
24/04/2010 UNYT-UoG

Advanced Topics in
Computer Architecture

Lecture 5
Multiprocessors and Thread-Level Parallelism

Marenglen Biba
Department of Computer Science
University of New York Tirana

24/04/2010 UNYT-UoG

Outline
• Introduction
• Symmetric Shared-Memory Architectures
• Performance of Symmetric Shared-Memory

Multiprocessors
• Distributed Shared Memory and Directory-Based

Coherence
• Synchronization: The Basics
• Models of Memory Consistency: An Introduction
• Crosscutting Issues
• Putting It All Together: The Sun T1 Multiprocessor
• Fallacies and Pitfalls

24/04/2010 UNYT-UoG

The Trend
• We are dedicating all of our future product

development to multicore designs. We believe this
is a key inflection point for the industry.

Intel President Paul Otellini,
describing Intel’s future direction at the

Intel Developers Forum in 2005

24/04/2010 UNYT-UoG

Introduction
• As we have discussed so far, in the previous lectures, the

slowdown in uniprocessor performance arising from
diminishing returns in exploiting ILP, combined with
growing concern over power, is leading to a new era in
computer architecture — an era where multiprocessors play
a major role.

24/04/2010 UNYT-UoG

Other factors
This trend toward more reliance on multiprocessing is

reinforced by other factors:
• A growing interest in servers and server performance
• A growth in data-intensive applications
• The insight that increasing performance on the desktop is

less important (outside of graphics, at least)
• An improved understanding of how to use multiprocessors

effectively, especially in server environments where there is
significant natural thread-level parallelism

• The advantages of leveraging a design investment by
replication rather than unique design — all multiprocessor
designs provide such leverage

24/04/2010 UNYT-UoG

A Taxonomy of Parallel Architectures

• The idea of using multiple processors both to increase
performance and to improve availability dates back to the
earliest electronic computers. About 40 years ago, Flynn
[1966] proposed a simple model of categorizing all
computers that is still useful today.

• He looked at the parallelism in the instruction and data
streams called for by the instructions at the most constrained
component of the multiprocessor, and placed all computers
into one of four categories:

• 1. Single instruction stream, single data stream (SISD) —
This category is the uniprocessor.

24/04/2010 UNYT-UoG

SIMD: Single instruction stream,
multiple data streams

• The same instruction is executed by multiple processors using different
data streams.

• SIMD computers exploit data-level parallelism by applying the same
operations to multiple items of data in parallel.

• Each processor has its own data memory (hence multiple data), but there
is a single instruction memory and control processor, which fetches and
dispatches instructions.

• For applications that display significant data-level parallelism, the SIMD
approach can be very efficient.

• Vector architectures, are the largest class of SIMD architectures.
• SIMD approaches have experienced a rebirth in the last few years with

the growing importance of graphics performance, especially for the game
market.

• SIMD approaches are the favored method for achieving the high
performance needed to create realistic threedimensional, real-time virtual
environments.

24/04/2010 UNYT-UoG

SIMD

24/04/2010 UNYT-UoG

MISD and MIMD
3. Multiple instruction streams, single data stream (MISD)—

No commercial multiprocessor of this type has been built to
date.

4. Multiple instruction streams, multiple data streams (MIMD)
– Each processor fetches its own instructions and operates

on its own data.
– MIMD computers exploit thread-level parallelism, since

multiple threads operate in parallel.
• In general, thread-level parallelism is more flexible than

data-level parallelism and thus more generally applicable.

24/04/2010 UNYT-UoG

MIMD Advantages
• Because the MIMD model can exploit thread-level parallelism, it

is the architecture of choice for general-purpose multiprocessors
and our focus in this Lecture.

• Two other factors have also contributed to the rise of the MIMD
multiprocessors:

1. MIMDs offer flexibility. With the correct hardware and software
support, MIMDs can function as single-user multiprocessors
focusing on high performance for one application, as
multiprogrammed multiprocessors running many tasks
simultaneously, or as some combination of these functions.

2. MIMDs can build on the cost-performance advantages of off-the-
shelf processors. In fact, nearly all multiprocessors built today use
the same microprocessors found in workstations and single-
processor servers. Furthermore, multicore chips leverage the
design investment in a single processor core by replicating it.

24/04/2010 UNYT-UoG

MIMD as Clusters
• One popular class of MIMD computers are clusters , which often

use standard components and often standard network technology,
so as to leverage as much commodity technology as possible.

• We distinguish two different types of clusters:
– commodity clusters, which rely entirely on third-party

processors and interconnection technology
– custom clusters, in which a designer customizes either the

detailed node design or the interconnection network, or both.
• In a commodity cluster, the nodes of a cluster are often blades or

rack-mounted servers (including small-scale multiprocessor
servers).

• Applications that focus on throughput and require almost no
communication among threads, such as Web serving,
multiprogramming, and some transaction-processing applications,
can be accommodated inexpensively on a cluster.

• Commodity clusters are often assembled by users or computer
center directors, rather than by vendors.

24/04/2010 UNYT-UoG

MIMD

24/04/2010 UNYT-UoG

Multicore
• Starting in the 1990s, the increasing capacity of a single chip

allowed designers to place multiple processors on a single die.
• This approach, initially called onchip multiprocessing or single-

chip multiprocessing, has come to be called multicore, a name
arising from the use of multiple processor cores on a single die.

• In such a design, the multiple cores typically share some
resources, such as a second- or third-level cache or memory and
I/O buses.

• Recent processors, including the IBM Power5, the Sun T1, and the
Intel Pentium D and Xeon-MP, are multicore and multithreaded.

• Just as using multiple copies of a microprocessor in a
multiprocessor leverages a design investment through replication,
a multicore achieves the same advantage relying more on
replication than the alternative of building a wider superscalar.

24/04/2010 UNYT-UoG

Execution in MIMD
• With an MIMD, each processor is executing its own

instruction stream.
• In many cases, each processor executes a different process.
• A process is a segment of code that may be run

independently; the state of the process contains all the
information necessary to execute that program on a
processor.

• In a multiprogrammed environment, where the processors
may be running independent tasks, each process is typically
independent of other processes.

24/04/2010 UNYT-UoG

MIMD and Threads
• It is also useful to be able to have multiple processors

executing a single program and sharing the code and most
of their address space.

• When multiple processes share code and data in this way,
they are often called threads.

• Today, the term thread is often used in a casual way to
refer to multiple sequences of execution that may run on
different processors, even when they do not share an
address space.

• For example, a multithreaded architecture actually allows
the simultaneous execution of multiple processes, with
potentially separate address spaces, as well as multiple
threads that share the same address space.

24/04/2010 UNYT-UoG

MIMD and Threads
• To take advantage of an MIMD multiprocessor with n processors,

we must usually have at least n threads or processes to execute.
• The independent threads within a single process are typically

identified by the programmer or created by the compiler.
• The threads may come from large-scale, independent processes

scheduled and manipulated by the operating system. At the other
extreme, a thread may consist of a few tens of iterations of a loop,
generated by a parallel compiler exploiting data parallelism in the
loop.

• Although the amount of computation assigned to a thread, called
the grain size, is important in considering how to exploit thread-
level parallelism efficiently, the important qualitative distinction
from instruction-level parallelism is that thread-level parallelism is
identified at a high level by the software system and that the
threads consist of hundreds to millions of instructions that may be
executed in parallel.

24/04/2010 UNYT-UoG

Classes of MIMD
• Existing MIMD multiprocessors fall into two classes,

depending on the number of processors involved, which in
turn dictates a memory organization and interconnect
strategy.

– centralized shared-memory architectures
– multiprocessors with physically distributed

memory

24/04/2010 UNYT-UoG

Centralized shared-memory architectures
• These have at most a few dozen processor chips (and less

than 100 cores).
• For multiprocessors with small processor counts, it is

possible for the processors to share a single centralized
memory.

• With large caches, a single memory, possibly with multiple
banks, can satisfy the memory demands of a small number of
processors.

• By using multiple point-to-point connections, or a switch,
and adding additional memory banks, a centralized shared-
memory design can be scaled to a few dozen processors.

• Although scaling beyond that is technically conceivable,
sharing a centralized memory becomes less attractive as the
number of processors sharing it increases.

24/04/2010 UNYT-UoG

Centralized shared-memory architectures
• Because there is a single main memory that has a symmetric

relationship to all processors and a uniform access time from
any processor, these multiprocessors are most often called
symmetric (shared-memory) multiprocessors (SMPs).

• This style of architecture is sometimes called uniform
memory access (UMA), arising from the fact that all
processors have a uniform latency from memory, even if the
memory is organized into multiple banks.

• This type of symmetric shared-memory architecture is
currently by far the most popular organization.

24/04/2010 UNYT-UoG

Centralized shared-memory architectures

24/04/2010 UNYT-UoG

Multiprocessors with physically
distributed memory

• To support larger processor counts, memory must be
distributed among the processors rather than centralized
– Otherwise the memory system would not be able to

support the bandwidth demands of a larger number of
processors without incurring excessively long access
latency.

• The larger number of processors also raises the need for a
high-bandwidth interconnect.

24/04/2010 UNYT-UoG

Multiprocessors with physically
distributed memory

24/04/2010 UNYT-UoG

Advantages and disadvantages
• Distributing the memory among the nodes has two major benefits.

– First, it is a cost-effective way to scale the memory bandwidth if
most of the accesses are to the local memory in the node.

– Second, it reduces the latency for accesses to the local memory.
• These two advantages make distributed memory attractive at

smaller processor counts as processors get ever faster and require
more memory bandwidth and lower memory latency.

• The key disadvantages for a distributed-memory architecture are
that communicating data between processors becomes somewhat
more complex, and that it requires more effort in the software to
take advantage of the increased memory bandwidth afforded by
distributed memories.

• As we will see shortly, the use of distributed memory also leads to
two different paradigms for interprocessor communication.

24/04/2010 UNYT-UoG

Models for Communication and
Memory Architecture

• There are two alternative architectural approaches that differ in the
method used for communicating data among processors.

• In the first method, communication occurs through a shared address
space, as it does in a symmetric shared-memory architecture.

• The physically separate memories can be addressed as one logically
shared address space, meaning that a memory reference can be made by
any processor to any memory location, assuming it has the correct access
rights. These multiprocessors are called Distributed shared-memory
(DSM) architectures.

• The term shared memory refers to the fact that the address space is
shared; that is, the same physical address on two processors refers to the
same location in memory. Shared memory does not mean that there is a
single, centralized memory.

• In contrast to the symmetric shared-memory multiprocessors, also known
as UMAs (uniform memory access), the DSM multiprocessors are also
called NUMAs (nonuniform memory access), since the access time
depends on the location of a data word in memory.

24/04/2010 UNYT-UoG

UMA and NUMA

Shared Memory (UMA) Shared Memory (NUMA)

24/04/2010 UNYT-UoG

Models for Communication and
Memory Architecture

• Alternatively, the address space can consist of multiple
private address spaces that are logically disjoint and cannot
be addressed by a remote processor.

• In such multiprocessors, the same physical address on two
different processors refers to two different locations in two
different memories.

• Each processor-memory module is essentially a separate
computer.

• Initially, such computers were built with different processing
nodes and specialized interconnection networks.

• Today, most designs of this type are actually clusters.

24/04/2010 UNYT-UoG

Message-passing multiprocessors
• With each of the organizations for the address space, there

is an associated communication mechanism.
• For a multiprocessor with a shared address space, that

address space can be used to communicate data implicitly
via load and store operations — hence the name shared
memory for such multiprocessors.

• For a multiprocessor with multiple address spaces,
communication of data is done by explicitly passing
messages among the processors.

• Therefore, these multiprocessors are often called message-
passing multiprocessors.

• Clusters inherently use message passing.

24/04/2010 UNYT-UoG

Challenges of Parallel Processing
• The application of multiprocessors ranges from running

independent tasks with essentially no communication to running
parallel programs where threads must communicate to complete
the task.

• Two important hurdles, both explainable with Amdahl’s Law,
make parallel processing challenging.

• The degree to which these hurdles are difficult or easy is
determined both by the application and by the architecture.
The first hurdle has to do with the limited parallelism available in
programs, and the second arises from the relatively high cost of
communications.

• Limitations in available parallelism make it difficult to achieve
good speedups in any parallel processor as the next example
shows => next slide.

24/04/2010 UNYT-UoG

Example
• Suppose you want to achieve a speedup of 80 with 100 processors. What

fraction of the original computation can be sequential?
• Amdahl’s Law is:

• For simplicity in this example, assume that the program operates in only
two modes: parallel with all processors fully used, which is the
enhanced mode, or serial with only one processor in use.

• With this simplification, the speedup in enhanced mode is simply the
number of processors, while the fraction of enhanced mode is the time
spent in parallel mode. Substituting into the previous equation:

24/04/2010 UNYT-UoG

Example
• Simplifying we have:

• Thus, to achieve a speedup of 80 with 100 processors, only
0.25% of original computation can be sequential. Of course, to
achieve linear speedup (speedup of n with n processors), the
entire program must usually be parallel with no serial portions.

• In practice, programs do not just operate in fully parallel or
sequential mode, but often use less than the full complement of
the processors when running in parallel mode.

24/04/2010 UNYT-UoG

Latency of remote access
• The second major challenge in parallel processing involves

the large latency of remote access in a parallel processor.
• In existing shared-memory multiprocessors, communication

of data between processors may cost anywhere from 50
clock cycles (for multicores) to over 1000 clock cycles (for
large-scale multiprocessors), depending on:
– the communication mechanism
– the type of interconnection network
– the scale of the multiprocessor.

• The effect of long communication delays is clearly
substantial. Let’s consider a simple example => next slide

24/04/2010 UNYT-UoG

Example
• Suppose we have an application running on a 32-processor

multiprocessor, which has a 200 ns time to handle reference
to a remote memory.

• For this application, assume that all the references except
those involving communication hit in the local memory
hierarchy, which is slightly optimistic.

• Processors are stalled on a remote request, and the processor
clock rate is 2 GHz.

• If the base CPI (assuming that all references hit in the cache)
is 0.5, how much faster is the multiprocessor if there is no
communication versus if 0.2% of the instructions involve a
remote communication reference?

24/04/2010 UNYT-UoG

Example
• It is simpler to first calculate the CPI. The effective CPI for the

multiprocessor with 0.2% remote references is:

• The remote request cost is

• We can compute the CPI: CPI = 0.5+ 0.8 = 1.3

• The multiprocessor with all local references is 1.3/0.5 = 2.6 times
faster.

• In practice, the performance analysis is much more complex, since
some fraction of the noncommunication references will miss in the
local hierarchy and the remote access time does not have a single
constant value.

24/04/2010 UNYT-UoG

Attacking problems
• The two problems — insufficient parallelism and long-latency

remote communication — are the two biggest performance
challenges in using multiprocessors.

• The problem of inadequate application parallelism must be
attacked primarily in software with new algorithms that can have
better parallel performance.

• Reducing the impact of long remote latency can be attacked both
by the architecture and by the programmer.

• For example, we can reduce the frequency of remote accesses with
either hardware mechanisms, such as caching shared data, or
software mechanisms, such as restructuring the data to make more
accesses local.

• We can try to tolerate the latency by using multithreading or by
using prefetching.

24/04/2010 UNYT-UoG

Attacking problems
• Here we will focuses on techniques for reducing the impact

of long remote communication latency:
– how caching can be used to reduce remote access

frequency, while maintaining a coherent view of
memory.

– synchronization, which, because it inherently involves
interprocessor communication and also can limit
parallelism, is a major potential bottleneck.

– latency-hiding techniques and memory consistency
models for shared memory.

24/04/2010 UNYT-UoG

Outline
• Introduction
• Symmetric Shared-Memory Architectures
• Performance of Symmetric Shared-Memory

Multiprocessors
• Distributed Shared Memory and Directory-Based

Coherence
• Synchronization: The Basics
• Models of Memory Consistency: An Introduction
• Crosscutting Issues
• Putting It All Together: The Sun T1 Multiprocessor
• Fallacies and Pitfalls

24/04/2010 UNYT-UoG

Symmetric Shared-Memory Architectures
• The use of large, multilevel caches can substantially reduce the

memory bandwidth demands of a processor.
• If the main memory bandwidth demands of a single processor are

reduced, multiple processors may be able to share the same
memory.

• Starting in the 1980s, this observation, combined with the
emerging dominance of the microprocessor, motivated many
designers to create small-scale multiprocessors where several
processors shared a single physical memory connected by a shared
bus.

• Because of the small size of the processors and the significant
reduction in the requirements for bus bandwidth achieved by large
caches, such symmetric multiprocessors were extremely cost-
effective, provided that a sufficient amount of memory bandwidth
existed.

24/04/2010 UNYT-UoG

Private and shared data
• Symmetric shared-memory machines usually support the

caching of both shared and private data.
• Private data are used by a single processor, while shared

data are used by multiple processors, essentially providing
communication among the processors through reads and
writes of the shared data.

• When a private item is cached, its location is migrated to the
cache, reducing the average access time as well as the
memory bandwidth required.

• Since no other processor uses the data, the program behavior
is identical to that in a uniprocessor.
When shared data are cached, the shared value may be
replicated in multiple caches.

24/04/2010 UNYT-UoG

Multiprocessor Cache Coherence
• Unfortunately, caching shared data introduces a new problem because

the view of memory held by two different processors is through their
individual caches, which, without any additional precautions, could end
up seeing two different values.

• Two different processors can have two different values for the same
location. This difficulty is generally referred to as the cache coherence
problem.

24/04/2010 UNYT-UoG

Cache coherence and consistency
Informally, we could say that a memory system is coherent if
any read of a data item returns the most recently written
value of that data item.

• This definition, although intuitively appealing, is vague and
simplistic; the reality is much more complex.

• This simple definition contains two different aspects of
memory system behavior, both of which are critical to
writing correct shared-memory programs.

• The first aspect, called coherence, defines what values can
be returned by a read.

• The second aspect, called consistency, determines when a
written value will be returned by a read.

24/04/2010 UNYT-UoG

Cache coherence
A memory system is coherent if
1. A read by a processor P to a location X that follows a write by P

to X, with no writes of X by another processor occurring
between the write and the read by P, always returns the value
written by P.

2. A read by a processor to location X that follows a write by
another processor to X returns the written value if the read and
write are sufficiently separated in time and no other writes to X
occur between the two accesses.

3. Writes to the same location are serialized; that is, two writes to
the same location by any two processors are seen in the same
order by all processors. For example, if the values 1 and then 2
are written to a location, processors can never read the value of
the location as 2 and then later read it as 1.

24/04/2010 UNYT-UoG

Basic Schemes for Enforcing Coherence
• The coherence problem for multiprocessors and I/O,

although similar in origin, has different characteristics that
affect the appropriate solution.

• A program running on multiple processors will normally
have copies of the same data in several caches.

• In a coherent multiprocessor, the caches provide both
migration and replication of shared data items.

24/04/2010 UNYT-UoG

Cache migration and replication
• Coherent caches provide migration, since a data item can be

moved to a local cache and used there in a transparent fashion.
– This migration reduces both the latency to access a shared data

item that is allocated remotely and the bandwidth demand on
the shared memory.

• Coherent caches also provide replication for shared data that are
being simultaneously read, since the caches make a copy of the
data item in the local cache.
– Replication reduces both latency of access and contention for a

read shared data item.
• Supporting this migration and replication is critical to

performance in accessing shared data. Thus, rather than trying to
solve the problem by avoiding it in software, small-scale
multiprocessors adopt a hardware solution by introducing a
protocol to maintain coherent caches.

24/04/2010 UNYT-UoG

Cache coherence protocols.
• The protocols to maintain coherence for multiple processors

are called cache coherence protocols.
• Key to implementing a cache coherence protocol is tracking

the state of any sharing of a data block.
• There are two classes of protocols, which use different

techniques to track the sharing status, in use:
1. Directory based — The sharing status of a block of physical

memory is kept in just one location, called the directory.
2. Snooping — Every cache that has a copy of the data from a

block of physical memory also has a copy of the sharing
status of the block, but no centralized state is kept.
– The caches are all accessible via some broadcast

medium (a bus or switch), and all cache controllers
monitor or snoop on the medium to determine whether
or not they have a copy of a block that is requested on a
bus or switch access.

24/04/2010 UNYT-UoG

Limitations in Symmetric Shared-Memory Multiprocessors
and Snooping Protocols

• As the number of processors in a multiprocessor grows, or
as the memory demands of each processor grow, any
centralized resource in the system can become a
bottleneck.

• In the simple case of a bus-based multiprocessor, the bus
must support both the coherence traffic as well as normal
memory traffic arising from the caches.

• Likewise, if there is a single memory unit, it must
accommodate all processor requests.

• As processors have increased in speed in the last few
years, the number of processors that can be supported on
a single bus or by using a single physical memory unit has
fallen.

24/04/2010 UNYT-UoG

Increasing memory bandwidth
• How can a designer increase the memory bandwidth to

support either more or faster processors?
• To increase the communication bandwidth between

processors and memory, designers have used:
– multiple buses
– interconnection networks, such as crossbars
– small point-to-point networks.

• In such designs, the memory system can be configured into
multiple physical banks, so as to boost the effective memory
bandwidth while retaining uniform access time to memory.

24/04/2010 UNYT-UoG

MP with UMA

24/04/2010 UNYT-UoG

Example: AMD Opteron
• The AMD Opteron represents another intermediate point in the spectrum

between a snoopy and a directory protocol.
• Memory is directly connected to each dual-core processor chip, and up to

four processor chips, eight cores in total, can be connected.
• The Opteron implements its coherence protocol using the point-to-point

links to broadcast up to three other chips.
• Because the interprocessor links are not shared, the only way a processor

can know when an invalid operation has completed is by an explicit
acknowledgment.
Thus, the coherence protocol uses a broadcast to find potentially shared
copies, like a snoopy protocol, but uses the acknowledgments to order
operations, like a directory protocol.

• Interestingly, the remote memory latency and local memory latency are
not dramatically different, allowing the operating system to treat an
Opteron multiprocessor as having uniform memory access.

24/04/2010 UNYT-UoG

Outline
• Introduction
• Symmetric Shared-Memory Architectures
• Performance of Symmetric Shared-Memory

Multiprocessors
• Distributed Shared Memory and Directory-Based

Coherence
• Synchronization: The Basics
• Models of Memory Consistency: An Introduction
• Crosscutting Issues
• Putting It All Together: The Sun T1 Multiprocessor
• Fallacies and Pitfalls

24/04/2010 UNYT-UoG

Performance of Symmetric Shared-Memory
Multiprocessors

• In a multiprocessor using a snoopy coherence protocol,
several different phenomena combine to determine
performance.

• In particular, the overall cache performance is a combination
of the behavior of uniprocessor cache miss traffic and the
traffic caused by communication.

• Changing the processor count, cache size, and block size can
affect these two components of the miss rate in different
ways, leading to overall system behavior that is a
combination of the two effects.

24/04/2010 UNYT-UoG

A Commercial Workload
• We examine here the memory system behavior of a four-

processor shared-memory multiprocessor.
• The results were collected either on an Alpha-Server 4100 or

using a configurable simulator modeled after the Alpha-
Server 4100.

• Each processor in the Alpha-Server 4100 is an Alpha 21164,
which issues up to four instructions per clock and runs at 300
MHz.

• Although the clock rate of the Alpha processor in this system
is considerably slower than processors in recent systems, the
basic structure of the system, consisting of a four-issue
processor and a three-level cache hierarchy, is comparable to
many recent systems.

24/04/2010 UNYT-UoG

A Commercial Workload
• Each processor has a three-level cache hierarchy:

– L1 consists of a pair of 8 KB direct-mapped on-chip caches,
one for instruction and one for data. The block size is 32 bytes,
and the data cache is write through to L2, using a write buffer.

– L2 is a 96 KB on-chip unified three-way set associative cache
with a 32-byte block size, using write back.

– L3 is an off-chip, combined, direct-mapped 2 MB cache with
64-byte blocks also using write back.

• The latency for an access to L2 is 7 cycles, to L3 it is 21 cycles,
and to main memory it is 80 clock cycles.

• Cache-to-cache transfers, which occur on a miss to an exclusive
block held in another cache, require 125 clock cycles.

24/04/2010 UNYT-UoG

A Commercial Workload
The workload used for this study consists of three applications:

1. An online transaction-processing workload (OLTP) modeled
after TPC-B (which has similar memory behavior to its
newer cousin TPC-C) and using Oracle 7.3.2 as the
underlying database.

• The workload consists of a set of client processes that
generate requests and a set of servers that handle them.

• The server processes consume 85% of the user time, with
the remaining going to the clients.

24/04/2010 UNYT-UoG

A Commercial Workload
2. A decision support system (DSS) workload based on TPC-D and also

using Oracle 7.3.2 as the underlying database.
– The workload includes only 6 of the 17 read queries in TPC-D,

although the 6 queries examined in the benchmark span the range of
activities in the entire benchmark.

– To hide the I/O latency, parallelism is exploited both within queries,
where parallelism is detected during a query formulation process, and
across queries.

3. A Web index search (AltaVista) benchmark based on a search of a
memory-mapped version of the AltaVista database (200 GB).
– The inner loop is heavily optimized. Because the search structure is

static, little synchronization is needed among the threads.

24/04/2010 UNYT-UoG

Distribution of execution times

24/04/2010 UNYT-UoG

Performance Measurements of the
Commercial Workload

• We start by looking at the overall CPU execution for these
benchmarks on the four-processor system.
– These benchmarks include substantial I/O time, which is

ignored in the CPU time measurements.
• We group the six DSS queries as a single benchmark,

reporting the average behavior.
• The effective CPI varies widely for these benchmarks, from

a CPI of 1.3 for the AltaVista Web search, to an average CPI
of 1.6 for the DSS workload, to 7.0 for the OLTP workload.

24/04/2010 UNYT-UoG

Execution time breakdown

24/04/2010 UNYT-UoG

Performance of OLTP with
L3 Cache growing

24/04/2010 UNYT-UoG

Recollect some definitions
• Coherence misses occur when blocks of data are shared

among multiple caches.
• True sharing cache misses occur whenever two processors

access the same data word.
– True sharing requires the processors involved to

explicitly synchronize with each other to ensure program
correctness.

• False sharing misses occur when independent data words
accessed by different processors happen to be placed in the
same cache block, and at least one of the accesses is a write.
– Even if a processor re-uses a data item, the item may no

longer be in the cache due to an intervening access by
another processor to another word in the same cache line.

24/04/2010 UNYT-UoG

Recollect some definitions
• Compulsory (Cold) misses occur on the first

reference to a memory block by a processor.

• Capacity misses occur when all the blocks that are
referenced by a processor do not fit in the cache, so
some are replaced and later accessed again.

24/04/2010 UNYT-UoG

Increasing cache size

24/04/2010 UNYT-UoG

Increasing processor count

24/04/2010 UNYT-UoG

A Multiprogramming and OS Workload
• Our next study is a multiprogrammed workload consisting

of both user activity and OS activity.
• The workload used is two independent copies of the

compile phases of the Andrew benchmark, a benchmark
that emulates a software development environment.

• The compile phase consists of a parallel make using eight
processors.

• The workload runs for 5.24 seconds on eight processors,
creating 203 processes and performing 787 disk requests
on three different file systems.

• The workload is run with 128 MB of memory, and no
paging activity takes place.

24/04/2010 UNYT-UoG

A Multiprogramming and OS Workload
• The workload has three distinct phases:

– compiling the benchmarks, which involves
substantial compute activity;

– installing the object files in a library
– removing the object files.

• The last phase is completely dominated by I/O and only
two processes are active (one for each of the runs).

• In the middle phase, I/O also plays a major role and the
processor is largely idle.

• The overall workload is much more system and I/O
intensive than the highly tuned commercial workload.

24/04/2010 UNYT-UoG

A Multiprogramming and OS Workload:
Components

• For the workload measurements, we assume the following
memory and I/O systems:
– Level 1 instruction cache—32 KB, two-way set

associative with a 64-byte block, 1 clock cycle hit time.
– Level 1 data cache—32 KB, two-way set associative

with a 32-byte block, 1 clock cycle hit time. We vary the
L1 data cache to examine its effect on cache behavior.

– Level 2 cache—1 MB unified, two-way set associative
with a 128-byte block, hit time 10 clock cycles.

– Main memory—Single memory on a bus with an access
time of 100 clock cycles.

– Disk system—Fixed-access latency of 3 ms (less than
normal to reduce idle time)

24/04/2010 UNYT-UoG

Breaking of execution time

Execution time is broken into four components:
1. Idle—Execution in the kernel mode idle loop
2. User—Execution in user code
3. Synchronization—Execution or waiting for synchronization variables
4. Kernel—Execution in the OS that is neither idle nor in

synchronization access

24/04/2010 UNYT-UoG

Cache miss
• This multiprogramming workload has a significant

instruction cache performance loss, at least for the OS.
• The instruction cache miss rate in the OS for a 64-byte block

size, two-way set-associative cache varies from 1.7% for a
32 KB cache to 0.2% for a 256 KB cache.

• User-level instruction cache misses are roughly one-sixth of
the OS rate, across the variety of cache sizes.

• This partially accounts for the fact that although the user
code executes nine times as many instructions as the kernel,
those instructions take only about four times as long as the
smaller number of instructions executed by the kernel.

24/04/2010 UNYT-UoG

Performance of the Multiprogramming and
OS Workload

• We examine here the cache performance of the
multiprogrammed workload as the cache size and block size
are changed.

• Because of differences between the behavior of the kernel
and that of the user processes, we keep these two
components separate.

• Remember, though, that the user processes execute more
than eight times as many instructions, so that the overall
miss rate is determined primarily by the miss rate in user
code, which, as we will see, is often one-fifth of the kernel
miss rate.

24/04/2010 UNYT-UoG

Data miss rates for the user and kernel
components

24/04/2010 UNYT-UoG

Increasing cache size

24/04/2010 UNYT-UoG

Bytes needed for data reference

24/04/2010 UNYT-UoG

Conclusions regarding OS workload
• For the multiprogrammed workload, the OS is a much more

demanding user of the memory system.
• If more OS or OS-like activity is included in the workload,

and the behavior is similar to what was measured for this
workload, it will become very difficult to build a sufficiently
capable memory system.

• One possible route to improving performance is to make the
OS more cache aware, through either better programming
environments or through programmer assistance.

24/04/2010 UNYT-UoG

Outline
• Introduction
• Symmetric Shared-Memory Architectures
• Performance of Symmetric Shared-Memory

Multiprocessors
• Distributed Shared Memory and Directory-Based

Coherence
• Synchronization: The Basics
• Models of Memory Consistency: An Introduction
• Crosscutting Issues
• Putting It All Together: The Sun T1 Multiprocessor
• Fallacies and Pitfalls

24/04/2010 UNYT-UoG

Directory coherence protocol
• A directory keeps the state of every block that may be

cached.
• Information in the directory includes which caches have

copies of the block, whether it is dirty, and so on.
• A directory protocol also can be used to reduce the

bandwidth demands in a centralized shared-memory
machine, as the Sun T1 design does.

• We explain a directory protocol as if it were
implemented with a distributed memory, but the same
design also applies to a centralized memory organized
into banks.

24/04/2010 UNYT-UoG

Directory Implementations
• The simplest directory implementations associate an entry in the

directory with each memory block.
• In such implementations, the amount of information is

proportional to the product of the number of memory blocks
(where each block is the same size as the level 2 or level 3 cache
block) and the number of processors.

• This overhead is not a problem for multiprocessors with less than
about 200 processors because the directory overhead with a
reasonable block size will be tolerable.

• For larger multiprocessors, we need methods to allow the
directory structure to be efficiently scaled.
– The methods that have been used either try to keep

information for fewer blocks (e.g., only those in caches rather
than all memory blocks) or try to keep fewer bits per entry by
using individual bits to stand for a small collection of
processors.

24/04/2010 UNYT-UoG

Distributed directory
• To prevent the directory from becoming the bottleneck, the

directory is distributed along with the memory (or with the
interleaved memory banks in an SMP), so that different
directory accesses can go to different directories, just as
different memory requests go to different memories.

24/04/2010 UNYT-UoG

Distributed Directory

24/04/2010 UNYT-UoG

Outline
• Introduction
• Symmetric Shared-Memory Architectures
• Performance of Symmetric Shared-Memory

Multiprocessors
• Distributed Shared Memory and Directory-Based

Coherence
• Synchronization: The Basics
• Models of Memory Consistency: An Introduction
• Crosscutting Issues
• Putting It All Together: The Sun T1 Multiprocessor
• Fallacies and Pitfalls

24/04/2010 UNYT-UoG

Synchronization mechanisms
• Synchronization mechanisms are typically built with user-

level software routines that rely on hardware-supplied
synchronization instructions.

• For smaller multiprocessors or low-contention situations, the
key hardware capability is an uninterruptible instruction or
instruction sequence capable of atomically retrieving and
changing a value.

• Software synchronization mechanisms are then constructed
using this capability.

• Lock and unlock operation can be used straightforwardly to
create mutual exclusion, as well as to implement more
complex synchronization mechanisms.

24/04/2010 UNYT-UoG

Basic Hardware Primitives
• The key ability we require to implement synchronization in a

multiprocessor is a set of hardware primitives with the
ability to atomically read and modify a memory location.

• Without such a capability, the cost of building basic
synchronization primitives will be too high and will increase
as the processor count increases.

• These hardware primitives are the basic building blocks that
are used to build a wide variety of user-level synchronization
operations, including things such as locks and barriers.

• In general, architects do not expect users to employ the basic
hardware primitives, but instead expect that the primitives
will be used by system programmers to build a
synchronization library, a process that is often complex and
tricky.

24/04/2010 UNYT-UoG

Basic Hardware Primitives: Atomic
Exchange

• One typical operation for building synchronization operations is
the atomic exchange, which interchanges a value in a register for a
value in memory.

• To see how to use this to build a basic synchronization operation,
assume that we want to build a simple lock where the value 0 is
used to indicate that the lock is free and 1 is used to indicate that
the lock is unavailable.

• A processor tries to set the lock by doing an exchange of 1, which
is in a register, with the memory address corresponding to the
lock.

• The value returned from the exchange instruction is 1 if some
other processor had already claimed access and 0 otherwise.

• In the latter case, the value is also changed to 1, preventing any
competing exchange from also retrieving a 0.

24/04/2010 UNYT-UoG

Basic Hardware Primitives: test-and-set
• There are a number of other atomic primitives that can be

used to implement synchronization.
• They all have the key property that they read and update a

memory value in such a manner that we can tell whether or
not the two operations executed atomically.

• One operation, present in many older multiprocessors, is
test-and-set, which tests a value and sets it if the value
passes the test.

• Another atomic synchronization primitive is fetch-and-
increment: It returns the value of a memory location and
atomically increments it.

24/04/2010 UNYT-UoG

Load Linked and Store Conditional
• An alternative is to have a pair of instructions where the

second instruction returns a value from which it can be
deduced whether the pair of instructions was executed as if
the instructions were atomic.

• Thus, when an instruction pair is effectively atomic, no other
processor can change the value between the instruction pair.

• The pair of instructions includes a special load called a load
linked or load locked and a special store called a store
conditional.

24/04/2010 UNYT-UoG

Spin Locks
• Once we have an atomic operation, we can use the coherence

mechanisms of a multiprocessor to implement spin locks —
locks that a processor continuously tries to acquire, spinning
around a loop until it succeeds.

• Spin locks are used when programmers expect the lock to be
held for a very short amount of time and when they want the
process of locking to be low latency when the lock is
available.

• Because spin locks consume the processor, waiting in a loop
for the lock to become free, they are inappropriate in some
circumstances.

24/04/2010 UNYT-UoG

Outline
• Introduction
• Symmetric Shared-Memory Architectures
• Performance of Symmetric Shared-Memory

Multiprocessors
• Distributed Shared Memory and Directory-Based

Coherence
• Synchronization: The Basics
• Models of Memory Consistency: An Introduction
• Crosscutting Issues
• Putting It All Together: The Sun T1 Multiprocessor
• Fallacies and Pitfalls

24/04/2010 UNYT-UoG

Models of Memory Consistency:
• Cache coherence ensures that multiple processors see a

consistent view of memory.
• It does not answer the question of how consistent the view of

memory must be.
• By “how consistent” we mean, when must a processor see a

value that has been updated by another processor?
• Since processors communicate through shared variables (used

both for data values and for synchronization), the question boils
down to this: In what order must a processor observe the data
writes of another processor?

• Since the only way to “observe the writes of another processor”
is through reads, the question becomes,
What properties must be enforced among reads and writes to
different locations by different processors?

24/04/2010 UNYT-UoG

Sequential consistency
• The most straightforward model for memory consistency is

called sequential consistency.
• Sequential consistency requires that the result of any

execution be the same as if the memory accesses executed by
each processor were kept in order and the accesses among
different processors were arbitrarily interleaved.

24/04/2010 UNYT-UoG

Relaxed Consistency Models
• The key idea in relaxed consistency models is to allow reads

and writes to complete out of order, but to use
synchronization operations to enforce ordering, so that a
synchronized program behaves as if the processor were
sequentially consistent.

24/04/2010 UNYT-UoG

Outline
• Introduction
• Symmetric Shared-Memory Architectures
• Performance of Symmetric Shared-Memory

Multiprocessors
• Distributed Shared Memory and Directory-Based

Coherence
• Synchronization: The Basics
• Models of Memory Consistency: An Introduction
• Crosscutting Issues
• Putting It All Together: The Sun T1 Multiprocessor
• Fallacies and Pitfalls

24/04/2010 UNYT-UoG

Crosscutting Issues
• Because multiprocessors redefine many system

characteristics (e.g., performance assessment, memory
latency, and the importance of scalability), they introduce
interesting design problems that cut across the spectrum,
affecting both hardware and software.

• Here we discuss about issues of memory consistency.

24/04/2010 UNYT-UoG

Compiler Optimization and the Consistency
Model

• Another reason for defining a model for memory consistency is to
specify the range of legal compiler optimizations that can be
performed on shared data.

• In explicitly parallel programs, unless the synchronization points
are clearly defined and the programs are synchronized, the
compiler could not interchange a read and a write of two different
shared data items because such transformations might affect the
semantics of the program.

• This prevents even relatively simple optimizations, such as
register allocation of shared data, because such a process usually
interchanges reads and writes.

• In implicitly parallelized programs — for example, those written
in High Performance FORTRAN (HPF)— programs must be
synchronized and the synchronization points are known, so this
issue does not arise.

24/04/2010 UNYT-UoG

Using Speculation to Hide Latency in Strict
Consistency Models

• Speculation can be used to hide memory latency.
• It can also be used to hide latency arising from a strict

consistency model, giving much of the benefit of a relaxed
memory model.

• The key idea is for the processor to use dynamic scheduling
to reorder memory references, letting them possibly execute
out of order.

• Executing the memory references out of order may generate
violations of sequential consistency, which might affect the
execution of the program.
– This possibility is avoided by using the delayed commit

feature of a speculative processor.

24/04/2010 UNYT-UoG

Outline
• Introduction
• Symmetric Shared-Memory Architectures
• Performance of Symmetric Shared-Memory

Multiprocessors
• Distributed Shared Memory and Directory-Based

Coherence
• Synchronization: The Basics
• Models of Memory Consistency: An Introduction
• Crosscutting Issues
• Putting It All Together: The Sun T1 Multiprocessor
• Fallacies and Pitfalls

24/04/2010 UNYT-UoG

Sun T1
• T1 is a multicore multiprocessor introduced by Sun

in 2005 as a server processor.
• What makes T1 especially interesting is that it is

almost totally focused on exploiting thread-level
parallelism (TLP) rather than instruction-level
parallelism (ILP).

• Indeed, it is the only single-issue desktop or server
microprocessor introduced in more than five years.

• Instead of focusing on ILP, T1 puts all its attention
on TLP, using both multiple cores and
multithreading to produce throughput.

24/04/2010 UNYT-UoG

Sun T1
• Each T1 processor contains eight processor cores, each supporting

four threads.
• Each processor core consists of a simple six-stage, single-issue

pipeline (a standard five-stage RISC pipeline like that of
Appendix A, with one stage added for thread switching).

• T1 uses fine-grained multithreading, switching to a new thread on
each clock cycle, and threads that are idle because they are
waiting due to a pipeline delay or cache miss, are bypassed in the
scheduling.
The processor is idle only when all four threads are idle or
stalled.

• Both loads and branches incur a 3-cycle delay that can only be
hidden by other threads.

• A single set of floating-point functional units is shared by all eight
cores, as floating-point performance was not a focus for T1.

24/04/2010 UNYT-UoG

Sun T1 Architecture

Coherency is enforced
among the L1 caches
by a directory
associated with each
L2 cache block.

24/04/2010 UNYT-UoG

Summary of T1

24/04/2010 UNYT-UoG

T1 Performance
• We look at the performance of T1 using three server-

oriented benchmarks: TPCC, SPECJBB (the SPEC Java
Business Benchmark), and SPECWeb99.

• The SPECWeb99 benchmark is run on a four-core version of
T1 because it cannot scale to use the full 32 threads of an
eight-core processor; the other two benchmarks are run with
eight cores and 4 threads each for a total of 32 threads.

24/04/2010 UNYT-UoG

Miss Rate: Varying cache size and block size

24/04/2010 UNYT-UoG

Miss Latency: Varying cache size and block
size

As we can see, for either a 3 MB or 6 MB cache, the larger block size results in a smaller L2
cache miss time.
How can this be if the miss rate changes much less than a factor of 2?
Reply: Modern DRAMs provide a block of data for only slightly more time than needed to
provide a single word; thus, the miss penalty for the 32-byte block is only slightly less than
the 64-byte block.

24/04/2010 UNYT-UoG

T1 Overall Performance

At first glance, one might react that T1 is not very efficient, since the effective
throughout is between 56% and 71% of the ideal on these three benchmarks.
But, consider the comparative performance of a wide-issue superscalar.
Processors such as the Itanium 2 (higher transistor count, much higher power,
comparable silicon area) would need to achieve incredible instruction throughput
sustaining 4.5–5.7 instructions per clock, well more than double the
acknowledged IPC.
It appears quite clear that, at least for integer-oriented server applications with
thread-level parallelism, a multicore approach is a much better alternative than a
single very wide issue processor.

24/04/2010 UNYT-UoG

Interaction between
multithreading and parallel processing

24/04/2010 UNYT-UoG

Why a thread is not ready?

24/04/2010 UNYT-UoG

Performance of Multicore Processors on
SPEC Benchmarks

• Among recent processors, T1 is uniquely characterized by an
intense focus on thread-level parallelism versus instruction-
level parallelism.

• It uses multithreading to achieve performance from a simple
RISC pipeline, and it uses multiprocessing with eight cores
on a die to achieve high throughput for server applications.

• In contrast, the dual-core Power5, Opteron, and Pentium D
use both multiple issue and multicore.

• Of course, exploiting significant ILP requires much bigger
processors, with the result being that fewer cores fit on a
chip in comparison to T1.

24/04/2010 UNYT-UoG

Four multicore processors

Significant other differences exits => next slide

24/04/2010 UNYT-UoG

Differences: Floating-point support
1. There are significant differences in floating-point

support and performance.
– The Power5 puts a major emphasis on floating-point

performance, the Opteron and Pentium allocate
significant resources, and the T1 almost ignores it.

– As a result, Sun is unlikely to provide any benchmark
results for floating-point applications.

– A comparison that included only integer programs
would be unfair to the three processors that include
significant floating-point hardware

24/04/2010 UNYT-UoG

Other differences
• The multiprocessor expandability of these systems differs and that

affects the memory system design and the use of external interfaces.
Power5 is designed for the most expandability. The Pentium and
Opteron design offer limited multiprocessor support. The T1 is not
expandable to a larger system.

• The implementation technologies vary, making comparisons based on
die size and power more difficult.

• There are significant differences in the assumptions about memory
systems and the memory bandwidth available. For benchmarks with high
cache miss rates, such as TPC-C and similar programs, the processors
with larger memory bandwidth have a significant advantage.

Nonetheless, given the importance of the trade-off between ILP-centric
and TLP-centric designs, it would be useful to try to quantify the
performance differences as well as the efficacy of the approaches.

24/04/2010 UNYT-UoG

Performance comparison

24/04/2010 UNYT-UoG

Performance comparison

• Efficiency measures in terms of performance per unit die area and per watt for the four
dual-core processors, with the results normalized to the measurement on the Pentium D.
• There is significant advantage in terms of performance/watt for the Sun T1 processor
on the TPC-C-like and SPECJBB05 benchmarks.
• These measurements clearly demonstrate that for multithreaded applications, a TLP
approach may be much more power efficient than an ILP-intensive approach.
• This is the strongest evidence to date that the TLP route may provide a way to increase
performance in a power-efficient fashion.

24/04/2010 UNYT-UoG

Conclusions for TLP
• It is too early to conclude whether the TLP-intensive

approaches will win across the board.
• If typical server applications have enough threads to keep T1

busy and the per-thread performance is acceptable, the T1
approach will be tough to beat.

• If single-threaded performance remains important in server
or desktop environments, then we may see the market further
fracture with significantly different processors for
throughput-oriented environments and environments where
higher single-thread performance remains important.

24/04/2010 UNYT-UoG

Outline
• Introduction
• Symmetric Shared-Memory Architectures
• Performance of Symmetric Shared-Memory

Multiprocessors
• Distributed Shared Memory and Directory-Based

Coherence
• Synchronization: The Basics
• Models of Memory Consistency: An Introduction
• Crosscutting Issues
• Putting It All Together: The Sun T1 Multiprocessor
• Fallacies and Pitfalls

24/04/2010 UNYT-UoG

Pitfall: Measuring performance of multiprocessors by linear
speedup versus execution time.

• Although speedup is one facet of a parallel program, it is not a direct
measure of performance.
– A program that linearly improves performance to equal 100 Intel 486s may

be slower than the sequential version on a Pentium 4.
• Comparing execution times is fair only if you are comparing the best

algorithms on each computer.
– Comparing the identical code on two computers may seem fair, but it is not;

the parallel program may be slower on a uniprocessor than a sequential
version.

• Developing a parallel program will sometimes lead to algorithmic
improvements, so that comparing the previously best-known sequential
program with the parallel code—which seems fair — will not compare
equivalent algorithms.

• To reflect this issue, the terms relative speedup (same program) and true
speedup (best program) are sometimes used.

24/04/2010 UNYT-UoG

Fallacy: Amdahl’s Law doesn’t apply to parallel
computers.

• In 1987, the head of a research organization claimed that
Amdahl’s Law had been broken by an MIMD
multiprocessor.

• This statement hardly meant, however, that the law has been
overturned for parallel computers;
– the neglected (not parallelizable) portion of the program

will still limit performance.

24/04/2010 UNYT-UoG

Fallacy: Linear speedups are needed to make
multiprocessors cost-effective.

• It is widely recognized that one of the major benefits of
parallel computing is to offer a “shorter time to solution”
than the fastest uniprocessor.

• Many people, however, also hold the view that parallel
processors cannot be as cost-effective as uniprocessors
unless they can achieve perfect linear speedup.

• This argument says that because the cost of the
multiprocessor is a linear function of the number of
processors, anything less than linear speedup means that the
ratio of performance/cost decreases, making a parallel
processor less cost-effective than using a uniprocessor.

24/04/2010 UNYT-UoG

Linear Speedup

For SPECintRate and SPECfpRate, speedup is less than linear, but so is
the cost, since unlike TPC-C the amount of main memory and disk
required both scale less than linearly.

24/04/2010 UNYT-UoG

Linear Speedup
• As Figure 4.36 shows, larger
processor counts can actually
be more cost-effective than the
four-processor configuration.
• In the future, as the cost of
multiple processors decreases
compared to the cost of the
support infrastructure
(cabinets, power supplies,
fans, etc.), the
performance/cost ratio of
larger processor configurations
will improve further.

24/04/2010 UNYT-UoG

Conclusions about speedup
• In comparing the cost-performance of two computers, we

must be sure to include accurate assessments of both total
system cost and what performance is achievable.

• For many applications with larger memory demands, such a
comparison can dramatically increase the attractiveness of
using a multiprocessor.

24/04/2010 UNYT-UoG

Fallacy: Scalability is almost free
• The goal of scalable parallel computing was a focus of much of the

research and a significant segment of the high-end multiprocessor
development from the mid- 1980s through the late 1990s.

• In the first half of that period, it was widely held that you could build
scalability into a multiprocessor and then simply offer the multiprocessor
at any point on the scale from a small to large number of processors
without sacrificing cost-effectiveness.

• The difficulty with this view is that multiprocessors that scale to larger
processor counts require substantially more investment (in both dollars
and design time) in:
– the interprocessor communication network
– operating system support
– reliability
– reconfigurability.

24/04/2010 UNYT-UoG

Pitfall: Not developing the software to take advantage of, or
optimize for, a multiprocessor architecture.

• This pitfall indicates the kind of subtle but significant
performance bugs that can arise when software runs on
multiprocessors.

• Like many other key software components, the OS
algorithms and data structures must be rethought in a
multiprocessor context.

• Similar problems exist in memory structures, which
increases the coherence traffic in cases where no sharing is
actually occurring.

24/04/2010 UNYT-UoG

End of Lecture 5
• Readings

– Book: Chapter 4

