
Distributed Systems

Lesson 3

Introduction to RMI in Java

University of New York in Tirana

Master of Science in Computer Science

Prof. Dr. Marenglen Biba



Lesson 3 – Lab Session

01: Introduction

02: Architectures

03: Processes

04: Communication

05: Naming

06: Synchronization

07: Consistency & Replication

08: Fault Tolerance

09: Security

10: Distributed Object-Based Systems

11: Distributed File Systems

12: Distributed Web-Based Systems

13: Distributed Coordination-Based Systems



Distributed Objects

Figure 10-1. Common organization of a remote 
object with client-side proxy.



Communication

• RPC – Remote Procedure Call

• RMI – Remote Method Invocation

• RMI, is very similar to an RPC when it comes to issues 

such as marshaling and parameter passing. 

• An essential difference between an RMI and an RPC is 

that RMIs generally support system-wide object 

references



Remote Method Invocation

• Remote Method Invocation (RMI) is a Java mechanism similar to 

RPCs.

• RMI allows a Java program on one machine to invoke a method on 

a remote object.



Marshalling Parameters



RMI
• RMI applications often comprise two separate programs, a 

server and a client. 

• A typical server program: 

– creates some remote objects, 

– makes references to these objects accessible 

– waits for clients to invoke methods on these objects. 

• A typical client program:

– obtains a remote reference to one or more remote objects 

on a server

– then invokes methods on them. 

• RMI provides the mechanism by which the server and the 

client communicate and pass information back and forth. 

• Such an application is sometimes referred to as a distributed 

object application. 



• The illustration depicts an RMI distributed application that uses the 

RMI registry to obtain a reference to a remote object. 

• The server calls the registry to associate (or bind) a name with a 

remote object. 

• The client looks up the remote object by its name in the server's 

registry and then invokes a method on it. 

• The illustration also shows that the RMI system uses an existing 

web server to load class definitions, from server to client and from 

client to server, for objects when needed. 



Remote Interfaces, Objects, and 

Methods

• Like any other Java application, a distributed application built 

by using Java RMI is made up of interfaces and classes. 

• The interfaces declare methods. 

• The classes implement the methods declared in the interfaces 

and, perhaps, declare additional methods as well. 

• Objects with methods that can be invoked across Java virtual 

machines are called remote objects. 



Java.rmi.Remote

• An object becomes remote by implementing a remote 

interface, which has the following characteristics: 

• A remote interface extends the interface 

java.rmi.Remote. 

• Each method of the interface declares 

java.rmi.RemoteException in its throws clause, in 

addition to any application-specific exceptions.



Creating Distributed Applications by 

Using RMI

• Using RMI to develop a distributed application involves 

these general steps: 

1. Designing and implementing the components of 

your distributed application. 

2. Compiling sources. 

3. Making classes network accessible. 

4. Starting the application.



Designing and Implementing the 

Application Components

• First, determine your application architecture, including 

which components are local objects and which 

components are remotely accessible. 

• This step includes: 

1. Defining the remote interfaces.

2. Implementing the remote objects.

3. Implementing the clients.



Defining the remote interfaces 

• A remote interface specifies the methods that 
can be invoked remotely by a client. 

• Clients program refer to remote interfaces, not to 
the implementation classes of those interfaces. 

• The design of such interfaces includes the 
determination of the types of objects that will be 
used as the parameters and return values for 
these methods. 



Declaration of a remote interface

package compute; 

import java.rmi.Remote; 

import java.rmi.RemoteException; 

public interface Compute extends Remote { 

<T> T executeTask(Task<T> t) throws 

RemoteException; } 



Implementing the remote objects

• Remote objects must implement one or more remote 

interfaces. 

• The remote object class may include implementations 

of other interfaces and methods that are available only 

locally. 

• If any local classes are to be used for parameters or 

return values of any of these methods, they must be 

implemented as well.



Implementing the remote objects

• In general, a class that implements a remote 

interface should at least do the following: 

– Declare the remote interfaces being 

implemented 

– Define the constructor for each remote object 

– Provide an implementation for each remote 

method in the remote interfaces



RMI Server

• An RMI server program needs to create the initial 

remote objects and export them to the RMI runtime, 

which makes them available to receive incoming remote 

invocations. 

• This procedure should do the following: 

1. Create and export one or more remote objects 

2. Register at least one remote object with the RMI 

registry (or with another naming service, such as a 

service accessible through the JNDI - Java Naming 

and Directory Interface).



Implementing the clients

• Clients that use remote objects can be 

implemented at any time after the remote 

interfaces are defined, even after the remote 

objects have been deployed. 



Practical Session: RMI

• Refer to the Lab manual given in class for 

step-by-step instructions on how to 

develop your RMI application.



End of Lesson 3

• Readings

– Distributed Systems, Chapter 10
• Sections 10.3.3 and 10.3.4

• Lab Manual on RMI given in class

• For further study, online tutorial at:

– http://download.oracle.com/javase/tutorial/rmi/
index.html


