, parallelism among instructions must
be exploited by finding sequences of unrelated instructions
that can be overlapped in the pipeline.

• To avoid a pipeline stall, a dependent instruction must be
separated from the source instruction by a distance in clock
cycles equal to the pipeline latency of that source
instruction.

• A compiler’s ability to perform this scheduling depends both
on the amount of ILP available in the program and on the
latencies of the functional units in the pipeline

18/04/2010 UNYT-UoG

Latencies of FP operations

18/04/2010 UNYT-UoG

Loop unrolling
• A simple scheme for increasing performance is loop

unrolling.

• Unrolling simply replicates the loop body multiple times,
adjusting the loop termination code.

• Loop unrolling can also be used to improve scheduling.
Because it eliminates the branch, it allows instructions from
different iterations to be scheduled together.

18/04/2010 UNYT-UoG

Decisions for Loop Unrolling and Scheduling

• To obtain the final unrolled code the following
decisions and transformations could be made:
– Determine that unrolling the loop would be

useful by finding that the loop iterations were
independent, except for the loop maintenance
code.

– Use different registers to avoid unnecessary
constraints that would be forced by using the
same registers for different computations.

– Eliminate the extra test and branch instructions
and adjust the loop termination and iteration
code.

18/04/2010 UNYT-UoG

Decisions for Loop Unrolling and Scheduling

– Determine that the loads and stores in the
unrolled loop can be interchanged by observing
that the loads and stores from different iterations
are independent.

– This transformation requires analyzing the
memory addresses and finding that they do not
refer to the same address.

– Schedule the code, preserving any dependences
needed to yield the same result as the original
code.

18/04/2010 UNYT-UoG

Limits of Loop Unrolling
• A decrease in the amount of overhead amortized

with each unroll
– The more you unroll, the more the amortized overhead is

reduced

• Code size limitations
– A second limit to unrolling is the growth in code

size that results. For larger loops, the code size
growth may be a concern particularly if it causes
an increase in the instruction cache miss rate.

• Compiler limitations
– Effect caused: Register Pressure

18/04/2010 UNYT-UoG

Register Pressure
• Aggressive unrolling and scheduling can cause potential

shortfall in registers.
• This secondary effect that results from instruction scheduling

in large code segments is called register pressure.
• It arises because scheduling code to increase ILP causes the

number of live values to increase.
• After aggressive instruction scheduling, it may not be

possible to allocate all the live values to registers.
• The transformed code, while theoretically faster, may lose

some or all of its advantage because it generates a shortage
of registers.

18/04/2010 UNYT-UoG

Outline
• Instruction-Level Parallelism: Concepts and Challenges
• Basic Compiler Techniques for Exposing ILP
• Reducing Branch Costs with Prediction
• Overcoming Data Hazards with Dynamic Scheduling
• Dynamic Scheduling: Examples and the Algorithm
• Hardware-Based Speculation
• Exploiting ILP Using Multiple Issue and Static Scheduling
• Exploiting ILP Using Dynamic Scheduling, Multiple Issue,

and Speculation
• Advanced Techniques for Instruction Delivery and

Speculation
• Putting It All Together: The Intel Pentium 4
• Fallacies and Pitfalls

18/04/2010 UNYT-UoG

Branches
• Branches hurt pipeline performance.
• Loop unrolling is one way to reduce the number of branch

hazards.
• We can also reduce the performance losses of branches by

predicting how they will behave.
• The behavior of branches can be predicted both statically at

compile time and dynamically by the hardware at execution
time.

• Static branch predictors are sometimes used in processors
where the expectation is that branch behavior is highly
predictable at compile time;

• Static prediction can also be used to assist dynamic
predictors.

18/04/2010 UNYT-UoG

Static Branch Prediction
• To reorder code around branches so that it runs faster, we

need to predict the branch statically when we compile the
program.

• There are several different methods to statically predict
branch behavior.

• The simplest scheme is to predict a branch as taken.
• This scheme has an average misprediction rate that is equal

to the untaken branch frequency, which for the SPEC
programs is 34%.

• Unfortunately, the misprediction rate for the SPEC programs
ranges from not very accurate (59%) to highly accurate
(9%).

18/04/2010 UNYT-UoG

Profile-based prediction
• A more accurate technique is to predict branches on the

basis of profile information collected from earlier runs.

• The key observation that makes this worthwhile is that
the behavior of branches is often bimodally distributed:
– An individual branch is often highly biased toward taken or

untaken.

18/04/2010 UNYT-UoG

Profile-based prediction

18/04/2010 UNYT-UoG

Dynamic Branch Prediction
• The simplest dynamic branch-prediction scheme is a branch-

prediction buffer or branch history table.
• A branch-prediction buffer is a small memory that contains a

bit that says whether the branch was recently taken or not.
• This scheme is the simplest sort of buffer.
• With such a buffer, we don’t know, in fact, if the prediction

is correct.
– But this doesn’t matter. The prediction is a hint that is

assumed to be correct, and fetching begins in the
predicted direction.

– If the hint turns out to be wrong, the prediction bit is
inverted and stored back.

18/04/2010 UNYT-UoG

2-bit prediction
• The simple 1-bit prediction scheme has a performance

shortcoming:
Even if a branch is almost always taken, we will likely
predict incorrectly twice, rather than once, when it is not
taken, since the misprediction causes the prediction bit to be
flipped.

• To remedy this weakness, 2-bit prediction schemes are often
used.

• In a 2-bit scheme, a prediction must miss twice before it is
changed.
(This scheme can be generalized to the n-bit scheme)

18/04/2010 UNYT-UoG

A finite-state processor for a
2-bit prediction scheme.

18/04/2010 UNYT-UoG

Performance of 2-bit prediction

18/04/2010 UNYT-UoG

Correlating Branch Predictors
• The 2-bit predictor schemes use only the recent

behavior of a single branch to predict the future
behavior of that branch.

• It may be possible to improve the prediction
accuracy if we also look at the recent behavior of
other branches rather than just the branch we are
trying to predict.

• Example:
if (aa==2)

aa=0;
if (bb==2)

bb=0;
if (aa!=bb) {

18/04/2010 UNYT-UoG

Correlating Branch Predictors

• The key observation is that the behavior of branch b3 is correlated with
the behavior of branches b1 and b2.

• If branches b1 and b2 are both not taken (i.e., if the conditions both
evaluate to true and aa and bb are both assigned 0), then b3 will be taken,
since aa and bb are clearly equal.

• A predictor that uses only the behavior of a single branch to predict the
outcome of that branch can never capture this behavior.

18/04/2010 UNYT-UoG

Correlating predictors or two-level predictors

• Branch predictors that use the behavior of other branches to
make a prediction are called correlating predictors or two-
level predictors.

• Existing correlating predictors add information about the
behavior of the most recent branches to decide how to
predict a given branch.

• For example, a (1,2) predictor uses the behavior of the last
branch to choose from among a pair of 2-bit branch
predictors in predicting a particular branch.

• In the general case an (m,n) predictor uses the behavior of
the last m branches to choose from 2m branch predictors,
each of which is an n-bit predictor for a single branch.

18/04/2010 UNYT-UoG

Tournament Predictors
• The primary motivation for correlating branch predictors

came from the observation that the standard 2-bit
predictor using only local information failed on some
important branches and that, by adding global
information, the performance could be improved.

• Tournament predictors take this insight to the next level,
by using multiple predictors, usually one based on global
information and one based on local information, and
combining them with a selector.

• Existing tournament predictors use a 2-bit scheme per
branch to choose among two different predictors based on
which predictor (local, global, or even some mix) was
most effective in recent predictions.

18/04/2010 UNYT-UoG

Comparison of predictors

18/04/2010 UNYT-UoG

Outline
• Instruction-Level Parallelism: Concepts and Challenges
• Basic Compiler Techniques for Exposing ILP
• Reducing Branch Costs with Prediction
• Overcoming Data Hazards with Dynamic Scheduling
• Dynamic Scheduling: Examples and the Algorithm
• Hardware-Based Speculation
• Exploiting ILP Using Multiple Issue and Static Scheduling
• Exploiting ILP Using Dynamic Scheduling, Multiple Issue,

and Speculation
• Advanced Techniques for Instruction Delivery and

Speculation
• Putting It All Together: The Intel Pentium 4
• Fallacies and Pitfalls

18/04/2010 UNYT-UoG

Advantages of Dynamic Scheduling
• It enables handling some cases when dependences are

unknown at compile time (for example, because they may
involve a memory reference), and it simplifies the compiler.

• It allows the processor to tolerate unpredictable delays such
as cache misses, by executing other code while waiting for
the miss to resolve.

• It allows code that was compiled with one pipeline in mind
to run efficiently on a different pipeline.

• However, advantages of dynamic scheduling are gained at a
cost of a significant increase in hardware complexity.

18/04/2010 UNYT-UoG

Static Vs. Dynamic Scheduling
• Although a dynamically scheduled processor cannot change

the data flow, it tries to avoid stalling when dependences are
present.

• In contrast, static pipeline scheduling by the compiler tries to
minimize stalls by separating dependent instructions so that
they will not lead to hazards.

• Of course, compiler pipeline scheduling can also be used on
code destined to run on a processor with a dynamically
scheduled pipeline.

18/04/2010 UNYT-UoG

Dynamic Scheduling: The Idea
• A major limitation of simple pipelining techniques is that

they use in-order instruction issue and execution:
– Instructions are issued in program order, and if an

instruction is stalled in the pipeline, no later instructions
can proceed.

– Thus, if there is a dependence between two closely
spaced instructions in the pipeline, this will lead to a
hazard and a stall will result.

• If there are multiple functional units, these units could lie
idle.

• If instruction j depends on a long-running instruction i,
currently in execution in the pipeline, then all instructions
after j must be stalled until i is finished and j can execute.

18/04/2010 UNYT-UoG

Example
• Consider this program:

DIV.D F0,F2,F4
ADD.D F10,F0,F8
SUB.D F12,F8,F14

• The SUB.D instruction cannot execute because the
dependence of ADD.D on DIV.D causes the pipeline to stall;
yet SUB.D is not data dependent on anything in the pipeline.

• This hazard creates a performance limitation that can be
eliminated by not requiring instructions to execute in
program order.

18/04/2010 UNYT-UoG

Out-of-order execution
• To allow us to begin executing the SUB.D in the example,

we must separate the issue process into two parts:
– checking for any structural hazards and
– waiting for the absence of a data hazard.

• Thus, we still use in-order instruction issue (i.e., instructions
issued in program order), but we want an instruction to begin
execution as soon as its data operands are available.

• Such a pipeline does out-of-order execution, which implies
out-of-order completion.

18/04/2010 UNYT-UoG

Problem!
• Out-of-order execution introduces the possibility of

WAR and WAW hazards, which do not exist in the
five-stage integer pipeline and its logical extension
to an in-order floating-point pipeline.

• Example – next slide

18/04/2010 UNYT-UoG

Problem example
DIV.D F0,F2,F4
ADD.D F6,F0,F8
SUB.D F8,F10,F14
MUL.D F6,F10,F8

• There is an antidependence between the ADD.D and the
SUB.D, and if the pipeline executes the SUB.D before the
ADD.D (which is waiting for the DIV.D), it will violate the
antidependence, yielding a WAR hazard.

• Likewise, to avoid violating output dependences, such as the
write of F6 by MUL.D, WAW hazards must be handled.
(both these hazards are avoided by the use of register
renaming, explained later)

18/04/2010 UNYT-UoG

Out-of-order execution and exceptions
• Out-of-order completion also creates major complications in

handling exceptions.

• Dynamic scheduling with out-of-order completion must
preserve exception behavior in the sense that exactly those
exceptions that would arise if the program were executed in
strict program order actually do arise.

• Dynamically scheduled processors preserve exception
behavior by ensuring that no instruction can generate an
exception until the processor knows that the instruction
raising the exception will be executed.

18/04/2010 UNYT-UoG

Out-order execution and imprecise exceptions

• Although exception behavior must be preserved,
dynamically scheduled processors may generate imprecise
exceptions.

• Imprecise exceptions can occur because of two
possibilities:

1. The pipeline may have already completed instructions
that are later in program order than the instruction
causing the exception.

2. The pipeline may have not yet completed some
instructions that are earlier in program order than the
instruction causing the exception.

18/04/2010 UNYT-UoG

Implementing out-of-order execution
• To allow out-of-order execution, we essentially split the ID

pipe stage of a simple five-stage pipeline into two stages:
1. Issue — Decode instructions, check for structural

hazards.
2. Read operands — Wait until no data hazards, then read

operands.

• In a dynamically scheduled pipeline, all instructions pass
through the issue stage in order (in-order issue);

• However, they can be stalled or bypass each other in the
second stage (read operands) and thus enter execution out of
order.

18/04/2010 UNYT-UoG

Dynamic Scheduling Using
Tomasulo’s Approach

• The IBM 360/91 floating-point unit used a sophisticated
scheme to allow out-of order execution.

• This scheme, invented by Robert Tomasulo, tracks when
operands for instructions are available, to minimize RAW
hazards, and introduces register renaming, to minimize
WAW and WAR hazards.

• IBM’s goal was to achieve high floating-point performance
from an instruction set and from compilers designed for the
entire 360 computer family, rather than from specialized
compilers for the high-end processors.

18/04/2010 UNYT-UoG

Avoiding Hazards
• As we will see, RAW hazards are avoided by executing an

instruction only when its operands are available.

• WAR and WAW hazards, which arise from name
dependences, are eliminated by register renaming.

• Register renaming eliminates these hazards by renaming all
destination registers, including those with a pending read or
write for an earlier instruction, so that the out-of-order write
does not affect any instructions that depend on an earlier
value of an operand.

18/04/2010 UNYT-UoG

Eliminating Hazards
• Consider the following example:

DIV.D F0,F2,F4
ADD.D F6,F0,F8
S.D F6,0(R1)
SUB.D F8,F10,F14
MUL.D F6,F10,F8

• There is an antidependence between the ADD.D and the
SUB.D and an output dependence between the ADD.D and
the MUL.D, leading to two possible hazards: a WAR hazard
on the use of F8 by ADD.D and a WAW hazard on the use
of F6 since the ADD.D may finish later than the MUL.D.

18/04/2010 UNYT-UoG

Eliminating Hazards
• The two name dependences can both be eliminated by

register renaming.
• For simplicity, assume the existence of two temporary

registers, S and T. Using S and T, the sequence can be
rewritten without any dependences as:
DIV.D F0,F2,F4
ADD.D S,F0,F8
S.D S,0(R1)
SUB.D T,F10,F14
MUL.D F6,F10,T

• In addition, any subsequent uses of F8 must be replaced by
the register T. In this code segment, the renaming process
can be done statically by the compiler.

18/04/2010 UNYT-UoG

Reservation Stations
• In Tomasulo’s scheme, register renaming is provided by

reservation stations, which buffer the operands of
instructions waiting to issue.

• The basic idea is that a reservation station fetches and
buffers an operand as soon as it is available, eliminating the
need to get the operand from a register.

• In addition, pending instructions designate the reservation
station that will provide their input.

18/04/2010 UNYT-UoG

Properties of Reservation Stations
• The use of reservation stations, rather than a centralized

register file, leads to two other important properties.
1. First, hazard detection and execution control are

distributed: The information held in the reservation
stations at each functional unit determine when an
instruction can begin execution at that unit.

2. Second, results are passed directly to functional units
from the reservation stations where they are buffered,
rather than going through the registers.
• This bypassing is done with a common result bus

that allows all units waiting for an operand to be
loaded simultaneously (on the 360/91 this is called
the common data bus, or CDB).

18/04/2010 UNYT-UoG

MIPS floating-point unit
using Tomasulo’s algorithm

18/04/2010 UNYT-UoG

Fields of Reservation Stations
• Each reservation station has seven fields:

• Op — The operation to perform on source operands S1 and
S2.

• Qj, Qk — The reservation stations that will produce the
corresponding source operand; a value of zero indicates that
the source operand is already available in Vj or Vk, or is
unnecessary.

• Vj, Vk — The value of the source operands. Note that only
one of the V field or the Q field is valid for each operand.

18/04/2010 UNYT-UoG

Fields of Reservation Stations
• A — Used to hold information for the memory address

calculation for a load or store.

• Busy — Indicates that this reservation station and its
accompanying functional unit are occupied.

• The register file has a field, Qi — The number of the
reservation station that contains the operation whose result
should be stored into this register.
– If the value of Qi is blank (or 0), no currently active

instruction is computing a result destined for this register,
meaning that the value is simply the register contents.

18/04/2010 UNYT-UoG

Outline
• Instruction-Level Parallelism: Concepts and Challenges
• Basic Compiler Techniques for Exposing ILP
• Overcoming Data Hazards with Dynamic Scheduling
• Dynamic Scheduling: Examples and the Algorithm
• Hardware-Based Speculation
• Exploiting ILP Using Multiple Issue and Static Scheduling
• Exploiting ILP Using Dynamic Scheduling, Multiple Issue,

and Speculation
• Advanced Techniques for Instruction Delivery and

Speculation
• Putting It All Together: The Intel Pentium 4
• Fallacies and Pitfalls

18/04/2010 UNYT-UoG

Dynamic Scheduling: Example 1
• Consider the program:

1. L.D F6,32(R2)
2. L.D F2,44(R3)
3. MUL.D F0,F2,F4
4. SUB.D F8,F2,F6
5. DIV.D F10,F0,F6
6. ADD.D F6,F8,F2

• Let’s show what the information tables look like for the code sequence
when only the first load has completed and written its result:

(assume the following latencies: load is 1 clock cycle, add is 2 clock
cycles, multiply is 6 clock cycles, and divide is 12 clock cycles.)

18/04/2010 UNYT-UoG

Reservation stations in Tomasulo’s approach

The code sequence issues both the DIV.D and the ADD.D, even though there is a
WAR hazard involving F6. The hazard is eliminated in one of two ways => next slide

18/04/2010 UNYT-UoG

Using reservation stations
1. First, if the instruction providing the value for the DIV.D

has completed, then Vk will store the result, allowing
DIV.D to execute independent of the ADD.D (this is the
case shown).

2. On the other hand, if the L.D had not completed, then Qk
would point to the Load1 reservation station, and the DIV.D
instruction would be independent of the ADD.D.
• Thus, in either case, the ADD.D can issue and begin

executing.
• Any uses of the result of the DIV.D would point to the

reservation station, allowing the ADD.D to complete and
store its value into the registers without affecting the
DIV.D.

18/04/2010 UNYT-UoG

Dynamic Scheduling: Example 2
• Using the same code segment as in the previous example, we

show what the status tables look like when the MUL.D is
ready to write its result => next slide

18/04/2010 UNYT-UoG

Reservation stations in Tomasulo’s approach

• ADD.D has completed
since the operands of
DIV.D were copied,
thereby overcoming the
WAR hazard.

• Notice that even if the
load of F6 was delayed,
the add into F6 could
be executed without
triggering a WAW
hazard.

18/04/2010 UNYT-UoG

Tomasulo’s Algorithm

18/04/2010 UNYT-UoG

Outline
• Instruction-Level Parallelism: Concepts and Challenges
• Basic Compiler Techniques for Exposing ILP
• Overcoming Data Hazards with Dynamic Scheduling
• Dynamic Scheduling: Examples and the Algorithm
• Hardware-Based Speculation
• Exploiting ILP Using Multiple Issue and Static Scheduling
• Exploiting ILP Using Dynamic Scheduling, Multiple Issue,

and Speculation
• Advanced Techniques for Instruction Delivery and

Speculation
• Putting It All Together: The Intel Pentium 4
• Fallacies and Pitfalls

18/04/2010 UNYT-UoG

Speculation
• Overcoming control dependence is done by speculating on the

outcome of branches and executing the program as if our guesses
were correct.

• This mechanism represents a subtle, but important, extension over
branch prediction with dynamic scheduling.

• In particular, with speculation, we fetch, issue, and execute
instructions, as if our branch predictions were always correct;
dynamic scheduling only fetches and issues such instructions.

• Of course, we need mechanisms to handle the situation where the
speculation is incorrect.
– There are a variety of mechanisms for supporting speculation

by the compiler.
• In this section, we explore hardware speculation, which extends

the ideas of dynamic scheduling.

18/04/2010 UNYT-UoG

Hardware-based speculation
Hardware-based speculation combines three key ideas:

1. dynamic branch prediction to choose which instructions
to execute,

2. speculation to allow the execution of instructions
before the control dependences are resolved (with the
ability to undo the effects of an incorrectly speculated
sequence),

3. dynamic scheduling to deal with the scheduling of
different combinations of basic blocks.

18/04/2010 UNYT-UoG

Data flow execution
• Hardware-based speculation follows the predicted flow of data

values to choose when to execute instructions.
• This method of executing programs is essentially a data flow

execution: Operations execute as soon as their operands are
available.

• To extend Tomasulo’s algorithm to support speculation, we must
separate the bypassing of results among instructions, which is
needed to execute an instruction speculatively, from the actual
completion of an instruction.

• By making this separation, we can allow an instruction to execute
and to bypass its results to other instructions, without allowing the
instruction to perform any updates that cannot be undone, until we
know that the instruction is no longer speculative.

18/04/2010 UNYT-UoG

Instruction commit
• Using the bypassed value is like performing a speculative

register read, since we do not know whether the instruction
providing the source register value is providing the correct
result until the instruction is no longer speculative.

• When an instruction is no longer speculative, we allow it to
update the register file or memory;
– we call this additional step in the instruction execution

sequence instruction commit.

18/04/2010 UNYT-UoG

Implementing Speculation
• The key idea behind implementing speculation is to allow

instructions to execute out of order but to force them to commit in
order and to prevent any irrevocable action (such as updating state
or taking an exception) until an instruction commits.

• Hence, when we add speculation, we need to separate the process
of completing execution from instruction commit, since
instructions may finish execution considerably before they are
ready to commit.

• Adding this commit phase to the instruction execution sequence
requires an additional set of hardware buffers that hold the results
of instructions that have finished execution but have not
committed.

• This hardware buffer, which we call the reorder buffer, is also
used to pass results among instructions that may be speculated.

18/04/2010 UNYT-UoG

Reorder buffer (ROB)
• The reorder buffer (ROB) provides additional registers in the same

way as the reservation stations in Tomasulo’s algorithm extend the
register set.

• The ROB holds the result of an instruction between the time the
operation associated with the instruction completes and the time
the instruction commits.

• Hence, the ROB is a source of operands for instructions, just as
the reservation stations provide operands in Tomasulo’s
algorithm.

• The key difference is that in Tomasulo’s algorithm, once an
instruction writes its result, any subsequently issued instructions
will find the result in the register file.

• With speculation, the register file is not updated until the
instruction commits.

18/04/2010 UNYT-UoG

ROB Fields
Each entry in the ROB contains four fields:
1. The instruction type indicates whether the instruction is a branch

(and has no destination result), a store (which has a memory
address destination), or a register operation (ALU operation or
load, which has register destinations).

2. The destination field supplies the register number (for loads and
ALU operations) or the memory address (for stores where the
instruction result should be written.

3. The value field is used to hold the value of the instruction result
until the instruction commits.

4. The ready field indicates that the instruction has completed
execution, and the value is ready.

18/04/2010 UNYT-UoG

FP Unit with Speculation

18/04/2010 UNYT-UoG

Speculation: Example
• Assume latencies for the floating-point functional units are:

add is 2 clock cycles, multiply is 6 clock cycles, and divide
is 12 clock cycles.

• Consider the program:
L.D F6,32(R2)
L.D F2,44(R3)
MUL.D F0,F2,F4
SUB.D F8,F6,F2
DIV.D F10,F0,F6
ADD.D F6,F8,F2

• Show what the status tables look like when the MUL.D is
ready to go to commit.

18/04/2010 UNYT-UoG

ROBs

18/04/2010 UNYT-UoG

ROB Vs. Tomasulo
• The key difference is that, with ROB, no instruction after the earliest

uncompleted instruction (MUL.D above) is allowed to complete.
• In contrast, with Tomasulo, the SUB.D and ADD.D instructions have

also completed.
One implication of this difference is that the processor with the ROB can
dynamically execute code while maintaining a precise interrupt model.

• For example, if the MUL.D instruction caused an interrupt, we could
simply wait until it reached the head of the ROB and take the interrupt,
flushing any other pending instructions from the ROB.

• Because instruction commit happens in order, this yields a precise
exception.

• By contrast, in the example using Tomasulo’s algorithm, the SUB.D and
ADD.D instructions could both complete before the MUL.D raised the
exception.
– The result is that the registers F8 and F6 (destinations of the SUB.D

and ADD.D instructions) could be overwritten, and the interrupt
would be imprecise.

18/04/2010 UNYT-UoG

Speculation Algorithm

18/04/2010 UNYT-UoG

Outline
• Instruction-Level Parallelism: Concepts and Challenges
• Basic Compiler Techniques for Exposing ILP
• Overcoming Data Hazards with Dynamic Scheduling
• Dynamic Scheduling: Examples and the Algorithm
• Hardware-Based Speculation
• Exploiting ILP Using Multiple Issue and Static Scheduling
• Exploiting ILP Using Dynamic Scheduling, Multiple Issue,

and Speculation
• Advanced Techniques for Instruction Delivery and

Speculation
• Putting It All Together: The Intel Pentium 4
• Fallacies and Pitfalls

18/04/2010 UNYT-UoG

Multiple Issue
• The techniques we have seen until now can be used to

eliminate data and control stalls and achieve an ideal CPI of
one.

• To improve performance further we would like to decrease
the CPI to less than one.

• But the CPI cannot be reduced below one if we issue only
one instruction every clock cycle.

• The goal of the multiple-issue processors, is to allow
multiple instructions to issue in a clock cycle. Multiple-issue
processors come in three major flavors:
1. statically scheduled superscalar processors
2. VLIW (very long instruction word) processors
3. dynamically scheduled superscalar processors

18/04/2010 UNYT-UoG

Multiple Issue
• Superscalar processors issue varying numbers of instructions

per clock and use in-order execution if they are statically
scheduled or out-of-order execution if they are dynamically
scheduled.

• VLIW processors, in contrast, issue a fixed number of
instructions formatted either as one large instruction or as a
fixed instruction packet with the parallelism among
instructions explicitly indicated by the instruction.
– VLIW processors are inherently statically scheduled by

the compiler.
• When Intel and HP created the IA-64 architecture, they also

introduced the name EPIC — explicitly parallel instruction
computer — for this architectural style.

18/04/2010 UNYT-UoG

Superscalar and VLIW processors

18/04/2010 UNYT-UoG

Static Vs. Dynamic Scheduling
• Although statically scheduled superscalars issue a varying

rather than a fixed number of instructions per clock, they are
actually closer in concept to VLIWs, since both approaches
rely on the compiler to schedule code for the processor.

• Because of the diminishing advantages of a statically
scheduled superscalar as the issue width grows, statically
scheduled superscalars are used primarily for narrow issue
widths, normally just two instructions.

• Beyond that width, most designers choose to implement
either a VLIW or a dynamically scheduled superscalar.

18/04/2010 UNYT-UoG

The VLIW Approach
• VLIWs use multiple, independent functional units.
• Rather than attempting to issue multiple, independent

instructions to the units, a VLIW packages the multiple
operations into one very long instruction, or requires
that the instructions in the issue packet satisfy the same
constraints.

18/04/2010 UNYT-UoG

Local and Global Scheduling
• Let’s consider a VLIW processor with instructions that contain five

operations, including one integer operation (which could also be a
branch), two floating-point operations, and two memory references.

• To keep the functional units busy, there must be enough parallelism
in a code sequence to fill the available operation slots. This
parallelism is uncovered by unrolling loops and scheduling the code
within the single larger loop body.

• If the unrolling generates straight-line code, then local scheduling
techniques, which operate on a single basic block, can be used.

• If finding and exploiting the parallelism requires scheduling code
across branches, a substantially more complex global scheduling
algorithm must be used.

• Global scheduling algorithms are not only more complex in structure,
but they also must deal with significantly more complicated trade-
offs in optimization, since moving code across branches is expensive.

18/04/2010 UNYT-UoG

VLIW Example
• Suppose we have a VLIW that could issue two memory references, two

FP operations, and one integer operation or branch in every clock cycle.
Show an unrolled version of the loop x[i] = x[i] + s for such a processor.
Unroll as many times as necessary to eliminate any stalls.

• Ignore delayed branches.
for (i=1000; i>0; i=i–1)
x[i] = x[i] + s;

Loop: L.D F0,0(R1) ;F0=array element
ADD.D F4,F0,F2 ;add scalar in F2
S.D F4,0(R1) ;store result
DADDUI R1,R1,#-8 ;decrement pointer

;8 bytes (per DW)
BNE R1,R2,Loop ;branch R1!=R2

18/04/2010 UNYT-UoG

VLIW Execution

18/04/2010 UNYT-UoG

Outline
• Instruction-Level Parallelism: Concepts and Challenges
• Basic Compiler Techniques for Exposing ILP
• Overcoming Data Hazards with Dynamic Scheduling
• Dynamic Scheduling: Examples and the Algorithm
• Hardware-Based Speculation
• Exploiting ILP Using Multiple Issue and Static Scheduling
• Exploiting ILP Using Dynamic Scheduling, Multiple Issue,

and Speculation
• Advanced Techniques for Instruction Delivery and

Speculation
• Putting It All Together: The Intel Pentium 4
• Fallacies and Pitfalls

18/04/2010 UNYT-UoG

ILP Using Dynamic Scheduling, Multiple
Issue, and Speculation

• So far, we have seen how the individual mechanisms of
dynamic scheduling, multiple issue, and speculation work.

• How about putting them all three together?
• This would yield a microarchitecture quite similar to those in

modern microprocessors.
• For simplicity, we consider here only an issue rate of two

instructions per clock, but the concepts are no different from
modern processors that issue three or more instructions per
clock.

18/04/2010 UNYT-UoG

ILP Using Dynamic Scheduling, Multiple
Issue, and Speculation

• Let’s assume we want to extend Tomasulo’s algorithm to support
a two-issue superscalar pipeline with a separate integer and
floating-point unit, each of which can initiate an operation on
every clock.

• To gain the full advantage of dynamic scheduling we will allow
the pipeline to issue any combination of two instructions in a
clock, using the scheduling hardware to actually assign operations
to the integer and floating-point unit.

• Because the interaction of the integer and floating-point
instructions is crucial, we also extend Tomasulo’s scheme to deal
with both the integer and floating-point functional units and
registers, as well as incorporating speculative execution.

18/04/2010 UNYT-UoG

Combining Multiple Instructions with
Dynamic Scheduling

• Two different approaches have been used to issue multiple
instructions per clock in a dynamically scheduled processor,
and both rely on the observation that the key is assigning a
reservation station and updating the pipeline control tables.

• One approach is to run this step in half a clock cycle, so that
two instructions can be processed in one clock cycle.

• A second alternative is to build the logic necessary to handle
two instructions at once, including any possible dependences
between the instructions.

• Modern superscalar processors that issue four or more
instructions per clock often include both approaches:
They both pipeline and widen the issue logic.

18/04/2010 UNYT-UoG

Putting together speculative dynamic
scheduling with multiple issue

• Putting together speculative dynamic scheduling with
multiple issue requires overcoming one additional challenge
at the back end of the pipeline: we must be able to complete
and commit multiple instructions per clock.

• Like the challenge of issuing multiple instructions, the
concepts are simple, although the implementation may be
challenging in the same manner as the issue and register
renaming process.

18/04/2010 UNYT-UoG

Example
• Consider the execution of the following loop, which increments each

element of an integer array, on a two-issue processor, once without
speculation and once with speculation:

Loop: LD R2,0(R1) ;R2=array element
DADDIU R2,R2,#1 ;increment R2
SD R2,0(R1) ;store result
DADDIU R1,R1,#8 ;increment pointer
BNE R2,R3,LOOP ;branch if not last element

• Assume that there are separate integer functional units for effective
address calculation, for ALU operations, and for branch condition
evaluation.

• Let’s create a table for the first three iterations of this loop for both
processors.

• We assume that up to two instructions of any type can commit per clock
cycle.

18/04/2010 UNYT-UoG

Pipeline with dual-issue and
without speculation

19 Cycles for three loops

18/04/2010 UNYT-UoG

Pipeline with dual-issue and
with speculation

It is executed in clock cycle
19 without speculation.

18/04/2010 UNYT-UoG

Outline
• Instruction-Level Parallelism: Concepts and Challenges
• Basic Compiler Techniques for Exposing ILP
• Overcoming Data Hazards with Dynamic Scheduling
• Dynamic Scheduling: Examples and the Algorithm
• Hardware-Based Speculation
• Exploiting ILP Using Multiple Issue and Static Scheduling
• Exploiting ILP Using Dynamic Scheduling, Multiple Issue,

and Speculation
• Advanced Techniques for Instruction Delivery and

Speculation
• Putting It All Together: The Intel Pentium 4
• Fallacies and Pitfalls

18/04/2010 UNYT-UoG

Increasing Instruction Fetch Bandwidth
• A multiple issue processor will require that the average

number of instructions fetched every clock cycle be at least
as large as the average throughput.

• Fetching these instructions requires wide enough paths to the
instruction cache, but the most difficult aspect is handling
branches.

18/04/2010 UNYT-UoG

Branch-Target Buffers
• To reduce the branch penalty for our simple five-stage

pipeline, as well as for deeper pipelines, we must know
whether the as-yet-undecoded instruction is a branch
and, if so, what the next PC should be.

• If the instruction is a branch and we know what the next
PC should be, we can have a branch penalty of zero.

• A branch-prediction cache that stores the predicted
address for the next instruction after a branch is called a
branch-target buffer or branch-target cache.

18/04/2010 UNYT-UoG

Structure of Branch-Target Buffers

Prediction
for the
next PC

18/04/2010 UNYT-UoG

Steps with a branch-target buffer

Pipeline stages

18/04/2010 UNYT-UoG

Penalties of branch-target buffer

18/04/2010 UNYT-UoG

Determining Penalty: Example
• Determine the total branch penalty for a branch-target buffer

assuming the penalty cycles for individual mispredictions
from previous slide.

• We make the following assumptions about the prediction
accuracy and hit rate:
– Prediction accuracy is 90% (for instructions in the

buffer).
– Hit rate in the buffer is 90% (for branches predicted

taken).

18/04/2010 UNYT-UoG

Computing Penalty
• We compute the penalty by looking at the probability of two

events: the branch is predicted taken but ends up being not
taken, and the branch is taken but is not found in the buffer.
Both carry a penalty of 2 cycles.

Probability (branch in buffer, but actually not taken) = Percent
buffer hit rate × Percent incorrect predictions = 90% × 10%
= 0.09

Probability (branch not in buffer, but actually taken) = 10%
Branch penalty = (0.09 + 0.10) × 2
Branch penalty = 0.38 clock cycles

18/04/2010 UNYT-UoG

Integrated Instruction Fetch Units
• To meet the demands of multiple-issue processors, many

recent designers have chosen to implement an integrated
instruction fetch unit, as a separate autonomous unit that
feeds instructions to the rest of the pipeline.

• Essentially, this amounts to recognizing that characterizing
instruction fetch as a simple single pipe stage given the
complexities of multiple issue is no longer valid.

18/04/2010 UNYT-UoG

Design of Integrated
Instruction Fetch Unit

Recent designs have used an integrated instruction fetch
unit that integrates several functions:

1. Integrated branch prediction — The branch predictor
becomes part of the instruction fetch unit and is
constantly predicting branches, so as to drive the fetch
pipeline.

2. Instruction prefetch — To deliver multiple instructions
per clock, the instruction fetch unit will likely need to
fetch ahead.
– The unit autonomously manages the prefetching of

instructions, integrating it with branch prediction.

18/04/2010 UNYT-UoG

Design of Integrated
Instruction Fetch Unit

3. Instruction memory access and buffering—When fetching
multiple instructions per cycle a variety of complexities are
encountered, including the difficulty that fetching multiple
instructions may require accessing multiple cache lines.
– The instruction fetch unit encapsulates this complexity,

using prefetch to try to hide the cost of crossing cache
blocks.

– The instruction fetch unit also provides buffering,
essentially acting as an on-demand unit to provide
instructions to the issue stage as needed and in the
quantity needed.

18/04/2010 UNYT-UoG

The fetch unit: the future bottleneck
• As designers try to increase the number of instructions

executed per clock, instruction fetch will become an
ever more significant bottleneck, and clever new ideas
will be needed to deliver instructions at the necessary
rate.
– Research challenge for students of CS!

18/04/2010 UNYT-UoG

Value Prediction
• One technique for increasing the amount of ILP available in a

program is value prediction.
• Value prediction attempts to predict the value that will be

produced by an instruction. Obviously, since most instructions
produce a different value every time they are executed (or at least
a different value from a set of values), value prediction can have
only limited success.

• There are, however, certain instructions for which it is easier to
predict the resulting value — for example:
– loads that load from a constant pool, or
– loads that load a value that changes infrequently

• In addition, when an instruction produces a value chosen from a
small set of potential values, it may be possible to predict the
resulting value.

18/04/2010 UNYT-UoG

Value Prediction
• Much of the focus of research on value prediction has been

on loads.
• We can estimate the maximum accuracy of a load value

predictor by examining how often a load returns a value that
matches a value returned in a recent execution of the load.

• The simplest case to examine is when the load returns a
value that matches the value on the last execution of the
load.

18/04/2010 UNYT-UoG

Predicting loads
• Because of the high costs of misprediction and the likely

case that misprediction rates will be significant (20% to
50%), researchers have focused on assessing which loads are
more predictable and only attempting to predict those.

• This leads to a lower misprediction rate, but also fewer
candidates for accelerating through prediction.

• In the limit, if we attempt to predict only those loads that
always return the same value, it is likely that only 10% to
15% of the loads can be predicted.

• Research on value prediction continues!!

18/04/2010 UNYT-UoG

Address Aliasing Prediction
• Address aliasing prediction is a simple technique that

predicts whether two stores or a load and a store refer to the
same memory address.

• If two such references do not refer to the same address, then
they may be safely interchanged.

• Otherwise, we must wait until the memory addresses
accessed by the instructions are known.

• This limited form of address value speculation has been used
by a few processors.

18/04/2010 UNYT-UoG

Outline
• Instruction-Level Parallelism: Concepts and Challenges
• Basic Compiler Techniques for Exposing ILP
• Overcoming Data Hazards with Dynamic Scheduling
• Dynamic Scheduling: Examples and the Algorithm
• Hardware-Based Speculation
• Exploiting ILP Using Multiple Issue and Static Scheduling
• Exploiting ILP Using Dynamic Scheduling, Multiple Issue,

and Speculation
• Advanced Techniques for Instruction Delivery and

Speculation
• Putting It All Together: The Intel Pentium 4
• Fallacies and Pitfalls

18/04/2010 UNYT-UoG

Pentium 4

• The Pentium 4 is a processor with a deep pipeline supporting
multiple issue with speculation.

• It uses an aggressive out-of-order speculative
microarchitecture, called Netburst, that is deeply pipelined
with the goal of achieving high instruction throughput by
combining multiple issue and high clock rates.

• Like the microarchitecture used in the Pentium III, a front-
end decoder translates each IA-32 instruction to a series of
micro-operations (uops), which are similar to typical RISC
instructions.

• The uops are then executed by a dynamically scheduled
speculative pipeline.

18/04/2010 UNYT-UoG

Trace Cache in Pentium 4
• The Pentium 4 uses a novel execution trace cache to

generate the uop instruction stream, as opposed to a
conventional instruction cache that would hold IA-32
instructions.

• A trace cache is a type of instruction cache that holds
sequences of instructions to be executed including
nonadjacent instructions separated by branches;

• A trace cache tries to exploit the temporal sequencing of
instruction execution rather than the spatial locality exploited
in a normal cache.

18/04/2010 UNYT-UoG

Execution in Pentium 4
• After fetching from the execution trace cache, the uops are

executed by an out-of-order speculative pipeline, but using
register renaming rather than a reorder buffer.

• Up to three uops per clock can be renamed and dispatched to
the functional unit queues, and three uops can be committed
each clock cycle.

• There are four dispatch ports, which allow a total of six uops
to be dispatched to the functional units every clock cycle.

• The load and store units each have their own dispatch port,
another port covers basic ALU operations, and a fourth
handles FP and integer operations.

18/04/2010 UNYT-UoG

Pentium 4 Microarchitecture

18/04/2010 UNYT-UoG

L2 Cache in Pentium 4
• With deep pipelines and aggressive clock rates the cost of

cache misses and branch mispredictions are both very high.
• A two-level cache is used to minimize the frequency of

DRAM accesses.
• Branch prediction is done with a branch-target buffer using a

two-level predictor with both local and global branch
histories;
– In the most recent Pentium 4, the size of the branch-target

buffer was increased, and the static predictor, used when
the branch-target buffer misses, was improved.

18/04/2010 UNYT-UoG

Evolution: Pentium 4 640

18/04/2010 UNYT-UoG

An Analysis of the Performance of the
Pentium 4

• The deep pipeline of the Pentium 4 makes the use of
speculation, and its dependence on branch prediction, critical
to achieving high performance.

• Likewise, performance is very dependent on the memory
system.

• Because of the importance of branch prediction and cache
misses, we focus our attention on these two areas.

• We use five of the integer SPEC CPU2000 benchmarks and
five of the FP benchmarks, and the data is captured using
counters within the Pentium 4 designed for performance
monitoring.

• The processor is a Pentium 4 640 running at 3.2 GHz with an
800 MHz system bus and 667 MHz DDR2 DRAMs for main
memory.

18/04/2010 UNYT-UoG

Branch mispredictions per instruction

The misprediction rate per instruction for the integer benchmarks is more
than 8 times higher than the rate for the FP benchmarks.

18/04/2010 UNYT-UoG

Misspeculation in Pentium 4

Branch-prediction accuracy is crucial in speculative processors, since incorrect
speculation requires recovery time and wastes energy pursuing the wrong
path. As we would suspect, the misspeculation rate results look almost
identical to the misprediction rates.

18/04/2010 UNYT-UoG

Cache misses in Pentium 4

Although the miss rate for L1 is about 14 times higher than the miss rate
for L2, the miss penalty for L2 is comparably higher, and the inability of
the microarchitecture to hide these very long misses means that L2 misses
likely are responsible for an equal or greater performance loss than L1
misses.

18/04/2010 UNYT-UoG

How do the effects of misspeculation and cache
misses translate to actual performance?

Let’s analyse mcf, vpr and swim: next slide =>

18/04/2010 UNYT-UoG

Analyses of benchmarks
• mcf has a CPI that is more than four times higher than that of

the four other integer benchmarks.
– It has the worst misspeculation rate.
– Equally importantly, mcf has the worst L1 and the worst L2 miss rate

among any benchmark, integer or floating point, in the SPEC suite.
– The high cache miss rates make it impossible for the processor to

hide significant amounts of miss latency.

• vpr achieves a CPI that is 1.6 times higher than three of the
five integer benchmarks (excluding mcf).
– This appears to arise from a branch misprediction that is the worst

among the integer benchmarks (although not much worse than the
average) together with a high L2 miss rate, second only to mcf
among the integer benchmarks.

18/04/2010 UNYT-UoG

Analyses of benchmarks
• swim is the lowest performing FP benchmark, with a CPI

that is more than two times the average of the other four FP
benchmarks.
– swim’s problems are high L1 and L2 cache miss rates, second only to

mcf.
– swim has excellent speculation results, but that success can probably

not hide the high miss rates, especially in L2.
– In contrast, several benchmarks with reasonable L1 miss rates and

low L2 miss rates (such as mgrid and gzip) perform well.

18/04/2010 UNYT-UoG

Pentium 4 and AMD Opteron
• The AMD Opteron and Intel Pentium 4 share a number of

similarities:
– Both use a dynamically scheduled, speculative pipeline

capable of issuing and committing three IA-32
instructions per clock.

– Both use a two-level on-chip cache structure, although
the Pentium 4 uses a trace cache for the first-level
instruction cache and recent Pentium 4 implementations
have larger second-level caches.

– They have similar transistor counts, die size, and power,
with the Pentium 4 being about 7% to 10% higher on all
three measures at the highest clock rates available in 2005
for these two processors.

18/04/2010 UNYT-UoG

Pentium 4 Vs AMD Opteron: CPI

18/04/2010 UNYT-UoG

Pentium 4 Vs AMD Opteron: SPECRatio

18/04/2010 UNYT-UoG

Pentium 4 Vs AMD Opteron: Conclusions

• The Opteron is slightly faster, meaning that the higher clock
rate of the Pentium 4 is insufficient to overcome the higher
CPI arising from more pipeline stalls.

• Hence, while the Pentium 4 performs well, it is clear that the
attempt to achieve both high clock rates via a deep pipeline
and high instruction throughput via multiple issue is not as
successful as the designers once believed it would be.

18/04/2010 UNYT-UoG

Outline
• Instruction-Level Parallelism: Concepts and Challenges
• Basic Compiler Techniques for Exposing ILP
• Overcoming Data Hazards with Dynamic Scheduling
• Dynamic Scheduling: Examples and the Algorithm
• Hardware-Based Speculation
• Exploiting ILP Using Multiple Issue and Static Scheduling
• Exploiting ILP Using Dynamic Scheduling, Multiple Issue,

and Speculation
• Advanced Techniques for Instruction Delivery and

Speculation
• Putting It All Together: The Intel Pentium 4
• Fallacies and Pitfalls

18/04/2010 UNYT-UoG

Fallacies and Pitfalls
• Fallacy Processors with lower CPIs will always be faster.
• Fallacy Processors with faster clock rates will always be

faster.
• Although a lower CPI is certainly better, sophisticated

multiple-issue pipelines typically have slower clock rates
than processors with simple pipelines.

• In applications with limited ILP or where the parallelism
cannot be exploited by the hardware resources, the faster
clock rate often wins.

• But, when significant ILP exists, a processor that exploits
lots of ILP may be better.

18/04/2010 UNYT-UoG

IBM Power5
• The IBM Power5 processor is designed for high-performance

integer and FP;
– It contains two processor cores each capable of sustaining four

instructions per clock, including two FP and two load-store
instructions.

– The highest clock rate for a Power5 processor in 2005 is 1.9
GHz.

• In comparison, the Pentium 4 offers a single processor with
multithreading (next lecture).
– The processor can sustain three instructions per clock with a

very deep pipeline, and the maximum available clock rate in
2005 is 3.8 GHz.

Thus, the Power5 will be faster if the product of the instruction
count and CPI is less than one-half the same product for the
Pentium 4.

18/04/2010 UNYT-UoG

No one wins
• The CPI × instruction count advantages of the Power5 are

significant for the FP programs, sometimes by more than a factor
of 2,

• While for the integer programs the CPI × instruction count
advantage of the Power5 is usually not enough to overcome the
clock rate advantage of the Pentium 4.

• By comparing the SPEC numbers, we find that the product of
instruction count and CPI advantage for the Power5 is 3.1 times
on the floating-point programs but only 1.5 times on the integer
programs.

• Because the maximum clock rate of the Pentium 4 in 2005 is
exactly twice that of the Power5, the Power5 is faster by 1.5 on
SPECfp2000 and the Pentium 4 will be faster by 1.3 on
SPECint2000.

18/04/2010 UNYT-UoG

Intel Pentium 4 Vs. IBM Power5

18/04/2010 UNYT-UoG

Pitfall: Sometimes bigger
and dumber is better

• Advanced pipelines have focused on novel and increasingly
sophisticated schemes for improving CPI.

• The Apha 21264 uses a sophisticated tournament predictor
with a total of 29K bits, while the earlier 21164 uses a
simple 2-bit predictor with 2K entries.

• For the SPEC95 benchmarks, the more sophisticated branch
predictor of the 21264 outperforms the simpler 2-bit scheme
on all but one benchmark.

• On average, for SPECint95, the 21264 has 11.5
mispredictions per 1000 instructions committed, while the
21164 has about 16.5 mispredictions.

18/04/2010 UNYT-UoG

Pitfall: Sometimes bigger
and dumber is better

• Somewhat surprisingly, the simpler 2-bit scheme works better for
the transaction-processing workload than the sophisticated 21264
scheme (17 mispredictions versus 19 per 1000 completed
instructions)!

• How can a predictor with less than 1/7 the number of bits and a
much simpler scheme actually work better?

• The answer lies in the structure of the workload. The transaction-
processing workload has a very large code size (more than an
order of magnitude larger than any SPEC95 benchmark) with a
large branch frequency.

• The ability of the 21164 predictor to hold twice as many branch
predictions based on purely local behavior (2K versus the 1K local
predictor in the 21264) seems to provide a slight advantage.

18/04/2010 UNYT-UoG

End of Lecture 3
• Readings

– Book: Chapter 2

