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The Trend
• We are dedicating all of our future product 

development to multicore designs. We believe this 
is a key inflection point for the industry.

Intel President Paul Otellini,
describing Intel’s future direction at the

Intel Developers Forum in 2005
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Introduction
• As we have discussed so far, in the previous lectures, the 

slowdown in uniprocessor performance arising from 
diminishing returns in exploiting ILP, combined with 
growing concern over power, is leading to a new era in 
computer architecture — an era where multiprocessors play 
a major role.
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Other factors
This trend toward more reliance on multiprocessing is 

reinforced by other factors:
• A growing interest in servers and server performance
• A growth in data-intensive applications
• The insight that increasing performance on the desktop is 

less important (outside of graphics, at least)
• An improved understanding of how to use multiprocessors 

effectively, especially in server environments where there is 
significant natural thread-level parallelism

• The advantages of leveraging a design investment by 
replication rather than unique design — all multiprocessor 
designs provide such leverage
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A Taxonomy of Parallel Architectures

• The idea of using multiple processors both to increase 
performance and to improve availability dates back to the 
earliest electronic computers. About 40 years ago, Flynn 
[1966] proposed a simple model of categorizing all 
computers that is still useful today. 

• He looked at the parallelism in the instruction and data 
streams called for by the instructions at the most constrained 
component of the multiprocessor, and placed all computers 
into one of four categories:

• 1. Single instruction stream, single data stream (SISD) —
This category is the uniprocessor.
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SIMD: Single instruction stream, 
multiple data streams

• The same instruction is executed by multiple processors using different 
data streams. 

• SIMD computers exploit data-level parallelism by applying the same 
operations to multiple items of data in parallel. 

• Each processor has its own data memory (hence multiple data), but there 
is a single instruction memory and control processor, which fetches and 
dispatches instructions. 

• For applications that display significant data-level parallelism, the SIMD 
approach can be very efficient. 

• Vector architectures, are the largest class of SIMD architectures. 
• SIMD approaches have experienced a rebirth in the last few years with 

the growing importance of graphics performance, especially for the game 
market. 

• SIMD approaches are the favored method for achieving the high 
performance needed to create realistic threedimensional, real-time virtual 
environments.
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SIMD
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MISD and MIMD
3. Multiple instruction streams, single data stream (MISD)—

No commercial multiprocessor of this type has been built to 
date.

4. Multiple instruction streams, multiple data streams (MIMD)
– Each processor fetches its own instructions and operates 

on its own data. 
– MIMD computers exploit thread-level parallelism, since 

multiple threads operate in parallel.
• In general, thread-level parallelism is more flexible than 

data-level parallelism and thus more generally applicable.
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MIMD Advantages
• Because the MIMD model can exploit thread-level parallelism, it 

is the architecture of choice for general-purpose multiprocessors 
and our focus in this Lecture.

• Two other factors have also contributed to the rise of the MIMD 
multiprocessors:

1. MIMDs offer flexibility. With the correct hardware and software 
support, MIMDs can function as single-user multiprocessors
focusing on high performance for one application, as 
multiprogrammed multiprocessors running many tasks 
simultaneously, or as some combination of these functions.

2. MIMDs can build on the cost-performance advantages of off-the-
shelf processors. In fact, nearly all multiprocessors built today use 
the same microprocessors found in workstations and single-
processor servers. Furthermore, multicore chips leverage the 
design investment in a single processor core by replicating it.
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MIMD as Clusters
• One popular class of MIMD computers are clusters , which often 

use standard components and often standard network technology, 
so as to leverage as much commodity technology as possible. 

• We distinguish two different types of clusters: 
– commodity clusters, which rely entirely on third-party 

processors and interconnection technology
– custom clusters, in which a designer customizes either the 

detailed node design or the interconnection network, or both.
• In a commodity cluster, the nodes of a cluster are often blades or 

rack-mounted servers (including small-scale multiprocessor 
servers). 

• Applications that focus on throughput and require almost no 
communication among threads, such as Web serving, 
multiprogramming, and some transaction-processing applications, 
can be accommodated inexpensively on a cluster. 

• Commodity clusters are often assembled by users or computer 
center directors, rather than by vendors.
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MIMD



24/04/2010 UNYT-UoG

Multicore
• Starting in the 1990s, the increasing capacity of a single chip 

allowed designers to place multiple processors on a single die. 
• This approach, initially called onchip multiprocessing or single-

chip multiprocessing, has come to be called multicore, a name 
arising from the use of multiple processor cores on a single die. 

• In such a design, the multiple cores typically share some 
resources, such as a second- or third-level cache or memory and 
I/O buses. 

• Recent processors, including the IBM Power5, the Sun T1, and the
Intel Pentium D and Xeon-MP, are multicore and multithreaded. 

• Just as using multiple copies of a microprocessor in a 
multiprocessor leverages a design investment through replication, 
a multicore achieves the same advantage relying more on 
replication than the alternative of building a wider superscalar.



24/04/2010 UNYT-UoG

Execution in MIMD
• With an MIMD, each processor is executing its own 

instruction stream. 
• In many cases, each processor executes a different process. 
• A process is a segment of code that may be run 

independently; the state of the process contains all the 
information necessary to execute that program on a 
processor. 

• In a multiprogrammed environment, where the processors 
may be running independent tasks, each process is typically 
independent of other processes.
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MIMD and Threads
• It is also useful to be able to have multiple processors 

executing a single program and sharing the code and most 
of their address space. 

• When multiple processes share code and data in this way, 
they are often called threads. 

• Today, the term thread is often used in a casual way to 
refer to multiple sequences of execution that may run on 
different processors, even when they do not share an 
address space.

• For example, a multithreaded architecture actually allows 
the simultaneous execution of multiple processes, with 
potentially separate address spaces, as well as multiple 
threads that share the same address space.
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MIMD and Threads
• To take advantage of an MIMD multiprocessor with n processors, 

we must usually have at least n threads or processes to execute. 
• The independent threads within a single process are typically 

identified by the programmer or created by the compiler. 
• The threads may come from large-scale, independent processes 

scheduled and manipulated by the operating system. At the other 
extreme, a thread may consist of a few tens of iterations of a loop, 
generated by a parallel compiler exploiting data parallelism in the 
loop. 

• Although the amount of computation assigned to a thread, called 
the grain size, is important in considering how to exploit thread-
level parallelism efficiently, the important qualitative distinction 
from instruction-level parallelism is that thread-level parallelism is 
identified at a high level by the software system and that the 
threads consist of hundreds to millions of instructions that may be 
executed in parallel.
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Classes of MIMD
• Existing MIMD multiprocessors fall into two classes, 

depending on the number of processors involved, which in 
turn dictates a memory organization and interconnect 
strategy.

– centralized shared-memory architectures
– multiprocessors with physically distributed 

memory
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Centralized shared-memory architectures
• These have at most a few dozen processor chips (and less 

than 100 cores). 
• For multiprocessors with small processor counts, it is 

possible for the processors to share a single centralized 
memory. 

• With large caches, a single memory, possibly with multiple 
banks, can satisfy the memory demands of a small number of 
processors.

• By using multiple point-to-point connections, or a switch, 
and adding additional memory banks, a centralized shared-
memory design can be scaled to a few dozen processors. 

• Although scaling beyond that is technically conceivable, 
sharing a centralized memory becomes less attractive as the 
number of processors sharing it increases.
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Centralized shared-memory architectures
• Because there is a single main memory that has a symmetric 

relationship to all processors and a uniform access time from 
any processor, these multiprocessors are most often called 
symmetric (shared-memory) multiprocessors (SMPs).

• This style of architecture is sometimes called uniform 
memory access (UMA), arising from the fact that all 
processors have a uniform latency from memory, even if the 
memory is organized into multiple banks. 

• This type of symmetric shared-memory architecture is 
currently by far the most popular organization.
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Centralized shared-memory architectures
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Multiprocessors with physically 
distributed memory

• To support larger processor counts, memory must be 
distributed among the processors rather than centralized 
– Otherwise the memory system would not be able to 

support the bandwidth demands of a larger number of 
processors without incurring excessively long access 
latency. 

• The larger number of processors also raises the need for a 
high-bandwidth interconnect.
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Multiprocessors with physically 
distributed memory
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Advantages and disadvantages
• Distributing the memory among the nodes has two major benefits. 

– First, it is a cost-effective way to scale the memory bandwidth if 
most of the accesses are to the local memory in the node. 

– Second, it reduces the latency for accesses to the local memory. 
• These two advantages make distributed memory attractive at 

smaller processor counts as processors get ever faster and require 
more memory bandwidth and lower memory latency. 

• The key disadvantages for a distributed-memory architecture are 
that communicating data between processors becomes somewhat 
more complex, and that it requires more effort in the software to 
take advantage of the increased memory bandwidth afforded by 
distributed memories.

• As we will see shortly, the use of distributed memory also leads to 
two different paradigms for interprocessor communication.
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Models for Communication and 
Memory Architecture

• There are two alternative architectural approaches that differ in the 
method used for communicating data among processors.

• In the first method, communication occurs through a shared address 
space, as it does in a symmetric shared-memory architecture. 

• The physically separate memories can be addressed as one logically 
shared address space, meaning that a memory reference can be made by 
any processor to any memory location, assuming it has the correct access 
rights. These multiprocessors are called Distributed shared-memory
(DSM) architectures. 

• The term shared memory refers to the fact that the address space is 
shared; that is, the same physical address on two processors refers to the 
same location in memory. Shared memory does not mean that there is a 
single, centralized memory. 

• In contrast to the symmetric shared-memory multiprocessors, also known 
as UMAs (uniform memory access), the DSM multiprocessors are also 
called NUMAs (nonuniform memory access), since the access time 
depends on the location of a data word in memory.
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UMA and NUMA

Shared Memory (UMA) Shared Memory (NUMA)
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Models for Communication and 
Memory Architecture

• Alternatively, the address space can consist of multiple 
private address spaces that are logically disjoint and cannot 
be addressed by a remote processor. 

• In such multiprocessors, the same physical address on two 
different processors refers to two different locations in two 
different memories. 

• Each processor-memory module is essentially a separate 
computer. 

• Initially, such computers were built with different processing 
nodes and specialized interconnection networks. 

• Today, most designs of this type are actually clusters.
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Message-passing multiprocessors
• With each of the organizations for the address space, there 

is an associated communication mechanism. 
• For a multiprocessor with a shared address space, that 

address space can be used to communicate data implicitly 
via load and store operations — hence the name shared 
memory for such multiprocessors. 

• For a multiprocessor with multiple address spaces, 
communication of data is done by explicitly passing 
messages among the processors. 

• Therefore, these multiprocessors are often called message-
passing multiprocessors. 

• Clusters inherently use message passing.
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Challenges of Parallel Processing
• The application of multiprocessors ranges from running 

independent tasks with essentially no communication to running 
parallel programs where threads must communicate to complete 
the task. 

• Two important hurdles, both explainable with Amdahl’s Law, 
make parallel processing challenging. 

• The degree to which these hurdles are difficult or easy is 
determined both by the application and by the architecture.
The first hurdle has to do with the limited parallelism available in 
programs, and the second arises from the relatively high cost of
communications. 

• Limitations in available parallelism make it difficult to achieve 
good speedups in any parallel processor as the next example 
shows => next slide.
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Example
• Suppose you want to achieve a speedup of 80 with 100 processors. What 

fraction of the original computation can be sequential?
• Amdahl’s Law is:

• For simplicity in this example, assume that the program operates in only 
two modes: parallel with all processors fully used, which is the
enhanced mode, or serial with only one processor in use. 

• With this simplification, the speedup in enhanced mode is simply the 
number of processors, while the fraction of enhanced mode is the time 
spent in parallel mode. Substituting into the previous equation:
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Example
• Simplifying we have:

• Thus, to achieve a speedup of 80 with 100 processors, only 
0.25% of original computation can be sequential. Of course, to 
achieve linear speedup (speedup of n with n processors), the 
entire program must usually be parallel with no serial portions.

• In practice, programs do not just operate in fully parallel or 
sequential mode, but often use less than the full complement of 
the processors when running in parallel mode.
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Latency of remote access
• The second major challenge in parallel processing involves 

the large latency of remote access in a parallel processor. 
• In existing shared-memory multiprocessors, communication 

of data between processors may cost anywhere from 50 
clock cycles (for multicores) to over 1000 clock cycles (for 
large-scale multiprocessors), depending on: 
– the communication mechanism 
– the type of interconnection network
– the scale of the multiprocessor. 

• The effect of long communication delays is clearly 
substantial. Let’s consider a simple example => next slide
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Example
• Suppose we have an application running on a 32-processor 

multiprocessor, which has a 200 ns time to handle reference 
to a remote memory. 

• For this application, assume that all the references except 
those involving communication hit in the local memory 
hierarchy, which is slightly optimistic. 

• Processors are stalled on a remote request, and the processor 
clock rate is 2 GHz. 

• If the base CPI (assuming that all references hit in the cache) 
is 0.5, how much faster is the multiprocessor if there is no 
communication versus if 0.2% of the instructions involve a 
remote communication reference?
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Example
• It is simpler to first calculate the CPI. The effective CPI for the 

multiprocessor with 0.2% remote references is:

• The remote request cost is

• We can compute the CPI: CPI = 0.5+ 0.8 = 1.3

• The multiprocessor with all local references is 1.3/0.5 = 2.6 times 
faster. 

• In practice, the performance analysis is much more complex, since 
some fraction of the noncommunication references will miss in the 
local hierarchy and the remote access time does not have a single 
constant value.
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Attacking problems
• The two problems — insufficient parallelism and long-latency 

remote communication — are the two biggest performance 
challenges in using multiprocessors.

• The problem of inadequate application parallelism must be 
attacked primarily in software with new algorithms that can have 
better parallel performance. 

• Reducing the impact of long remote latency can be attacked both 
by the architecture and by the programmer. 

• For example, we can reduce the frequency of remote accesses with
either hardware mechanisms, such as caching shared data, or 
software mechanisms, such as restructuring the data to make more 
accesses local. 

• We can try to tolerate the latency by using multithreading or by
using prefetching.
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Attacking problems
• Here we will focuses on techniques for reducing the impact 

of long remote communication latency: 
– how caching can be used to reduce remote access 

frequency, while maintaining a coherent view of 
memory. 

– synchronization, which, because it inherently involves 
interprocessor communication and also can limit 
parallelism, is a major potential bottleneck. 

– latency-hiding techniques and memory consistency 
models for shared memory.
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Symmetric Shared-Memory Architectures
• The use of large, multilevel caches can substantially reduce the

memory bandwidth demands of a processor. 
• If the main memory bandwidth demands of a single processor are 

reduced, multiple processors may be able to share the same 
memory. 

• Starting in the 1980s, this observation, combined with the 
emerging dominance of the microprocessor, motivated many 
designers to create small-scale multiprocessors where several 
processors shared a single physical memory connected by a shared 
bus. 

• Because of the small size of the processors and the significant 
reduction in the requirements for bus bandwidth achieved by large 
caches, such symmetric multiprocessors were extremely cost-
effective, provided that a sufficient amount of memory bandwidth 
existed.
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Private and shared data
• Symmetric shared-memory machines usually support the 

caching of both shared and private data.
• Private data are used by a single processor, while shared 

data are used by multiple processors, essentially providing 
communication among the processors through reads and 
writes of the shared data. 

• When a private item is cached, its location is migrated to the 
cache, reducing the average access time as well as the 
memory bandwidth required. 

• Since no other processor uses the data, the program behavior 
is identical to that in a uniprocessor. 
When shared data are cached, the shared value may be 
replicated in multiple caches.
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Multiprocessor Cache Coherence
• Unfortunately, caching shared data introduces a new problem because 

the view of memory held by two different processors is through their 
individual caches, which, without any additional precautions, could end 
up seeing two different values.

• Two different processors can have two different values for the same 
location. This difficulty is generally referred to as the cache coherence
problem.
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Cache coherence and consistency
Informally, we could say that a memory system is coherent if 
any read of a data item returns the most recently written 
value of that data item.

• This definition, although intuitively appealing, is vague and 
simplistic; the reality is much more complex. 

• This simple definition contains two different aspects of 
memory system behavior, both of which are critical to 
writing correct shared-memory programs.

• The first aspect, called coherence, defines what values can 
be returned by a read.

• The second aspect, called consistency, determines when a 
written value will be returned by a read.
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Cache coherence
A memory system is coherent if
1. A read by a processor P to a location X that follows a write by P 

to X, with no writes of X by another processor occurring 
between the write and the read by P, always returns the value 
written by P.

2. A read by a processor to location X that follows a write by 
another processor to X returns the written value if the read and
write are sufficiently separated in time and no other writes to X 
occur between the two accesses.

3. Writes to the same location are serialized; that is, two writes to 
the same location by any two processors are seen in the same 
order by all processors. For example, if the values 1 and then 2 
are written to a location, processors can never read the value of 
the location as 2 and then later read it as 1.
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Basic Schemes for Enforcing Coherence
• The coherence problem for multiprocessors and I/O, 

although similar in origin, has different characteristics that 
affect the appropriate solution.

• A program running on multiple processors will normally 
have copies of the same data in several caches. 

• In a coherent multiprocessor, the caches provide both 
migration and replication of shared data items.
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Cache migration and replication
• Coherent caches provide migration, since a data item can be 

moved to a local cache and used there in a transparent fashion. 
– This migration reduces both the latency to access a shared data 

item that is allocated remotely and the bandwidth demand on 
the shared memory.

• Coherent caches also provide replication for shared data that are 
being simultaneously read, since the caches make a copy of the 
data item in the local cache. 
– Replication reduces both latency of access and contention for a 

read shared data item. 
• Supporting this migration and replication is critical to 

performance in accessing shared data. Thus, rather than trying to 
solve the problem by avoiding it in software, small-scale 
multiprocessors adopt a hardware solution by introducing a 
protocol to maintain coherent caches.
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Cache coherence protocols.
• The protocols to maintain coherence for multiple processors 

are called cache coherence protocols. 
• Key to implementing a cache coherence protocol is tracking 

the state of any sharing of a data block. 
• There are two classes of protocols, which use different 

techniques to track the sharing status, in use:
1. Directory based — The sharing status of a block of physical 

memory is kept in just one location, called the directory.
2. Snooping — Every cache that has a copy of the data from a 

block of physical memory also has a copy of the sharing 
status of the block, but no centralized state is kept. 
– The caches are all accessible via some broadcast 

medium (a bus or switch), and all cache controllers 
monitor or snoop on the medium to determine whether 
or not they have a copy of a block that is requested on a 
bus or switch access.
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Limitations in Symmetric Shared-Memory Multiprocessors 
and Snooping Protocols

• As the number of processors in a multiprocessor grows, or 
as the memory demands of each processor grow, any 
centralized resource in the system can become a 
bottleneck. 

• In the simple case of a bus-based multiprocessor, the bus 
must support both the coherence traffic as well as normal 
memory traffic arising from the caches. 

• Likewise, if there is a single memory unit, it must 
accommodate all processor requests. 

• As processors have increased in speed in the last few 
years, the number of processors that can be supported on 
a single bus or by using a single physical memory unit has 
fallen.
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Increasing memory bandwidth
• How can a designer increase the memory bandwidth to 

support either more or faster processors? 
• To increase the communication bandwidth between 

processors and memory, designers have used: 
– multiple buses
– interconnection networks, such as crossbars
– small point-to-point networks. 

• In such designs, the memory system can be configured into 
multiple physical banks, so as to boost the effective memory 
bandwidth while retaining uniform access time to memory.
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MP with UMA
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Example: AMD Opteron
• The AMD Opteron represents another intermediate point in the spectrum 

between a snoopy and a directory protocol. 
• Memory is directly connected to each dual-core processor chip, and up to 

four processor chips, eight cores in total, can be connected. 
• The Opteron implements its coherence protocol using the point-to-point 

links to broadcast up to three other chips. 
• Because the interprocessor links are not shared, the only way a processor 

can know when an invalid operation has completed is by an explicit 
acknowledgment. 
Thus, the coherence protocol uses a broadcast to find potentially shared 
copies, like a snoopy protocol, but uses the acknowledgments to order 
operations, like a directory protocol.

• Interestingly, the remote memory latency and local memory latency are 
not dramatically different, allowing the operating system to treat an 
Opteron multiprocessor as having uniform memory access.
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Performance of Symmetric Shared-Memory 
Multiprocessors

• In a multiprocessor using a snoopy coherence protocol, 
several different phenomena combine to determine 
performance. 

• In particular, the overall cache performance is a combination 
of the behavior of uniprocessor cache miss traffic and the 
traffic caused by communication. 

• Changing the processor count, cache size, and block size can 
affect these two components of the miss rate in different 
ways, leading to overall system behavior that is a 
combination of the two effects.
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A Commercial Workload
• We examine here the memory system behavior of a four-

processor shared-memory multiprocessor. 
• The results were collected either on an Alpha-Server 4100 or 

using a configurable simulator modeled after the Alpha-
Server 4100. 

• Each processor in the Alpha-Server 4100 is an Alpha 21164, 
which issues up to four instructions per clock and runs at 300 
MHz. 

• Although the clock rate of the Alpha processor in this system 
is considerably slower than processors in recent systems, the 
basic structure of the system, consisting of a four-issue 
processor and a three-level cache hierarchy, is comparable to 
many recent systems.
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A Commercial Workload
• Each processor has a three-level cache hierarchy:

– L1 consists of a pair of 8 KB direct-mapped on-chip caches, 
one for instruction and one for data. The block size is 32 bytes, 
and the data cache is write through to L2, using a write buffer.

– L2 is a 96 KB on-chip unified three-way set associative cache 
with a 32-byte block size, using write back.

– L3 is an off-chip, combined, direct-mapped 2 MB cache with 
64-byte blocks also using write back.

• The latency for an access to L2 is 7 cycles, to L3 it is 21 cycles, 
and to main memory it is 80 clock cycles. 

• Cache-to-cache transfers, which occur on a miss to an exclusive 
block held in another cache, require 125 clock cycles.
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A Commercial Workload
The workload used for this study consists of three applications:

1. An online transaction-processing workload (OLTP) modeled 
after TPC-B (which has similar memory behavior to its 
newer cousin TPC-C) and using Oracle 7.3.2 as the 
underlying database. 

• The workload consists of a set of  client processes that 
generate requests and a set of servers that handle them. 

• The server processes consume 85% of the user time, with 
the remaining  going to the clients. 
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A Commercial Workload
2. A decision support system (DSS) workload based on TPC-D and also 

using Oracle 7.3.2 as the underlying database. 
– The workload includes only 6 of the 17 read queries in TPC-D, 

although the 6 queries examined in the benchmark span the range of 
activities in the entire benchmark. 

– To hide the I/O latency, parallelism is exploited both within queries, 
where parallelism is detected during a query formulation process, and 
across queries. 

3. A Web index search (AltaVista) benchmark based on a search of a 
memory-mapped version of the AltaVista database (200 GB). 
– The inner loop is heavily optimized. Because the search structure is 

static, little synchronization is needed among the threads.
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Distribution of execution times
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Performance Measurements of the 
Commercial Workload

• We start by looking at the overall CPU execution for these 
benchmarks on the four-processor system. 
– These benchmarks include substantial I/O time, which is 

ignored in the CPU time measurements. 
• We group the six DSS queries as a single benchmark, 

reporting the average behavior. 
• The effective CPI varies widely for these benchmarks, from 

a CPI of 1.3 for the AltaVista Web search, to an average CPI 
of 1.6 for the DSS workload, to 7.0 for the OLTP workload.
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Execution time breakdown
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Performance of OLTP with 
L3 Cache growing
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Recollect some definitions
• Coherence misses occur when blocks of data are shared 

among multiple caches.
• True sharing cache misses occur whenever two processors 

access the same data word. 
– True sharing requires the processors involved to 

explicitly synchronize with each other to ensure program 
correctness. 

• False sharing misses occur when independent data words 
accessed by different processors happen to be placed in the 
same cache block, and at least one of the accesses is a write.
– Even if a processor re-uses a data item, the item may no 

longer be in the cache due to an intervening access by 
another processor to another word in the same cache line. 
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Recollect some definitions
• Compulsory (Cold) misses occur on the first 

reference to a memory block by a processor.

• Capacity misses occur when all the blocks that are 
referenced by a processor do not fit in the cache, so 
some are replaced and later accessed again.
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Increasing cache size
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Increasing processor count
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A Multiprogramming and OS Workload
• Our next study is a multiprogrammed workload consisting 

of both user activity and OS activity. 
• The workload used is two independent copies of the 

compile phases of the Andrew benchmark, a benchmark 
that emulates a software development environment. 

• The compile phase consists of a parallel make using eight 
processors. 

• The workload runs for 5.24 seconds on eight processors, 
creating 203 processes and performing 787 disk requests 
on three different file systems. 

• The workload is run with 128 MB of memory, and no 
paging activity takes place.
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A Multiprogramming and OS Workload
• The workload has three distinct phases: 

– compiling the benchmarks, which involves 
substantial compute activity; 

– installing the object files in a library 
– removing the object files. 

• The last phase is completely dominated by I/O and only 
two processes are active (one for each of the runs). 

• In the middle phase, I/O also plays a major role and the 
processor is largely idle. 

• The overall workload is much more system and I/O 
intensive than the highly tuned commercial workload.
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A Multiprogramming and OS Workload: 
Components

• For the workload measurements, we assume the following 
memory and I/O systems:
– Level 1 instruction cache—32 KB, two-way set 

associative with a 64-byte block, 1 clock cycle hit time.
– Level 1 data cache—32 KB, two-way set associative 

with a 32-byte block, 1 clock cycle hit time. We vary the 
L1 data cache to examine its effect on cache behavior.

– Level 2 cache—1 MB unified, two-way set associative 
with a 128-byte block, hit time 10 clock cycles.

– Main memory—Single memory on a bus with an access 
time of 100 clock cycles.

– Disk system—Fixed-access latency of 3 ms (less than 
normal to reduce idle time)
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Breaking of execution time

Execution time is broken into four components:
1. Idle—Execution in the kernel mode idle loop
2. User—Execution in user code
3. Synchronization—Execution or waiting for synchronization variables
4. Kernel—Execution in the OS that is neither idle nor in 

synchronization access



24/04/2010 UNYT-UoG

Cache miss
• This multiprogramming workload has a significant 

instruction cache performance loss, at least for the OS. 
• The instruction cache miss rate in the OS for a 64-byte block 

size, two-way set-associative cache varies from 1.7% for a 
32 KB cache to 0.2% for a 256 KB cache. 

• User-level instruction cache misses are roughly one-sixth of 
the OS rate, across the variety of cache sizes. 

• This partially accounts for the fact that although the user 
code executes nine times as many instructions as the kernel, 
those instructions take only about four times as long as the 
smaller number of instructions executed by the kernel.



24/04/2010 UNYT-UoG

Performance of the Multiprogramming and 
OS Workload

• We examine here the cache performance of the 
multiprogrammed workload as the cache size and block size 
are changed. 

• Because of differences between the behavior of the kernel 
and that of the user processes, we keep these two 
components separate. 

• Remember, though, that the user processes execute more 
than eight times as many instructions, so that the overall 
miss rate is determined primarily by the miss rate in user 
code, which, as we will see, is often one-fifth of the kernel 
miss rate.
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Data miss rates for the user and kernel 
components
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Increasing cache size
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Bytes needed for data reference
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Conclusions regarding OS workload
• For the multiprogrammed workload, the OS is a much more 

demanding user of the memory system. 
• If more OS or OS-like activity is included in the workload, 

and the behavior is similar to what was measured for this 
workload, it will become very difficult to build a sufficiently 
capable memory system. 

• One possible route to improving performance is to make the 
OS more cache aware, through either better programming 
environments or through programmer assistance.
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Directory coherence protocol
• A directory keeps the state of every block that may be 

cached. 
• Information in the directory includes which caches have 

copies of the block, whether it is dirty, and so on. 
• A directory protocol also can be used to reduce the 

bandwidth demands in a centralized shared-memory 
machine, as the Sun T1 design does. 

• We explain a directory protocol as if it were 
implemented with a distributed memory, but the same 
design also applies to a centralized memory organized 
into banks.
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Directory Implementations
• The simplest directory implementations associate an entry in the 

directory with each memory block. 
• In such implementations, the amount of information is 

proportional to the product of the number of memory blocks 
(where each block is the same size as the level 2 or level 3 cache 
block) and the number of processors.

• This overhead is not a problem for multiprocessors with less than 
about 200 processors because the directory overhead with a 
reasonable block size will be tolerable.

• For larger multiprocessors, we need methods to allow the 
directory structure to be efficiently scaled. 
– The methods that have been used either try to keep 

information for fewer blocks (e.g., only those in caches rather 
than all memory blocks) or try to keep fewer bits per entry by 
using individual bits to stand for a small collection of 
processors.
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Distributed directory
• To prevent the directory from becoming the bottleneck, the 

directory is distributed along with the memory (or with the 
interleaved memory banks in an SMP), so that different 
directory accesses can go to different directories, just as 
different memory requests go to different memories. 
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Distributed Directory
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Synchronization mechanisms
• Synchronization mechanisms are typically built with user-

level software routines that rely on hardware-supplied 
synchronization instructions. 

• For smaller multiprocessors or low-contention situations, the 
key hardware capability is an uninterruptible instruction or 
instruction sequence capable of atomically retrieving and 
changing a value. 

• Software synchronization mechanisms are then constructed 
using this capability. 

• Lock and unlock operation can be used straightforwardly to 
create mutual exclusion, as well as to implement more 
complex synchronization mechanisms.
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Basic Hardware Primitives
• The key ability we require to implement synchronization in a 

multiprocessor is a set of hardware primitives with the 
ability to atomically read and modify a memory location. 

• Without such a capability, the cost of building basic 
synchronization primitives will be too high and will increase 
as the processor count increases.

• These hardware primitives are the basic building blocks that 
are used to build a wide variety of user-level synchronization 
operations, including things such as locks and barriers. 

• In general, architects do not expect users to employ the basic 
hardware primitives, but instead expect that the primitives 
will be used by system programmers to build a 
synchronization library, a process that is often complex and 
tricky.
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Basic Hardware Primitives: Atomic
Exchange

• One typical operation for building synchronization operations is
the atomic exchange, which interchanges a value in a register for a 
value in memory. 

• To see how to use this to build a basic synchronization operation, 
assume that we want to build a simple lock where the value 0 is 
used to indicate that the lock is free and 1 is used to indicate that 
the lock is unavailable. 

• A processor tries to set the lock by doing an exchange of 1, which 
is in a register, with the memory address corresponding to the 
lock. 

• The value returned from the exchange instruction is 1 if some 
other processor had already claimed access and 0 otherwise. 

• In the latter case, the value is also changed to 1, preventing any 
competing exchange from also retrieving a 0.
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Basic Hardware Primitives: test-and-set
• There are a number of other atomic primitives that can be 

used to implement synchronization. 
• They all have the key property that they read and update a 

memory value in such a manner that we can tell whether or 
not the two operations executed atomically.

• One operation, present in many older multiprocessors, is 
test-and-set, which tests a value and sets it if the value 
passes the test.

• Another atomic synchronization primitive is fetch-and-
increment: It returns the value of a memory location and 
atomically increments it.
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Load Linked and Store Conditional
• An alternative is to have a pair of instructions where the 

second instruction returns a value from which it can be 
deduced whether the pair of instructions was executed as if 
the instructions were atomic. 

• Thus, when an instruction pair is effectively atomic, no other 
processor can change the value between the instruction pair.

• The pair of instructions includes a special load called a load 
linked or load locked and a special store called a store 
conditional.
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Spin Locks
• Once we have an atomic operation, we can use the coherence 

mechanisms of a multiprocessor to implement spin locks —
locks that a processor continuously tries to acquire, spinning 
around a loop until it succeeds. 

• Spin locks are used when programmers expect the lock to be 
held for a very short amount of time and when they want the 
process of locking to be low latency when the lock is 
available.

• Because spin locks consume the processor, waiting in a loop 
for the lock to become free, they are inappropriate in some 
circumstances.



24/04/2010 UNYT-UoG

Outline
• Introduction
• Symmetric Shared-Memory Architectures
• Performance of Symmetric Shared-Memory 

Multiprocessors
• Distributed Shared Memory and Directory-Based 

Coherence
• Synchronization: The Basics
• Models of Memory Consistency: An Introduction
• Crosscutting Issues
• Putting It All Together: The Sun T1 Multiprocessor 
• Fallacies and Pitfalls



24/04/2010 UNYT-UoG

Models of Memory Consistency:
• Cache coherence ensures that multiple processors see a 

consistent view of memory.
• It does not answer the question of how consistent the view of 

memory must be. 
• By “how consistent” we mean, when must a processor see a 

value that has been updated by another processor?
• Since processors communicate through shared variables (used 

both for data values and for synchronization), the question boils 
down to this: In what order must a processor observe the data 
writes of another processor? 

• Since the only way to “observe the writes of another processor”
is through reads, the question becomes, 
What properties must be enforced among reads and writes to 
different locations by different processors?
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Sequential consistency
• The most straightforward model for memory consistency is 

called sequential consistency. 
• Sequential consistency requires that the result of any 

execution be the same as if the memory accesses executed by 
each processor were kept in order and the accesses among 
different processors were arbitrarily interleaved.
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Relaxed Consistency Models
• The key idea in relaxed consistency models is to allow reads 

and writes to complete out of order, but to use 
synchronization operations to enforce ordering, so that a 
synchronized program behaves as if the processor were 
sequentially consistent.
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Crosscutting Issues
• Because multiprocessors redefine many system 

characteristics (e.g., performance assessment, memory 
latency, and the importance of scalability), they introduce 
interesting design problems that cut across the spectrum, 
affecting both hardware and software. 

• Here we discuss about issues of memory consistency.
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Compiler Optimization and the Consistency 
Model

• Another reason for defining a model for memory consistency is to
specify the range of legal compiler optimizations that can be 
performed on shared data. 

• In explicitly parallel programs, unless the synchronization points 
are clearly defined and the programs are synchronized, the 
compiler could not interchange a read and a write of two different 
shared data items because such transformations might affect the 
semantics of the program. 

• This prevents even relatively simple optimizations, such as 
register allocation of shared data, because such a process usually 
interchanges reads and writes. 

• In implicitly parallelized programs — for example, those written 
in High Performance FORTRAN (HPF)— programs must be 
synchronized and the synchronization points are known, so this 
issue does not arise.
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Using Speculation to Hide Latency in Strict 
Consistency Models

• Speculation can be used to hide memory latency. 
• It can also be used to hide latency arising from a strict 

consistency model, giving much of the benefit of a relaxed 
memory model. 

• The key idea is for the processor to use dynamic scheduling 
to reorder memory references, letting them possibly execute 
out of order. 

• Executing the memory references out of order may generate 
violations of sequential consistency, which might affect the 
execution of the program.
– This possibility is avoided by using the delayed commit

feature of a speculative processor.
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Sun T1
• T1 is a multicore multiprocessor introduced by Sun 

in 2005 as a server processor.
• What makes T1 especially interesting is that it is 

almost totally focused on exploiting thread-level 
parallelism (TLP) rather than instruction-level 
parallelism (ILP). 

• Indeed, it is the only single-issue desktop or server 
microprocessor introduced in more than five years. 

• Instead of focusing on ILP, T1 puts all its attention 
on TLP, using both multiple cores and 
multithreading to produce throughput.
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Sun T1
• Each T1 processor contains eight processor cores, each supporting 

four threads. 
• Each processor core consists of a simple six-stage, single-issue 

pipeline (a standard five-stage RISC pipeline like that of 
Appendix A, with one stage added for thread switching). 

• T1 uses fine-grained multithreading, switching to a new thread on 
each clock cycle, and threads that are idle because they are 
waiting due to a pipeline delay or cache miss, are bypassed in the 
scheduling. 
The processor is idle only when all four threads are idle or 
stalled.

• Both loads and branches incur a 3-cycle delay that can only be 
hidden by other threads. 

• A single set of floating-point functional units is shared by all eight 
cores, as floating-point performance was not a focus for T1.
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Sun T1 Architecture

Coherency is enforced 
among the L1 caches 
by a directory
associated with each 
L2 cache block.
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Summary of T1
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T1 Performance
• We look at the performance of T1 using three server-

oriented benchmarks: TPCC, SPECJBB (the SPEC Java 
Business Benchmark), and SPECWeb99. 

• The SPECWeb99 benchmark is run on a four-core version of 
T1 because it cannot scale to use the full 32 threads of an 
eight-core processor; the other two benchmarks are run with 
eight cores and 4 threads each for a total of 32 threads.
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Miss Rate: Varying cache size and block size
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Miss Latency: Varying cache size and block 
size

As we can see, for either a 3 MB or 6 MB cache, the larger block size results in a smaller L2 
cache miss time. 
How can this be if the miss rate changes much less than a factor of 2? 
Reply: Modern DRAMs provide a block of data for only slightly more time than needed to 
provide a single word; thus, the miss penalty for the 32-byte block is only slightly less than 
the 64-byte block.
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T1 Overall Performance

At first glance, one might react that T1 is not very efficient, since the effective
throughout is between 56% and 71% of the ideal on these three benchmarks. 
But, consider the comparative performance of a wide-issue superscalar. 
Processors such as the Itanium 2 (higher transistor count, much higher power, 
comparable silicon area) would need to achieve incredible instruction throughput 
sustaining 4.5–5.7 instructions per clock, well more than double the 
acknowledged IPC. 
It appears quite clear that, at least for integer-oriented server applications with
thread-level parallelism, a multicore approach is a much better alternative than a
single very wide issue processor.
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Interaction between 
multithreading and parallel processing
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Why a thread is not ready?
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Performance of Multicore Processors on 
SPEC Benchmarks

• Among recent processors, T1 is uniquely characterized by an 
intense focus on thread-level parallelism versus instruction-
level parallelism. 

• It uses multithreading to achieve performance from a simple 
RISC pipeline, and it uses multiprocessing with eight cores 
on a die to achieve high throughput for server applications. 

• In contrast, the dual-core Power5, Opteron, and Pentium D 
use both multiple issue and multicore. 

• Of course, exploiting significant ILP requires much bigger 
processors, with the result being that fewer cores fit on a 
chip in comparison to T1.
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Four multicore processors

Significant other differences exits => next slide



24/04/2010 UNYT-UoG

Differences: Floating-point support
1. There are significant differences in floating-point 

support and performance.
– The Power5 puts a major emphasis on floating-point 

performance, the Opteron and Pentium allocate 
significant resources, and the T1 almost ignores it. 

– As a result, Sun is unlikely to provide any benchmark 
results for floating-point applications. 

– A comparison that included only integer programs 
would be unfair to the three processors that include 
significant floating-point hardware
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Other differences
• The multiprocessor expandability of these systems differs and that 

affects the memory system design and the use of external interfaces. 
Power5 is designed for the most expandability. The Pentium and 
Opteron design offer limited multiprocessor support. The T1 is not 
expandable to a larger system. 

• The implementation technologies vary, making comparisons based on 
die size and power more difficult.

• There are significant differences in the assumptions about memory 
systems and the memory bandwidth available. For benchmarks with high 
cache miss rates, such as TPC-C and similar programs, the processors 
with larger memory bandwidth have a significant advantage.

Nonetheless, given the importance of the trade-off between ILP-centric 
and TLP-centric designs, it would be useful to try to quantify the 
performance differences as well as the efficacy of the approaches.
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Performance comparison
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Performance comparison

• Efficiency measures in terms of performance per unit die area and per watt for the four 
dual-core processors, with the results normalized to the measurement on the Pentium D. 
• There is significant advantage in terms of performance/watt for the Sun T1 processor
on the TPC-C-like and SPECJBB05 benchmarks. 
• These measurements clearly demonstrate that for multithreaded applications, a TLP 
approach may be much more power efficient than an ILP-intensive approach. 
• This is the strongest evidence to date that the TLP route may provide a way to increase 
performance in a power-efficient fashion.
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Conclusions for TLP
• It is too early to conclude whether the TLP-intensive 

approaches will win across the board. 
• If typical server applications have enough threads to keep T1 

busy and the per-thread performance is acceptable, the T1 
approach will be tough to beat. 

• If single-threaded performance remains important in server 
or desktop environments, then we may see the market further 
fracture with significantly different processors for 
throughput-oriented environments and environments where 
higher single-thread performance remains important.
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Pitfall: Measuring performance of multiprocessors by linear 
speedup versus execution time.

• Although speedup is one facet of a parallel program, it is not a direct 
measure of performance. 
– A program that linearly improves performance to equal 100 Intel 486s may 

be slower than the sequential version on a Pentium 4.
• Comparing execution times is fair only if you are comparing the best 

algorithms on each computer. 
– Comparing the identical code on two computers may seem fair, but it is not; 

the parallel program may be slower on a uniprocessor than a sequential 
version. 

• Developing a parallel program will sometimes lead to algorithmic
improvements, so that comparing the previously best-known sequential 
program with the parallel code—which seems fair — will not compare 
equivalent algorithms.

• To reflect this issue, the terms relative speedup (same program) and true 
speedup (best program) are sometimes used.
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Fallacy: Amdahl’s Law doesn’t apply to parallel 
computers.

• In 1987, the head of a research organization claimed that 
Amdahl’s Law had been broken by an MIMD 
multiprocessor. 

• This statement hardly meant, however, that the law has been 
overturned for parallel computers; 
– the neglected (not parallelizable) portion of the program 

will still limit performance.
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Fallacy: Linear speedups are needed to make 
multiprocessors cost-effective.

• It is widely recognized that one of the major benefits of 
parallel computing is to offer a “shorter time to solution”
than the fastest uniprocessor. 

• Many people, however, also hold the view that parallel 
processors cannot be as cost-effective as uniprocessors
unless they can achieve perfect linear speedup. 

• This argument says that because the cost of the 
multiprocessor is a linear function of the number of 
processors, anything less than linear speedup means that the 
ratio of performance/cost decreases, making a parallel 
processor less cost-effective than using a uniprocessor.
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Linear Speedup

For SPECintRate and SPECfpRate, speedup is less than linear, but so is 
the cost, since unlike TPC-C the amount of main memory and disk 
required both scale less than linearly.
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Linear Speedup
• As Figure 4.36 shows, larger 
processor counts can actually 
be more cost-effective than the 
four-processor configuration. 
• In the future, as the cost of 
multiple processors decreases 
compared to the cost of the 
support infrastructure 
(cabinets, power supplies, 
fans, etc.), the 
performance/cost ratio of 
larger processor configurations 
will improve further.
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Conclusions about speedup
• In comparing the cost-performance of two computers, we 

must be sure to include accurate assessments of both total 
system cost and what performance is achievable. 

• For many applications with larger memory demands, such a 
comparison can dramatically increase the attractiveness of 
using a multiprocessor.
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Fallacy: Scalability is almost free
• The goal of scalable parallel computing was a focus of much of the 

research and a significant segment of the high-end multiprocessor 
development from the mid- 1980s through the late 1990s. 

• In the first half of that period, it was widely held that you could build 
scalability into a multiprocessor and then simply offer the multiprocessor 
at any point on the scale from a small to large number of processors 
without sacrificing cost-effectiveness. 

• The difficulty with this view is that multiprocessors that scale to larger 
processor counts require substantially more investment (in both dollars 
and design time) in: 
– the interprocessor communication network
– operating system support
– reliability
– reconfigurability.
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Pitfall: Not developing the software to take advantage of, or 
optimize for, a multiprocessor architecture.

• This pitfall indicates the kind of subtle but significant 
performance bugs that can arise when software runs on 
multiprocessors. 

• Like many other key software components, the OS 
algorithms and data structures must be rethought in a 
multiprocessor context. 

• Similar problems exist in memory structures, which 
increases the coherence traffic in cases where no sharing is 
actually occurring.
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