
Advanced Topics in p
Computer Architecture

L 7Lecture 7
Data Level Parallelism: Vector Processors

Marenglen Biba
Department of Computer Sciencep p
University of New York Tirana

24/04/2010 UNYT-UoG

Cray
I’m certainly not inventing vector processors. There are three kinds
that I know of existing today. They are represented by the Illiac-IV, the
(CDC) Star processor and the TI (ASC) processor Those three ere all(CDC) Star processor, and the TI (ASC) processor. Those three were all
pioneering processors. . . . One of the problems of being a pioneer is
you always make mistakes and I never, never want to be a pioneer. It’s
l b d h l k h i k halways best to come second when you can look at the mistakes the

pioneers made.
Seymour Cray

Public lecture at Lawrence Livermore Laboratories
on the introduction of the Cray-1 (1976)

24/04/2010 UNYT-UoG

Outline
• Why Vector Processors?
• Basic Vector Architecture• Basic Vector Architecture
• Two Real-World Issues: Vector Length and Stride

E h i V t P f• Enhancing Vector Performance
• Effectiveness of Compiler Vectorization
• Putting It All Together: Performance of Vector

Processors F-34
• A Modern Vector Supercomputer: The Cray X1 F-

40

24/04/2010 UNYT-UoG

SIMD: Single instruction stream,
multiple data streams

• The same instruction is executed by multiple processors using different
data streams.

• SIMD computers exploit data-level parallelism by applying the same
operations to multiple items of data in parallel.

• Each processor has its own data memory (hence multiple data) but thereEach processor has its own data memory (hence multiple data), but there
is a single instruction memory and control processor, which fetches and
dispatches instructions.

li i h di l i ifi d l l ll li h S• For applications that display significant data-level parallelism, the SIMD
approach can be very efficient.

• Vector architectures, are the largest class of SIMD architectures. , g
• SIMD approaches have experienced a rebirth in the last few years with

the growing importance of graphics performance, especially for the game
marketmarket.

• SIMD approaches are the favored method for achieving the high
performance needed to create realistic threedimensional, real-time virtual

24/04/2010 UNYT-UoG

environments.

Why Vector Processors?
• We have seen how we could significantly increase the

performance of a processor by issuing multiple instructions p p y g p
per clock cycle and by more deeply pipelining the execution
units to allow greater exploitation of instruction-level
parallelism.

• Unfortunately, we also saw that there are serious difficulties
i l iti l d f ILPin exploiting ever larger degrees of ILP.

• The rapid increase in circuit complexity makes it difficult to
build machines that can control large numbers of in flightbuild machines that can control large numbers of in-flight
instructions, and hence limits practical issue widths and
pipeline depths.p p p

24/04/2010 UNYT-UoG

Vector processors
• Vector processors were successfully commercialized long

before instruction-level parallel machines and take anbefore instruction level parallel machines and take an
alternative approach to controlling multiple functional
units with deep pipelines.

• Vector processors provide high-level operations that work
on vectors — linear arrays of numbers.

• A typical vector operation might add two 64-element,
floating-point vectors to obtain a single 64-element vector
result.

• The vector instruction is equivalent to an entire loop, with
each iteration computing one of the 64 elements of the
result, updating the indices, and branching back to the
beginning

24/04/2010 UNYT-UoG

beginning.

Vector instructions
• Vector instructions have several important

properties that solve many problems:properties that solve many problems:
• A single vector instruction specifies a great deal of

k it i i l t t ti ti lwork — it is equivalent to executing an entire loop.
– Each instruction represents tens or hundreds of

operations, and so the instruction fetch and
decode bandwidth needed to keep multiple
deeply pipelined functional units busy is
dramatically reduced.

24/04/2010 UNYT-UoG

Vector instructions
• By using a vector instruction, the compiler or programmer

indicates that the computation of each result in the vector is p
independent of the computation of other results in the same
vector and so hardware does not have to check for data
hazards within a vector instruction.
– The elements in the vector can be computed using an

f ll l f ti l it i l d larray of parallel functional units, or a single very deeply
pipelined functional unit, or any intermediate
configuration of parallel and pipelined functional unitsconfiguration of parallel and pipelined functional units.

24/04/2010 UNYT-UoG

Vector instructions
• Hardware need only check for data hazards between

two vector instructions once per vector operand, nottwo vector instructions once per vector operand, not
once for every element within the vectors.

• That means the dependency checking logic requiredThat means the dependency checking logic required
between two vector instructions is approximately
the same as that required between two scalar
instructions, but now many more elemental
operations can be in flight for the same complexity

f t l l iof control logic.

24/04/2010 UNYT-UoG

Vector instructions
• Vector instructions that access memory have a known access

pattern. p
– If the vector’s elements are all adjacent, then fetching the

vector from a set of heavily interleaved memory banks
works very well.

• Because an entire loop is replaced by a vector instruction
whose behavior is predetermined, control hazards that would
normally arise from the loop branch are nonexistent.

24/04/2010 UNYT-UoG

Vector Processors
• For the previously stated reasons, vector operations can be

made faster than a sequence of scalar operations on the same q p
number of data items, and designers are motivated to include
vector units if the application domain can use them
frequently.

• Vector processors are particularly useful for large scientific
d i i li ti i l di h i l tiand engineering applications, including car crash simulations

and weather forecasting, for which a typical job might take
dozens of hours of supercomputer time running over multi-dozens of hours of supercomputer time running over multi
gigabyte data sets.

24/04/2010 UNYT-UoG

Success of Vector Processors
• In 2001, exotic vector supercomputers appeared to be slowly

fading from the supercomputing arena, to be replaced by g p p g , p y
systems built from large numbers of superscalar
microprocessors.

• But in 2002, Japan unveiled the world’s fastest
supercomputer, the Earth Simulator, designed to create a
“ i t l l t” t l d di t th ff t f“virtual planet” to analyze and predict the effect of
environmental changes on the world’s climate.

• The Earth Simulator was five times faster than the previous• The Earth Simulator was five times faster than the previous
leader, and faster than the next 12 fastest machines
combined.

• The Earth Simulator has fewer processors than competing
microprocessor-based machines, but each node is a single-

24/04/2010 UNYT-UoG

p g
chip vector microprocessor with much greater efficiency

Outline
• Why Vector Processors?
• Basic Vector Architecture• Basic Vector Architecture
• Two Real-World Issues: Vector Length and Stride

E h i V t P f• Enhancing Vector Performance
• Effectiveness of Compiler Vectorization
• Putting It All Together: Performance of Vector

Processors F-34
• A Modern Vector Supercomputer: The Cray X1 F-

40

24/04/2010 UNYT-UoG

Types of vector architectures
• There are two primary types of architectures for vector

processors: vector-register processors and memory-memory p g p y y
vector processors.

• In a vector-register processor, all vector operations—except
load and store—are among the vector registers.

• These architectures are the vector counterpart of a load-store
architecture.

• All major vector computers shipped since the late 1980s use
i hi i l di h C R ha vector-register architecture, including the Cray Research

processors (Cray-1, Cray-2, X-MP, YMP, C90, T90, SV1,
and X1) the Japanese supercomputers (NEC SX/2 throughand X1), the Japanese supercomputers (NEC SX/2 through

• SX/8, Fujitsu VP200 through VPP5000, and the Hitachi
S820 and S-8300), and the minisupercomputers (Convex C-1

24/04/2010 UNYT-UoG

S820 and S 8300), and the minisupercomputers (Convex C 1
through C-4).

Types of vector architectures
• In a memory-memory vector processor, all vector

operations are memory to memory The first vectoroperations are memory to memory. The first vector
computers were of this type, as were CDC’s vector
computerscomputers.

• Here we will focus on vector-register architectures
lonly.

24/04/2010 UNYT-UoG

Components of the architecture
• Vector registers — Each vector register is a fixed-length

bank holding a single vector. VMIPS has eight vector g g g
registers, and each vector register holds 64 elements.

• Vector functional units — Each unit is fully pipelined and
can start a new operation on every clock cycle.

• Vector load-store unit — This is a vector memory unit that
loads or stores a vector to or from memory. The VMIPS
vector loads and stores are fully pipelined,
A f l i S l i l id• A set of scalar registers — Scalar registers can also provide
data as input to the vector functional units, as well as
compute addresses to pass to the vector load-store unitcompute addresses to pass to the vector load-store unit.
– These are the normal 32 general-purpose registers and 32

floating-point registers of MIPS.

24/04/2010 UNYT-UoG

floating point registers of MIPS.

VMIPS

24/04/2010 UNYT-UoG

24/04/2010 UNYT-UoG

VMIPS Vector Instructions

24/04/2010 UNYT-UoG

Outline
• Why Vector Processors?
• Basic Vector Architecture• Basic Vector Architecture
• Two Real-World Issues: Vector Length and Stride

E h i V t P f• Enhancing Vector Performance
• Effectiveness of Compiler Vectorization
• Putting It All Together: Performance of Vector

Processors F-34
• A Modern Vector Supercomputer: The Cray X1 F-

40

24/04/2010 UNYT-UoG

Vector-Length Control
• A vector-register processor has a natural vector length

determined by the number of elements in each vector register. y g
• This length, which is 64 for VMIPS, is unlikely to match the

real vector length in a program.
• Moreover, in a real program the length of a particular vector

operation is often unknown at compile time. In fact, a single
piece of code ma req ire different ector lengthspiece of code may require different vector lengths.

• The solution to these problems is to create a vector-length
register (VLR) The VLR controls the length of any vectorregister (VLR). The VLR controls the length of any vector
operation, including a vector load or store.

• The value in the VLR, however, cannot be greater than the , , g
length of the vector registers. This solves our problem as long
as the real length is less than or equal to the maximum vector
l th (MVL) d fi d b th

24/04/2010 UNYT-UoG

length (MVL) defined by the processor.

Strip Mining
• What if the value of n is not known at compile time, and

thus may be greater than MVL?thus may be greater than MVL?
• To tackle this problem where the vector is longer than

the maximum length a technique called strip mining isthe maximum length, a technique called strip mining is
used.

• Strip mining is the generation of code such that eachStrip mining is the generation of code such that each
vector operation is done for a size less than or equal to
the MVL.the MVL.

• We could strip-mine the loop in the same manner that
we unrolled loops: create one loop that handles anywe unrolled loops: create one loop that handles any
number of iterations that is a multiple of MVL and
another loop that handles any remaining iterations,

24/04/2010 UNYT-UoG

p y g ,
which must be less than MVL.

Vector Stride
• The second problem this section addresses is that the position

in memory of adjacent elements in a vector may not be y j y
sequential.

• This distance separating elements that are to be gathered into a
single register is called the stride.

• Once a vector is loaded into a vector register it acts as if it had
logicall adjacent elementslogically adjacent elements.
– Thus a vector-register processor can handle strides greater

than one called nonunit strides using only vector-load andthan one, called nonunit strides, using only vector load and
vector-store operations with stride capability.

– This ability to access nonsequential memory locations and y q y
to reshape them into a dense structure is one of the major
advantages of a vector processor over a cache-based

24/04/2010 UNYT-UoG

processor.

Outline
• Why Vector Processors?
• Basic Vector Architecture• Basic Vector Architecture
• Two Real-World Issues: Vector Length and Stride

E h i V t P f• Enhancing Vector Performance
• Effectiveness of Compiler Vectorization
• Putting It All Together: Performance of Vector

Processors F-34
• A Modern Vector Supercomputer: The Cray X1 F-

40

24/04/2010 UNYT-UoG

Chaining: the Concept of Forwarding Extended to
Vector Registersg

• Consider the simple vector sequence
MULV.D V1,V2,V3, ,
ADDV.D V4,V1,V5

• In VMIPS, as it currently stands, these two instructions must be put
into two separate convoys, since the instructions are dependent.

• On the other hand, if the vector register, V1 in this case, is treated not
as a single entity but as a group of individual registers then the ideasas a single entity but as a group of individual registers, then the ideas
of forwarding can be conceptually extended to work on individual
elements of a vector.

• This insight, which will allow the ADDV.D to start earlier in this
example, is called chaining.

• Chaining allows a vector operation to start as soon as the individual• Chaining allows a vector operation to start as soon as the individual
elements of its vector source operand become available: The results
from the first functional unit in the chain are “forwarded” to the

d f i l i

24/04/2010 UNYT-UoG

second functional unit.

Outline
• Why Vector Processors?
• Basic Vector Architecture• Basic Vector Architecture
• Two Real-World Issues: Vector Length and Stride

E h i V t P f• Enhancing Vector Performance
• Effectiveness of Compiler Vectorization
• Putting It All Together: Performance of Vector

Processors F-34
• A Modern Vector Supercomputer: The Cray X1 F-

40

24/04/2010 UNYT-UoG

Effectiveness of Compiler Vectorization
• Two factors affect the success with which a program can be

run in vector mode.
• The first factor is the structure of the program itself:

– Do the loops have true data dependences, or can they beDo the loops have true data dependences, or can they be
restructured so as not to have such dependences?

– This factor is influenced by the algorithms chosen and, to y g ,
some extent, by how they are coded.

• The second factor is the capability of the compiler. While no
compiler can vectorize a loop where no parallelism among
the loop iterations exists, there is tremendous variation in the
abilit of compilers to determine hether a loop can beability of compilers to determine whether a loop can be
vectorized.

24/04/2010 UNYT-UoG

Level of Vectorization

24/04/2010 UNYT-UoG

Applying Vectorizing Compilers

24/04/2010 UNYT-UoG

Outline
• Why Vector Processors?
• Basic Vector Architecture• Basic Vector Architecture
• Two Real-World Issues: Vector Length and Stride

E h i V t P f• Enhancing Vector Performance
• Effectiveness of Compiler Vectorization
• Putting It All Together: Performance of Vector

Processors
• A Modern Vector Supercomputer: The Cray X1 F-

40

24/04/2010 UNYT-UoG

Performance of Vector Processors
• The simplest and best way to report the performance of a

vector processor on a loop is to give the execution time of p p g
the vector loop.

• For vector loops people often give the MFLOPS (millions of
floating-point operations per second) rating rather than
execution time.

• We use the notation Rn for the MFLOPS rating on a vector
of length n.
U i h T (i) R () i i l• Using the measurements Tn (time) or Rn (rate) is equivalent
if the number of FLOPS is agreed upon.

24/04/2010 UNYT-UoG

Length Related Measures
Three of the most important length-related measures are
• R —The MFLOPS rate on an infinite-length vectorR∞ The MFLOPS rate on an infinite length vector.

Although this measure may be of interest when estimating
peak performance, real problems do not have unlimited
vector lengths, and the overhead penalties encountered in
real problems will be larger.

• N1/2 — The vector length needed to reach one-half of R∞.
This is a good measure of the impact of overhead.
N Th l h d d k d f• Nv — The vector length needed to make vector mode faster
than scalar mode. This measures both overhead and the
speed of scalars relative to vectorsspeed of scalars relative to vectors.

24/04/2010 UNYT-UoG

Example
• What is N1/2 for just the inner loop of DAXPY for VMIPS

with a 500 MHz clock?

• Using R∞ as the peak rate, we want to know the vectorUsing R∞ as the peak rate, we want to know the vector
length that will achieve about 125 MFLOPS.

• We start with the formula for MFLOPS assuming that the g
measurement is made for N1/2 elements:

24/04/2010 UNYT-UoG

Example
• Simplifying this and then assuming N1/2 < 64, so that TN1/2 <

64 = 64 + 3 × n, yields:, y

• So N1/2 = 13; that is, a vector of length 13 gives
approximately one half the peak performance forapproximately one-half the peak performance for
the DAXPY loop on VMIPS.

24/04/2010 UNYT-UoG

Outline
• Why Vector Processors?
• Basic Vector Architecture• Basic Vector Architecture
• Two Real-World Issues: Vector Length and Stride

E h i V t P f• Enhancing Vector Performance
• Effectiveness of Compiler Vectorization
• Putting It All Together: Performance of Vector

Processors
• A Modern Vector Supercomputer: The Cray X1

24/04/2010 UNYT-UoG

Cray X1
• The Cray X1 was introduced in 2002, and, together with the

NEC SX/8, represents the state of the art in modern vector , p
supercomputers.

• The X1 system architecture supports thousands of powerful
vector processors sharing a single global memory.

• The Cray X1 has an unusual processor architecture,
– A large Multi-Streaming Processor (MSP) is formed by

ganging together four Single-Streaming Processors
(SSP)(SSPs).

– Each SSP is a complete single-chip vector
microprocessor containing a scalar nit scalar cachesmicroprocessor, containing a scalar unit, scalar caches,
and a two-lane vector unit.

24/04/2010 UNYT-UoG

Cray X1

Each lane can perform a 64-bit floating-point add and
a 64-bit floating-point multiply each cycle, leading to a peak
performance of 12 8 GFLOPS per MSP

24/04/2010 UNYT-UoG

performance of 12.8 GFLOPS per MSP.

Multi-Streaming Processors
• The Multi-Streaming concept was first introduced by Cray in

the SV1, but has been considerably enhanced in the X1. , y
• The four SSPs within an MSP share Ecache, and there is

hardware support for barrier synchronization across the four
SSPs within an MSP.

• Each X1 SSP has a two-lane vector unit with 32 vector
registers each holding 64 elements. The compiler has several
choices as to how to use the SSPs within an MSP.

24/04/2010 UNYT-UoG

Cray X1E
• In 2004, Cray announced an upgrade to the original Cray

X1 design.X1 design.
• The X1E uses newer fabrication technology that allows

two SSPs to be placed on a single chip, making the X1E p g p, g
the first multicore vector microprocessor.

• Each physical node now contains eight MSPs, but these p y g ,
are organized as two logical nodes of four MSPs each to
retain the same programming model as the X1.

• In addition, the clock rates were raised from 400 MHz
scalar and 800 MHz vector to 565 MHz scalar and 1130
MHz vector, giving an improved peak performance of 18
GFLOPS.

24/04/2010 UNYT-UoG

End of Lecture
• Readings

k A di– Book: Appendix F.

24/04/2010 UNYT-UoG

