Advanced Topics 1n
Computer Architecture

Lecture 7
Data Level Parallelism: Vector Processors

Marenglen Biba

Department of Computer Science
University of New York Tirana

24/04/2010 UNYT-UoG

Cray

I’m certainly not inventing vector processors. There are three kinds
that I know of existing today. They are represented by the Illiac-I1V, the
(CDC) Star processor, and the TI (ASC) processor. Those three were all
pioneering processors. . . . One of the problems of being a pioneer 1s
you always make mistakes and I never, never want to be a pioneer. It’s
always best to come second when you can look at the mistakes the
pioneers made.
Seymour Cray
Public lecture at Lawrence Livermore Laboratories
on the introduction of the Cray-1 (1976)

24/04/2010 UNYT-UoG

Outline

 Why Vector Processors?

* Basic Vector Architecture

 Two Real-World Issues: Vector Length and Stride
* Enhancing Vector Performance

» Effectiveness of Compiler Vectorization

» Putting It All Together: Performance of Vector
Processors F-34

* A Modern Vector Supercomputer: The Cray X1 F-
40

24/04/2010 UNYT-UoG

SIMD: Single instruction stream,
multiple data streams

e The same instruction is executed by multiple processors using different
data streams.

« SIMD computers exploit data-level parallelism by applying the same
operations to multiple items of data in parallel.

« Each processor has its own data memory (hence multiple data), but there
is a single instruction memory and control processor, which fetches and
dispatches instructions.

« For applications that display significant data-level parallelism, the SIMD
approach can be very efficient.

« Vector architectures, are the largest class of SIMD architectures.

« SIMD approaches have experienced a rebirth in the last few years with
the growing importance of graphics performance, especially for the game
market.

« SIMD approaches are the favored method for achieving the high
performance needed to create realistic threedimensional, real-time virtual
environments.

24/04/2010 UNYT-UoG

Why Vector Processors?

* We have seen how we could significantly increase the
performance of a processor by issuing multiple instructions
per clock cycle and by more deeply pipelining the execution
units to allow greater exploitation of instruction-level
parallelism.

« Unfortunately, we also saw that there are serious difficulties
in exploiting ever larger degrees of ILP.

* The rapid increase 1n circuit complexity makes it difficult to
build machines that can control large numbers of in-flight
instructions, and hence limits practical 1ssue widths and
pipeline depths.

24/04/2010 UNYT-UoG

Vector processors

* Vector processors were successfully commercialized long
before instruction-level parallel machines and take an
alternative approach to controlling multiple functional
units with deep pipelines.

* Vector processors provide high-level operations that work
on vectors — linear arrays of numbers.

* A typical vector operation might add two 64-clement,
floating-point vectors to obtain a single 64-element vector
result.

« The vector 1nstruction 1s equivalent to an entire loop, with
each iteration computing one of the 64 elements of the
result, updating the indices, and branching back to the
beginning.

24/04/2010 UNYT-UoG

Vector instructions

* Vector instructions have several important
properties that solve many problems:

* A single vector instruction specifies a great deal of
work — 1t 1s equivalent to executing an entire loop.

— Each instruction represents tens or hundreds of

operations, and so the instruction fetch and
decode bandwidth needed to keep multiple
deeply pipelined functional units busy is
dramatically reduced.

24/04/2010 UNYT-UoG

Vector instructions

* By using a vector instruction, the compiler or programmer
indicates that the computation of each result in the vector 1s
independent of the computation of other results in the same
vector and so hardware does not have to check for data
hazards within a vector instruction.

— The elements 1n the vector can be computed using an
array of parallel functional units, or a single very deeply
pipelined functional unit, or any intermediate
configuration of parallel and pipelined functional units.

24/04/2010 UNYT-UoG

Vector instructions

« Hardware need only check for data hazards between
two vector 1nstructions once per vector operand, not
once for every element within the vectors.

* That means the dependency checking logic required
between two vector instructions 1s approximately
the same as that required between two scalar
instructions, but now many more elemental
operations can be in flight for the same complexity
of control logic.

24/04/2010 UNYT-UoG

Vector instructions

* Vector instructions that access memory have a known access
pattern.

— If the vector’s elements are all adjacent, then fetching the
vector from a set of heavily interleaved memory banks
works very well.

* Because an entire loop 1s replaced by a vector instruction
whose behavior 1s predetermined, control hazards that would
normally arise from the loop branch are nonexistent.

24/04/2010 UNYT-UoG

Vector Processors

* For the previously stated reasons, vector operations can be
made faster than a sequence of scalar operations on the same
number of data items, and designers are motivated to include
vector units 1f the application domain can use them
frequently.

* Vector processors are particularly useful for large scientific
and engineering applications, including car crash simulations
and weather forecasting, for which a typical job might take
dozens of hours of supercomputer time running over multi-
gigabyte data sets.

24/04/2010 UNYT-UoG

Success of Vector Processors

* In 2001, exotic vector supercomputers appeared to be slowly
fading from the supercomputing arena, to be replaced by
systems built from large numbers of superscalar
mICrOprocessors.

* Butin 2002, Japan unveiled the world’s fastest
supercomputer, the Earth Simulator, designed to create a
“virtual planet” to analyze and predict the effect of
environmental changes on the world’s climate.

* The Earth Simulator was five times faster than the previous
leader, and faster than the next 12 fastest machines
combined.

* The Earth Simulator has fewer processors than competing
microprocessor-based machines, but each node 1s a single-
chip vector microprocessor with much greater efficiency

24/04/2010 UNYT-UoG

Outline

 Why Vector Processors?

* Basic Vector Architecture

 Two Real-World Issues: Vector Length and Stride
* Enhancing Vector Performance

» Effectiveness of Compiler Vectorization

» Putting It All Together: Performance of Vector
Processors F-34

* A Modern Vector Supercomputer: The Cray X1 F-
40

24/04/2010 UNYT-UoG

Types of vector architectures

* There are two primary types of architectures for vector
processors: Vector-register processors and memory-memory
VeCctor processors.

* In a vector-register processor, all vector operations—except
load and store—are among the vector registers.

* These architectures are the vector counterpart of a load-store
architecture.

* All major vector computers shipped since the late 1980s use
a vector-register architecture, including the Cray Research
processors (Cray-1, Cray-2, X-MP, YMP, C90, T90, SV1,
and X1), the Japanese supercomputers (NEC SX/2 through

« SX/8, Fujitsu VP200 through VPP5000, and the Hitachi
S820 and S-8300), and the minisupercomputers (Convex C-1
through C-4).

24/04/2010 UNYT-UoG

Types of vector architectures

* In a memory-memory vector processor, all vector
operations are memory to memory. The first vector
computers were of this type, as were CDC’s vector
computers.

* Here we will focus on vector-register architectures
only.

24/04/2010 UNYT-UoG

Components of the architecture

 Vector registers — Each vector register 1s a fixed-length
bank holding a single vector. VMIPS has eight vector
registers, and each vector register holds 64 elements.

 Vector functional units — Each unit is fully pipelined and
can start a new operation on every clock cycle.

 Vector load-store unit — This is a vector memory unit that
loads or stores a vector to or from memory. The VMIPS
vector loads and stores are fully pipelined,

A set of scalar registers — Scalar registers can also provide
data as input to the vector functional units, as well as
compute addresses to pass to the vector load-store unit.

— These are the normal 32 general-purpose registers and 32
floating-point registers of MIPS.

24/04/2010 UNYT-UoG

24/04/2010

Maln memory

Vector T | FP add/subiract
load-sione -

VieCior T — I
Intagar
reglsiers =
=

Scalar
reqglsiars

Figure F.1 The basic structure of a vector-register architecture, VMIPS5. This proces-
sor has a scalar architecture just like MIPS.There are also eight 64-element vector regis-
ters, and all the functional units are vector functional units. Special vector instructions
are defined both for arithmetic and for memory accesses. We show vector units for log-
ical and integer operations. These are included so that VMIPS looks like a standard vec-

tor processor, which usually includes these units. However, we will not be discussing
Lthese unils excepl in the exercises, The vector and scalar registers have g significant

number of read and write ports to allow multiple simultaneous vector operations.
These ports are connected to the inputs and outputs of the vector functional units by a
set of crossbars (shown in thick gray lines). In Section F4 we add chaining, which will
require additional interconnect capability.

24

Vector Elements per
clock register Vector
rate Vector (64-bit load-store
Processor (year)] (MHz) registers elements) Vector arithmetic units units Lanes
Cray-1 (1976) B0 B 64 6: FP add, FP multiply, FP reciprocal, l 1
integer add, logical, shift
Cray X-MP (1983) 118 &: FP add, FP multiply, FP reciprocal, 2 loads 1
B integer add, 2 logical, shift. population | store
Cray Y-MP (1988) 166 count/parity
Cray-2 (1983) 2 B 64 5: FP add. FP multiply, FP reciprocal/sgrt, 1 1
integer add/shift/population count, logical
Fujitsu VP 100/ 133 B-256 32-1024 3: FP or integer add/logical, multiply, divide 2 | (VP1OD)
VP20 (1982) 2 (VP200)
Hitachi 58 10/S820 71 32 256 4: FP multiply-add, FP multiply/divide-add 3 loads I (SE10}
(1983) unit, 2 integer add/logical | store 2 (SB20)
Convex C-1 (1985) 10 B 128 2: FP or integer multiply/divide, add/logical 1 | (64 bit)
2 (32 bit)
NEC 5X/2 (1983) 167 B+ 32 256 4: FP multiply/divide, FP add, integer add/ l 4
logical, shift
Cray C90 (1991) 240 &: FP add, FP multiply, FP reciprocal, 2 loads 2
B 128 integer add, 2 logical, shift. population | store
Cray T90 (1995) 460 count/parity
NEC 5X/5 (199%8) 312 B+ 64 512 4: FP or integer add/shift, multiply, divide, | 16
logical
Fujitsu VPP3000 300 B-256 1284096 3: FP or integer multiply, addlogical, divide | load 16
{1999 | store
Cray 5¥1 (1998) 300 &: FP add. FP multiply, FP reciprocal, | load-store 2
B 64 integer add, 2 logical, shift, population | load B (MSP)
SVlex (2001) 500 (MSP) countfparity
VMIPS (2001} 500 B 64 5. FP multiply, FP divide, FP add, integer | load-store I
add/shift. logical
NEC SX/6 (2001) S04 B+6d 256 4: FP or integer add/shift, multiply, divide. l B
logical
NWEC SX78 (2004) Z0MHr &+ 236 4. FP o inlegen addfshill, wuliply, divide, I 4
logical
Cray X1 (2002) 200 64 3: FP or integer, add/logical, multiply/shift. | load 2
32 256 (MSP) divide/square rootflogical | store B (MSP)
Cray XIE (2005) 1130

24/04/20]

VMIPS Vector Instructions

Instruction Operands Function

ADDW.D V1,v2,v3 Add elements of V2 and V3, then put each result in V1.

ADDVWS.D V1,V2,.F0 Add FO to each element of V2, then put each result in V1.

aUBY.D ¥1,¥2,¥3 Subtract elements of V3 from V2, then put each resultin V1.

SUBWS.D V1,V2,F0 Subtract FO from elements of V2, then put each result in W1.

SUBSV.D V1,F0O,V2 Subtract elements of V2 from F0, then put each result in V1.

MULW.D V1,v2,V3 Multiply elements of V2 and V3, then put each result in V1.

MULWS.D ¥1,V2,F0 Multiply each element of V2 by F0, then put each result in V1.

DIVV.D V1, vz, V3 Divide elements of V2 by V3, then put each result in V1.

DIVWS.D V1,v2,Fo Divide elements of V2 by FO, then put each result in V1.

DIVSV.D ¥V1,FO,V2 Divide FO by elements of V2, them put each result im V1.

LV V1,R1 Load vector register V1 from memory starting at address A1.

SV R1,V1 Store vector register V1 into memory starting at address R1.

LWVWS V1,(R1,R2) Load V1 from address at R1 with stride in RZ. i.e.. R1+1 = RZ.

SVHS (R1,R2}),V1 Store V1 from address at Rl with stride in B2, i.e., R1+1 = R2.

LVI V1,(R1+V2) Load V1 with vector whose elements are at R1+V2(1), i.e., V2 is an index.

SWI (R1+¥2),V1 Store V1 to vector whose elements are at R1+W2(i). i.e.. V2 is an index.

CvI V1,R1 Create an index vector by storing the values 0, 1= R1, 2= R1,...,63 xRl into V1.

5==Y.0 ¥1,v2 Compare the elements (EQ, NE. GT, LT, GE, LE) in ¥1 and V2. If condition is true, put

5--¥5.D V1,FD a | in the corresponding bit vector; otherwise put 0. Put resulting bit vector in vector-
mask register (VM). The instruction 5--V35.0 performs the same compare but using a
scalar value as one operand.

POP R1,VM Count the 1z in the vector-mask register and store count in RL.

CVM Set the vector-mask register to all 1s.

MTCL VLR,R1 Move contents of R1 to the vector-length register.

MFCL R1,VLR Move the contents of the vector-length register to R1.

MVTM WM, FO Mowve contents of FO to the vector-mask register.

MVFM FO,VM Move contents of vector-mask register to F0.

Figure F.3 The VMIPS vector Instructions. Only the double-precision FP operations are shown. In addition to the
vector registers, there are two special registers, VLR (discussed in Section F.3) and VM (discussed in Section F4). These
special registers are assumed to live in the MIPS coprocessor 1 space along with the FPU registers. The operations
with stride are explained in Section F.3, and the uses of the index creation and indexed load-store operations are
explained in Section F4.

Outline

 Why Vector Processors?

* Basic Vector Architecture

 Two Real-World Issues: Vector Length and Stride
* Enhancing Vector Performance

» Effectiveness of Compiler Vectorization

» Putting It All Together: Performance of Vector
Processors F-34

* A Modern Vector Supercomputer: The Cray X1 F-
40

24/04/2010 UNYT-UoG

Vector-Length Control

* A vector-register processor has a natural vector length
determined by the number of elements 1n each vector register.

e This length, which is 64 for VMIPS, is unlikely to match the
real vector length 1n a program.

* Moreover, 1n a real program the length of a particular vector
operation 1s often unknown at compile time. In fact, a single
piece of code may require different vector lengths.

» The solution to these problems is to create a vector-length
register (VLR). The VLR controls the length of any vector

operation, including a vector load or store.

* The value 1in the VLR, however, cannot be greater than the
length of the vector registers. This solves our problem as long
as the real length is less than or equal to the maximum vector
length (MVL) defined by the processor.

24/04/2010 UNYT-UoG

Strip Mining

* What if the value of n 1s not known at compile time, and
thus may be greater than MVL?

* To tackle this problem where the vector 1s longer than
the maximum length, a technique called strip mining is
used.

 Strip mining 1s the generation of code such that each

vector operation 1s done for a size less than or equal to
the MVL.

* We could strip-mine the loop in the same manner that
we unrolled loops: create one loop that handles any
number of iterations that is a multiple of MVL and

another loop that handles any remaining iterations,
which must be less than MVL.

24/04/2010 UNYT-UoG

Vector Stride

* The second problem this section addresses is that the position
in memory of adjacent elements in a vector may not be
sequential.

« This distance separating elements that are to be gathered into a
single register is called the stride.

* Once a vector 1s loaded into a vector register it acts as if 1t had
logically adjacent elements.

— Thus a vector-register processor can handle strides greater

than one aned nontinit stridec nicino onlv vector-lonad and
A1l 1 INJIITUAILIITIU WA lu\J\J’ MULLL& U.l..l.lJ V W/ UU L ANJCANGE Q1A

VilGllil Vi1l)

vector-store operations with stride capability.

— This ability to access nonsequential memory locations and
to reshape them into a dense structure 1s one of the major
advantages of a vector processor over a cache-based
pProcessor.

24/04/2010 UNYT-UoG

Outline

 Why Vector Processors?

* Basic Vector Architecture

 Two Real-World Issues: Vector Length and Stride
* Enhancing Vector Performance

» Effectiveness of Compiler Vectorization

» Putting It All Together: Performance of Vector
Processors F-34

* A Modern Vector Supercomputer: The Cray X1 F-
40

24/04/2010 UNYT-UoG

Chaining: the Concept of Forwarding Extended to
Vector Registers

Consider the simple vector sequence
MULV.D V1,V2,V3
ADDV.D V4,V1,V5

« In VMIPS, as it currently stands, these two instructions must be put
into two separate convoys, since the instructions are dependent.

* On the other hand, if the vector register, V1 in this case, is treated not
as a single entity but as a group of individual registers, then the ideas
of forwarding can be conceptually extended to work on individual
clements of a vector.

* This insight, which will allow the ADDV.D to start earlier in this
example, is called chaining.

e Chaining allows a vector operation to start as soon as the individual
elements of its vector source operand become available: The results
from the first functional unit in the chain are “forwarded” to the
second functional unit.

24/04/2010 UNYT-UoG

Outline

 Why Vector Processors?

» Basic Vector Architecture

 Two Real-World Issues: Vector Length and Stride
* Enhancing Vector Performance

» Effectiveness of Compiler Vectorization

» Putting It All Together: Performance of Vector
Processors F-34

* A Modern Vector Supercomputer: The Cray X1 F-
40

24/04/2010 UNYT-UoG

Effectiveness of Compiler Vectorization

* Two factors affect the success with which a program can be
run 1n vector mode.

* The first factor 1s the structure of the program itself:

— Do the loops have true data dependences, or can they be
restructured so as not to have such dependences?

— Thais factor 1s influenced by the algorithms chosen and, to
some extent, by how they are coded.

* The second factor is the capability of the compiler. While no
compiler can vectorize a loop where no parallelism among
the loop iterations exists, there 1s tremendous variation in the
ability of compilers to determine whether a loop can be

vectorized.

24/04/2010 UNYT-UoG

24/04/2010

Ievel of Vectorization

Operations executed Operations executed

Benchmark In wector mode, in vector mode, Speedup from
name compiler-optimized hand-optimized hand optimization
BDNA 06.1% 07.2% 1.52
MG3D 05.1% 04.5% 1.00
FLOS2 91.5% 88.7% NIA
ARC3D 01.1% 02.0% 1.01
SPECT7 00.3% 00.4% 1.07
MDG 87.7% 04,25 1.49
TRFD 69.8% T3.7% 1.67
DYFESM 68.8% 65.6% NIA
ADM 42.9% 59.6% 3.60
OCEAN 42 8% 01.2% 392
TRACK 14.4% 54.6% 252
SPICE 11.5% 79.9% 4.06
QCD 4.2% 75.1% 2.15

Figure F.14 Level of vectorization among the Perfect Club benchmarks when exe-
cuted on the Cray Y-MP [Vajapeyam 1991]. The first column shows the vectorization
level obtained with the compiler, while the second column shows the results after the
codes have been hand-optimized by a team of Cray Research programmers. Speedup
numbers are not available for FLO52 and DYFESM, as the hand-optimized runs used
larger data sets than the compiler-optimized runs.

UNYT-UoG

Applying Vectorizing Compilers

Completely Partially Not
Processor Compiler vectorized vectorized wvectorized
CDC CYBER 205 VAST-2V2.21 62 3 33
Convex C-sernes FC5.0 6o 5 26
Cray X-MP CFT77T V30 69 3 28
Cray X-MP CFTVI.15 50 1 49
Cray-2 CFT2V3i.la 27 I 12
ETA-10 FTNTTVI1.0 62 7 31
Hitachi S810/820 FORTTI/HAP V20-2B 67 = 29
IBM 3090/VF VS FORTRAN V2.4 52 = 14
NEC 5X/2 FORTRANTT/ 5X V.040 66 3 29

Figure F.15 Result of applying vectorizing compilers to the 100 FORTRAN test ker-
nels. For each processor we indicate how many loops were completely vectorized, par-
tially vectorized, and unvectorized. These loops were collected by Callaham, Dongarra,
and Levine [1988]. Two different compilers for the Cray X-MP show the large depen-
dence on compiler technology.

24/04/2010 UNYT-UoG

Outline

 Why Vector Processors?

* Basic Vector Architecture

 Two Real-World Issues: Vector Length and Stride
* Enhancing Vector Performance

» Effectiveness of Compiler Vectorization

» Putting It All Together: Performance of Vector
Processors

* A Modern Vector Supercomputer: The Cray X1 F-
40

24/04/2010 UNYT-UoG

Performance of Vector Processors

« The simplest and best way to report the performance of a
vector processor on a loop 1s to give the execution time of
the vector loop.

* For vector loops people often give the MFLOPS (millions of
floating-point operations per second) rating rather than
execution time.

* We use the notation R, for the MFLOPS rating on a vector
of length n.

» Using the measurements T, (time) or R (rate) 1s equivalent
if the number of FLOPS 1s agreed upon.

24/04/2010 UNYT-UoG

Length Related Measures

Three of the most important length-related measures are

 R_—The MFLOPS rate on an infinite-length vector.
Although this measure may be of interest when estimating
peak performance, real problems do not have unlimited
vector lengths, and the overhead penalties encountered in
real problems will be larger.

* N,, — The vector length needed to reach one-half of R...
This 1s a good measure of the impact of overhead.

* N, — The vector length needed to make vector mode faster

than scalar mode. This measures both overhead and the
speed of scalars relative to vectors.

24/04/2010 UNYT-UoG

Example

* Whatis N,,, for just the inner loop of DAXPY for VMIPS
with a 500 MHz clock?

« Using R_ as the peak rate, we want to know the vector
length that will achieve about 125 MFLOPS.

* We start with the formula for MFLOPS assuming that the
measurement 1s made for N, , elements:

FLOPS executed in N ., iterations Clock cycles

MFELOPS = x 107

Clock cycles to execute N, ., iterations Second
2XN, 5
25 = = 500
-[h' 2

24/04/2010 UNYT-UoG

Example

* Simplifying this and then assuming N, , <64, so that Ty, , <
64 = 64 + 3 x n, yields:

Ty, =8%N
64+3xN,,, = 8xN,
S%N,,, = 64

N, ,, = 12.8

* So N,, = 13; that 1s, a vector of length 13 gives
approximately one-half the peak performance for
the DAXPY loop on VMIPS.

24/04/2010 UNYT-UoG

Outline

 Why Vector Processors?

* Basic Vector Architecture

 Two Real-World Issues: Vector Length and Stride
* Enhancing Vector Performance

» Effectiveness of Compiler Vectorization

» Putting It All Together: Performance of Vector
Processors

* A Modern Vector Supercomputer: The Cray X1

24/04/2010 UNYT-UoG

Cray X1

* The Cray X1 was introduced in 2002, and, together with the
NEC SX/8, represents the state of the art in modern vector
supercomputers.

* The X1 system architecture supports thousands of powerful
vector processors sharing a single global memory.

* The Cray X1 has an unusual processor architecture,

— A large Multi-Streaming Processor (MSP) is formed by
ganging together four Single-Streaming Processors
(SSPs).

— Each SSP 1s a complete single-chip vector
microprocessor, containing a scalar unit, scalar caches,
and a two-lane vector unit.

24/04/2010 UNYT-UoG

Superscalar unit ‘iecior unit

Figure F.17 Cray MSP module. (From Dunnigan et al. [2005].)

Each lane can perform a 64-bit floating-point add and
a 64-bit floating-point multiply each cycle, leading to a peak
performance of 12.8 GFLOPS per MSP.

24/04/2010 UNYT-UoG

Multi-Streaming Processors

* The Multi-Streaming concept was first introduced by Cray in
the SV 1, but has been considerably enhanced in the X1.

* The four SSPs within an MSP share Ecache, and there 1s
hardware support for barrier synchronization across the four
SSPs within an MSP.

« FEach X1 SSP has a two-lane vector unit with 32 vector
registers each holding 64 elements. The compiler has several
choices as to how to use the SSPs within an MSP.

24/04/2010 UNYT-UoG

Cray X1E

* In 2004, Cray announced an upgrade to the original Cray

X1

design.

« The X1E uses newer fabrication technology that allows
two SSPs to be placed on a single chip, making the X1E

the

first multicore vector microprocessor.

« Each physical node now contains eight MSPs, but these

arc

organized as two logical nodes of four MSPs each to

retain the same programming model as the X1.

* In addition, the clock rates were raised from 400 MHz

scalar and 800 MHz vector to 565 MHz scalar and 1130

MHz vector, giving an improved peak performance of 18

GF

24/04/2010

LOPS.

UNYT-UoG

End of Lecture

* Readings
— Book: Appendix F.

24/04/2010 UNYT-UoG

