
Distributed Systems

Lesson 1

Introduction

University of New York in Tirana

Master of Science in Computer Science

Prof. Dr. Marenglen Biba



Lesson 1

01: Introduction

02: Architectures

03: Processes

04: Communication

05: Naming

06: Synchronization

07: Consistency & Replication

08: Fault Tolerance

09: Distributed Object-Based Systems

10: Distributed File Systems

11: Distributed Web-Based Systems

12: Distributed Coordination-Based Systems

13: Amazon Web and Cloud Services



Introduction

1.1 DEFINITION OF A DISTRIBUTED SYSTEM

1.2 GOALS

1.2.1 Making Resources Accessible

1.2.2 Distribution Transparency

1.2.3 Openness

1.2.4 Scalability

1.2.5 Pitfalls

1.3 TYPES OF DISTRIBUTED SYSTEMS

1.3.1 Distributed Computing Systems

1.3.2 Distributed Information Systems

1.3.3 Distributed Pervasive Systems



Distributed Systems

• A distributed system is a piece of software 

that ensures that:

– a collection of independent computers

appears to its users as a single coherent 

system

• Two main aspects: 

– independent computers 

– single system



Distributed Systems

• One important characteristic of DSs is that 

differences between the various computers and the 

ways in which they communicate are mostly hidden

from users. 

– The same holds for the internal organization of 

the distributed system. 

• Another important characteristic is that users and 

applications can interact with a distributed system in 

a consistent and uniform way, regardless of where

and when interaction takes place.



Distributed Systems
• In principle, distributed systems should also be relatively 

easy to expand or scale. 

– This characteristic is a direct consequence of having 

independent computers, but at the same time, hiding how these 

computers actually take part in the system as a whole. 

• A distributed system will normally be continuously 

available, although perhaps some parts may be 

temporarily out of order. 

• Users and applications should not notice that parts are 

being replaced or fixed, or that new parts are added to 

serve more users or applications.



Middleware

• In order to support heterogeneous computers and 

networks while offering a single-system view, distributed 

systems are often organized by means of a layer of 

software - that is, logically placed between:

– a higher-level layer consisting of users and 

applications, 

– and a layer underneath consisting of operating 

systems and basic communication facilities, 

• Accordingly, such a distributed system is sometimes 

called middleware.



Middleware

Application B runs on two 

different Computers with 

different OSs



Introduction

1.1 DEFINITION OF A DISTRIBUTED SYSTEM

1.2 GOALS

1.2.1 Making Resources Accessible

1.2.2 Distribution Transparency

1.2.3 Openness

1.2.4 Scalability

1.2.5 Pitfalls

1.3 TYPES OF DISTRIBUTED SYSTEMS

1.3.1 Distributed Computing Systems

1.3.2 Distributed Information Systems

1.3.3 Distributed Pervasive Systems



Making resources available

• The main goal of a distributed system is to make it easy 

for the users (and applications) to access remote 

resources, and to share them in a controlled and efficient 

way. 

• Resources can be just about anything, but typical 

examples include things like: 

– printers, computers, storage facilities, data, files, Web pages, 

and networks, to name just a few.



Making resources available

• There are many reasons for wanting to share resources.

• One obvious reason is that of economics. For example, it 

is cheaper to let a printer be shared by several users in a 

small office than having to buy and maintain a separate 

printer for each user.

• Likewise, it makes economic sense to share costly 

resources such as supercomputers, high-performance 

storage systems, image setters, and other expensive 

peripherals.



Making resources available
• Connecting users and resources also makes it easier to 

collaborate and exchange information, as is clearly illustrated 

by the success of the Internet with its simple protocols for 

exchanging files, mail. documents, audio, and video. 

• The connectivity of the Internet is now leading to numerous 

virtual organizations in which geographically widely-dispersed 

groups of people work together by means of groupware, that is, 

software for collaborative editing, teleconferencing, and so on. 

• Likewise, the Internet connectivity has enabled electronic 

commerce allowing us to buy and sell all kinds of goods without 

actually having to go to a store or even leave home.



Introduction

1.1 DEFINITION OF A DISTRIBUTED SYSTEM

1.2 GOALS

1.2.1 Making Resources Accessible

1.2.2 Distribution Transparency

1.2.3 Openness

1.2.4 Scalability

1.2.5 Pitfalls

1.3 TYPES OF DISTRIBUTED SYSTEMS

1.3.1 Distributed Computing Systems

1.3.2 Distributed Information Systems

1.3.3 Distributed Pervasive Systems



Distribution transparency

• An important goal of a distributed system is to hide the 

fact that its processes and resources are physically 

distributed across multiple computers. 

• A distributed system that is able to present itself to users 

and applications as if it were only a single computer

system is said to be transparent. 

• There are different kinds of transparency in distributed 
systems.



Distribution transparency



Introduction

1.1 DEFINITION OF A DISTRIBUTED SYSTEM

1.2 GOALS

1.2.1 Making Resources Accessible

1.2.2 Distribution Transparency

1.2.3 Openness

1.2.4 Scalability

1.2.5 Pitfalls

1.3 TYPES OF DISTRIBUTED SYSTEMS

1.3.1 Distributed Computing Systems

1.3.2 Distributed Information Systems

1.3.3 Distributed Pervasive Systems



Openness

• An open distributed system is a system that offers services 

according to standard rules that describe the syntax and 

semantics of those services. 

• For example, in computer networks, standard rules govern 

the format, contents, and meaning of messages sent and 

received. Such rules are formalized in protocols. 

• In distributed systems, services are generally specified 

through interfaces, which are often described in an 

Interface Definition Language (IDL).



Interface Definition Language (IDL)

• Interface definitions written in an IDL nearly always 

capture only the syntax of services. 

• In other words, they specify precisely the names of the 

functions that are available together with types of the 

parameters, return values, possible exceptions that can be 

raised, and so on. 

• The hard part is specifying precisely what those services 

do, that is, the semantics of interfaces. 

• In practice, such specifications are always given in an 

informal way by means of natural language.



Introduction

1.1 DEFINITION OF A DISTRIBUTED SYSTEM

1.2 GOALS

1.2.1 Making Resources Accessible

1.2.2 Distribution Transparency

1.2.3 Openness

1.2.4 Scalability

1.2.5 Pitfalls

1.3 TYPES OF DISTRIBUTED SYSTEMS

1.3.1 Distributed Computing Systems

1.3.2 Distributed Information Systems

1.3.3 Distributed Pervasive Systems



Scalability
• Scalability of a system can be measured along at least three 

different dimensions. 

– First, a system can be scalable with respect to its size, 

meaning that we can easily add more users and resources 

to the system. 

– Second, a geographically scalable system is one in which 

the users and resources may lie far apart. 

– Third, a system can be administratively scalable, meaning 

that it can still be easy to manage even if it spans many 

independent administrative organizations.

• Unfortunately, a system that is scalable in one or more of 

these dimensions often exhibits some loss of performance as 

the system scales up.



Challenges of scalability

• At least three components:

– Number of users and/or processes (size scalability)

– Maximum distance between nodes (geographical

scalability)

– Number of administrative domains (administrative

scalability)

Observation

• Most systems account only, to a certain extent, for size 

scalability. 

– The (non)solution: powerful servers. 

• Today, the challenge lies in geographical and 

administrative scalability.



Centralized Services

• Many services are centralized in the sense that they are 

implemented by means of only a single server running 

on a specific machine in the distributed system. 

• The problem with this scheme is obvious: the server can 

become a bottleneck as the number of users and 

applications grows. 

• Even if we have virtually unlimited processing and 

storage capacity, communication with that server will 

eventually prohibit further growth.



Centralized Services
• Unfortunately. using only a single server is sometimes unavoidable. 

• Imagine that we have a service for managing highly confidential

information such as medical records, bank accounts. and so on. 

– In such cases, it may be best to implement that service by 

means of a single server in a highly secured separate room, and 

protected from other parts of the distributed system through 

special network components. 

– Copying the server to several locations to enhance performance 

maybe out of the question as it would make the service less 

secure.

• How should we keep track of the telephone numbers and addresses 

of 50 million people?

• Imagine how the Internet would work if its Domain Name System 

(DNS) was still implemented as a single table.



Decentralized Services

• Only decentralized algorithms should be used! 

• These algorithms generally have the following 

characteristics, which distinguish them from centralized 

algorithms:

1. No machine has complete information about the 

system state.

2. Machines make decisions based only on local 

information,

3. Failure of one machine does not ruin the algorithm.

4. There is no implicit assumption that a global clock 

exists. (we will explain the “clock issue” during the course)



Scaling Techniques

• In most cases, scalability problems in distributed 

systems appear as performance problems caused by 

limited capacity of servers and network. 

• There are now basically only three techniques for 

scaling: 

– hiding communication latencies

– distribution

– replication



Hiding communication latencies

• Avoid waiting for responses; do something else:

– Make use of asynchronous communication

– Have separate handler for incoming response

– Problem: not every application fits this model

• In interactive applications when a user sends a request 

he will generally have nothing better to do than to wait 

for the answer. 

• In such cases, a much better solution is to reduce the 

overall communication, 

– for example, by moving part of the computation that 

is normally done at the server to the client process 

requesting the service.



Reducing overall communication

• A typical case where this approach works is accessing 

databases using forms. 

– Filling in forms can be done by sending a separate message for 

each field, and waiting for an acknowledgment from the server.

– For example, the server may check for syntactic errors before 

accepting an entry. 

• A much better solution is to ship the code for filling in the 

form, and possibly checking the entries, to the client, and 

have the client return a completed form. 

– This approach of shipping code is now widely supported by the 

Web in the form of Java applets and Javascript.



Shipping code to clients



Distribution
• Another important scaling technique is distribution. 

• Distribution involves taking a component, splitting it into smaller 

parts, an subsequently spreading those parts across the system. 

• An excellent example of distribution is the Internet Domain Name 

System (DNS). 

– The DNS name space is hierarchically organized into a tree of 

domains, which are divided into non overlapping zones. 

– The names in each zone are handled by a single name server. 

– One can think of each path name, being the name of a host in 

the Internet, and thus associated with a network address of that 

host. 

– Basically, resolving a name means returning the network 

address of the associated host.



Domain Name System



World Wide Web

• As another example, consider the World Wide Web. To 

most users, the Web appears to be an enormous 

document-based information system in which each 

document has its own unique name in the form of a URL. 

– Conceptually, it may even appear as if there is only a 

single server. 

– However, the Web is physically distributed across a 

large number of servers, each handling a number of 

Web documents.

– The name of the server handling a document is 

encoded into that document's URL. 

– It is only because of this distribution of documents that 

the Web has been capable of scaling to its current size.



Replication
• Considering that scalability problems often appear in the form 

of performance degradation, it is generally a good idea to 

actually replicate components across a distributed system. 

• Replication not only increases availability, but also helps to 

balance the load between components leading to better 

performance. 

• Also, in geographically widely-dispersed systems, having a 

copy nearby can hide much of the communication latency 

problems.

• Make copies of data available at different machines:

– Replicated file servers and databases

– Mirrored Web sites

– Web caches (in browsers and proxies)

– File caching (at server and client)



Caching and replication

• Caching is a special form of replication, although the 

distinction between the two is often hard to make or even 

artificial. 

• As in the case of replication, caching results in making a 

copy of a resource, generally in the proximity of the client

accessing that resource. 

• However, in contrast to replication, caching is a decision 

made by the client of a resource, and not by the owner of 

a resource. 

• Also, caching happens on demand whereas replication is 

often planned in advance.



Replication, copies may be different

• There is one serious drawback to caching and replication 

that may adversely affect scalability. 

• Because we now have multiple copies of a resource, 

modifying one copy makes that copy different from the 

others. 

• Consequently, caching and replication leads to 

consistency problems.



Inconsistency

• To what extent inconsistencies can be tolerated depends

highly on the usage of a resource. 

– For example, many Web users find it acceptable that 

their browser returns a cached document of which the 

validity has not been checked for the last few 

minutes. 

– However, there are also many cases in which strong 

consistency guarantees need to be met, such as in 

the case of electronic stock exchanges and auctions.



Inconsistency

• The problem with strong consistency is that an update 

must be immediately propagated to all other copies. 

– Moreover, if two updates happen concurrently, it 

is often also required that each copy is updated in 

the same order!!! 

• Situations such as these generally require some global 

synchronization mechanism.

• Unfortunately, such mechanisms are extremely hard or 

even impossible to implement in a scalable way.



Is Scaling really feasible?
• When considering these scaling techniques, one could argue 

that size scalability is the least problematic from a technical 

point of view. 

– In many cases, simply increasing the capacity of a 

machine will save the day (at least temporarily and 

perhaps at significant costs). 

• Geographical scalability is a much tougher problem as Mother 

Nature is getting in our way.

• Nevertheless, practice shows that combining distribution, 

replication, and caching techniques with different forms of 

consistency will often prove sufficient in many cases.

• Finally, administrative scalability seems to be the most difficult

problem to solve, partly because we need to deal with 

nontechnical issues, such as politics of organizations and 

human collaboration. 



Introduction

1.1 DEFINITION OF A DISTRIBUTED SYSTEM

1.2 GOALS

1.2.1 Making Resources Accessible

1.2.2 Distribution Transparency

1.2.3 Openness

1.2.4 Scalability

1.2.5 Pitfalls

1.3 TYPES OF DISTRIBUTED SYSTEMS

1.3.1 Distributed Computing Systems

1.3.2 Distributed Information Systems

1.3.3 Distributed Pervasive Systems



Pitfalls

• Developing distributed systems can be a formidable 

task. 

• As we will see many times throughout this course, there 

are so many issues to consider at the same time that it 

seems that only complexity can be the result. 

• However, by following a number of design principles, 

distributed systems can be developed that strongly 

adhere to the goals we set out here.



Principles: hold them tight

• Many principles follow the basic rules of decent software 

engineering and will not be repeated here.

• However, distributed systems differ from traditional 

software because components are dispersed across a 

network. 

• Not taking this dispersion into account during design 

time is what makes so many systems needlessly 

complex and results in mistakes that need to be patched 

later on. 



False assumptions
• Peter Deutsch, then at Sun Microsystems, formulated 

these mistakes as the following false assumptions that 

everyone makes when developing a distributed 

application for the first time:

1. The network is reliable.

2. The network is secure.

3. The network is homogeneous.

4. The topology does not change.

5. Latency is zero.

6. Bandwidth is infinite.

7. Transport cost is zero.

8. There is one administrator.



Short bio
• L Peter Deutsch or Peter Deutsch (born Laurence Peter 

Deutsch) is the founder of Aladdin Enterprises and creator of 

Ghostscript, a free software PostScript and Pdf interpreter.

• Deutsch's other work includes the definitive Smalltalk

implementation that, among other innovations, inspired Java just-

in-time technology 15 or-so years later. 

• He also wrote the PDP-1 Lisp 1.5 implementation, Basic PDP-1 

LISP, "while still in short pants" between the age of 12-15 years 

old.

• He is also the author of a number of RFCs, and the The Eight 

Fallacies of Distributed Computing.

• Deutsch received a Ph.D. in Computer Science from the 

University of California, Berkeley in 1973. He has done stints at 

Xerox PARC and Sun Microsystems. In 1994 he was inducted as 

a Fellow of the Association for Computing Machinery.



Introduction

1.1 DEFINITION OF A DISTRIBUTED SYSTEM

1.2 GOALS

1.2.1 Making Resources Accessible

1.2.2 Distribution Transparency

1.2.3 Openness

1.2.4 Scalability

1.2.5 Pitfalls

1.3 TYPES OF DISTRIBUTED SYSTEMS

1.3.1 Distributed Computing Systems

1.3.2 Distributed Information Systems

1.3.3 Distributed Pervasive Systems



Distributed Computing Systems

• An important class of distributed systems is the one used for high-

performance computing tasks. 

• In cluster computing the underlying hardware consists of a collection 

of similar workstations or PCs, closely connected by means of a 

high-speed local-area network.  

– In addition, each node runs the same operating system.

• The situation becomes quite different in the case of grid computing. 

• Grids consist of distributed systems that are often constructed as a 

federation of computer systems, where each system may fall under 

a different administrative domain, and may be very different when it 

comes to hardware, software, and deployed network technology.



Cluster Computing
• Cluster computing systems became popular when the 

price/performance ratio of personal computers and 

workstations improved. 

• At a certain point, it became financially and technically 

attractive to build a supercomputer using off-the-shelf 

technology by simply hooking up a collection of relatively 

simple computers in a high-speed network. 

• In virtually all cases, cluster computing is used for parallel 

programming in which a single (compute intensive) program is 

run in parallel on multiple machines.



Cluster Computing:

Linux-based Beowulf clusters



Cluster computing for web resources

Cluster to serve 

web resources



Cluster Architecture



Database clusters: MySQL

• MySQL Cluster is a high availability database which 

leverages a shared-nothing data storage architecture. 

• The system consists of multiple nodes which can be 

distributed across hosts to ensure continuous availability 

in the event of a data node, hardware or network failure. 

• MySQL Cluster Carrier Grade Edition uses a storage 

engine, consisting of a set of data nodes to store data, 

which is accessed through a native C++ API, Java, 

LDAP or standard SQL interface.



MySQL Cluster



Clusters at NASA



Cluster Example: The "Tholos" Virtual 

Reality Dome Theater



Example: The "Tholos" Virtual 

Reality Dome Theater



Tholos computing system

• In order to drive a multi-display environment, multiple graphics 

outputs need to be provided and synchronized to generate 

partial views of the same panorama (12 in our case). 

• Due to the high amount of rendered and simulation data, the 

corresponding processes that drive each display output need 

to run in parallel. 

• The obvious viable solution for satisfying the rendering 

demands of such a display system is a virtual reality cluster. 

• For the Tholos VR system, an asymmetric master/slave 

cluster configuration was designed and implemented, which 

provides a highly parallel execution and has almost zero 

scaling overhead (frame lag) when adding new nodes. 



Tholos computing system

Multi-headed display cluster stress test at the AUEB computer 
labs (32 nodes simultaneously deployed).



Example: The "Tholos" Virtual 

Reality Dome Theater



Grid Computing Systems

• A characteristic feature of cluster computing is its 

homogeneity. 

• In most cases, the computers in a cluster are largely the 

same, they all have the same operating system, and are 

all connected through the same network. 

• In contrast, grid computing systems have a high degree 

of heterogeneity: no assumptions are made concerning 

hardware, operating systems, networks, administrative 

domains, security policies, etc.



Grid computing
• A key issue in a grid computing system is that resources from 

different organizations are brought together to allow the 

collaboration of a group of people or institutions. 

• Such a collaboration is realized in the form of a virtual 

organization.

• The people belonging to the same virtual organization have 

access rights to the resources that are provided to that 

organization. 

• Typically, resources consist of compute servers (including 

supercomputers, possibly implemented as cluster computers), 

storage facilities, and databases. 



Grid Computing*

*From Adarsh Patil



Middleware for grid computing

• At the core of Grid computing is the middleware: it consists of 
a series of software components that realize the interface 
between the distributed resources on one side, and the 
applications on the other side. 

• These components include: 

– resource discovery, 

– job scheduling, 

– authentication and 

– authorization, 

– data logging, 

– data transfer and 

– replication etc.



Worldwide LHC Computing Grid (WLCG)

• Provides global computing resources for the storage, distribution 

and analysis of the data generated by the LHC (Large Hadron 

Collider).

• WLCG combines about 1.4 million computer cores and 1.5 exabytes 

of storage from over 170 sites in 42 countries. 

• This massive distributed computing infrastructure provides more 

than 12000 physicists around the world with near real-time access to 

LHC data, and the power to process it.

• It runs over 2 million tasks per day and, at the end of the LHC’s LS2, 

global transfer rates exceeded 260 GB/s.

• These numbers will increase as time goes on and as computing 

resources and new technologies become ever more available 

across the world.

• CERN provides about 20% of the resources of WLCG.



Structure of WLCG – 4 TIERS



WLCG Tiers
• Tier-0

– This is the CERN Data Centre, which is located in Geneva, Switzerland. All 

data from the LHC passes through the central CERN hub, but CERN only 

provides around 20% of the total compute capacity.

• Tier 1

– These are fourteen large computer centres with sufficient storage capacity 

and with round-the-clock support for the Grid. They are responsible for the 

safe-keeping of a proportional share of raw and reconstructed data, large-

scale reprocessing and safe-keeping of corresponding output, distribution of 

data to Tier 2s and safe-keeping of a share of simulated data produced at 

these Tier 2s.

• Tier 2

– The Tier 2s are typically universities and other scientific institutes, which 

can store sufficient data and provide adequate computing power for specific 

analysis tasks. Around 160 such centers.

• Tier 3

– Individual scientists will access these facilities through local (also 

sometimes referred to as Tier 3) computing resources, which can consist of 

local clusters in a University Department or even just an individual PC.



Middleware products
for WLCG

• EGI (European Grid Infrastructure) and partners rely on the Unified 

Middleware Distribution (UMD) available 

here: http://repository.egi.eu/download/

• NDGF (Nordic Data Grid Facility) relies on Advanced Resource 

Connector (ARC) middleware that is available through the EGI 

UMD and the NorduGrid site: http://www.nordugrid.org/

• OSG (Open Science Grid) relies on the OSG software 

distribution: https://opensciencegrid.org/docs/

• For WLCG as a whole there are further requirements and 

procedures: https://twiki.cern.ch/twiki/bin/view/LCG/WLCGOperation

sWeb

http://repository.egi.eu/download/
http://www.nordugrid.org/
https://opensciencegrid.org/docs/
https://twiki.cern.ch/twiki/bin/view/LCG/WLCGOperationsWeb


Cloud Computing

• Cloud computing is Internet- ("cloud-") based 

development and use of computer technology 

("computing"). 

• In concept, it is a paradigm shift whereby details are 

abstracted from the users who no longer need knowledge 

of, expertise in, or control over the technology 

infrastructure "in the cloud" that supports them. 

• It typically involves the provision of dynamically scalable 

and often virtualized resources as a service over the 

Internet.

– AWS, Microsoft Azure Cloud, Google Cloud Platform.



Cloud computing



Cloud Computing
• Typical cloud computing providers deliver common business 

applications online which are accessed from a web browser, while 

the software and data are stored on the servers.

• These applications are broadly divided into the following categories: 

– Software as a Service (SaaS)

– Utility Computing

– Web Services

– Platform as a Service (PaaS) 

– Managed Service Providers (MSP) 

– Service Commerce

– Internet Integration

• The name cloud computing was inspired by the cloud symbol that is 

often used to represent the Internet in flow charts and diagrams.



Cloud computing: applications

• A cloud application leverages cloud computing in software 

architecture, often eliminating the need to install and run the 

application on the customer's own computer, thus alleviating the 

burden of software maintenance, ongoing operation, and support. 

• For example:

• Peer-to-peer / volunteer computing (BOINC, Skype)

• Web applications (Webmail, Facebook, Twitter, YouTube)

• Security as a service (MessageLabs, Purewire, ScanSafe, Zscaler)

• Software as a service (A2Zapps.com, Google Apps, 

Salesforce,Learn.com, Zoho, BigGyan.com)

• Software plus services (Microsoft Online Services)

• Storage [Distributed]

• Content distribution (BitTorrent, Amazon CloudFront)

• Synchronisation (Dropbox, Live Mesh, SpiderOak, ZumoDrive)



Introduction

1.1 DEFINITION OF A DISTRIBUTED SYSTEM

1.2 GOALS

1.2.1 Making Resources Accessible

1.2.2 Distribution Transparency

1.2.3 Openness

1.2.4 Scalability

1.2.5 Pitfalls

1.3 TYPES OF DISTRIBUTED SYSTEMS

1.3.1 Distributed Computing Systems

1.3.2 Distributed Information Systems

1.3.3 Distributed Pervasive Systems



Distributed Information Systems

• Another important class of distributed systems is found in 

organizations that were confronted with a wealth of networked 

applications, but for which interoperability turned out to be a 

painful experience. 

• Many of the existing middleware solutions are the result of 

working with an infrastructure in which it was easier to integrate 

applications into an enterprise-wide information system.

• We can distinguish several levels at which integration took place. 

In many cases, a networked application simply consisted of a 

server running that application (often including a database) and 

making it available to remote programs, called clients.



Distributed Information Systems

• As applications became more sophisticated and were 

gradually separated into independent components 

(notably distinguishing database components from 

processing components), it became clear that integration 

should also take place by letting applications 

communicate directly with each other. 

• This has now led to a huge industry that concentrates on 

enterprise application integration (EAl).

• The vast amount of distributed systems in use today are 

forms of traditional information systems, that now 

integrate legacy systems.



Transaction Processing Systems
• A transaction is a collection of operations on the state of an object 

(database, object composition, etc.) that satisfies the following 

properties (ACID):

• Atomicity: All operations either succeed, or all of them fail. When the 

transaction fails, the state of the object will remain unaffected by the 

transaction.

• Consistency: A transaction establishes a valid state transition.

• Isolation: Concurrent transactions do not interfere with each other. It 

appears to each transaction T that other transactions occur either 

before T, or after T, but never both.

• Durability: After the execution of a transaction, its effects are made 

permanent.



Nested Transaction

• Nested transactions are important in distributed systems, 

for they provide a natural way of distributing a 

transaction across multiple machines. 

• They follow a logical division of the work of the original 

transaction. 

– For example, a transaction for planning a trip by 

which three different flights need to be reserved can 

be logically split up into three subtransactions. 

– Each of these subtransactions can be managed 

separately and independent of the other two.



Nested Transaction



Transaction Processing Monitor

• In the early days of enterprise middleware systems, the 

component that handled distributed (or nested) transactions 

formed the core for integrating applications at the server or 

database level. 

• This component was called a transaction processing monitor

or TP monitor for short. 

– Its main task was to allow an application to access multiple 

server/databases by offering it a transactional 

programming model



Transaction Processing Monitor



Enterprise Application Integration
• The more applications became decoupled from the databases they 

were built upon, the more evident it became that facilities were 

needed to integrate applications independent from their 

databases.

• In particular, application components should be able to 

communicate directly with each other and not merely by means 

of the request/reply behavior that was supported by transaction 

processing systems.

• This need for inter-application communication led to many different 

communication models, which we will discuss in detail in this 

course (and for which reason we shall keep it brief for now).

• The main idea was that existing applications could directly 

exchange information.



Enterprise Application Integration



Communication Middleware

• Several types of communication middleware exist. 

• With remote procedure calls (RPC), an application 

component can effectively send a request to another 

application component by doing a local procedure call, 

which results in the request being packaged as a 

message and sent to the callee. 

– Likewise, the result will be sent back and returned to 

the application as the result of the procedure call.



Communication Middleware

• As the popularity of object technology increased, 

techniques were developed to allow calls to remote 

objects, leading to what is known as remote method 

invocations (RMI). 

– An RMI is essentially the same as an RPC, except 

that it operates on objects instead of applications.



Introduction

1.1 DEFINITION OF A DISTRIBUTED SYSTEM

1.2 GOALS

1.2.1 Making Resources Accessible

1.2.2 Distribution Transparency

1.2.3 Openness

1.2.4 Scalability

1.2.5 Pitfalls

1.3 TYPES OF DISTRIBUTED SYSTEMS

1.3.1 Distributed Computing Systems

1.3.2 Distributed Information Systems

1.3.3 Distributed Pervasive Systems



Distributed Pervasive Systems
• The distributed systems we have been discussing so far are largely 

characterized by their stability: nodes are fixed and have a more or 

less permanent and high-quality connection to a network.

• To a certain extent, this stability has been realized through the 

various techniques that are discussed in this course and which aim 

at achieving distribution transparency. 

• However, matters have become very different with the introduction 

of mobile and embedded computing devices. We are now 

confronted with distributed systems in which instability is the default 

behavior. 

• The devices in these, what we refer to as distributed pervasive 

systems, are often characterized by being small, battery-powered, 

mobile, and having only a wireless connection, although not all 

these characteristics apply to all devices.



Distributed Pervasive Systems

Some requirements

– Contextual change: The system is part of an 

environment in which changes should be immediately 

accounted for.

– Ad hoc composition: Each node may be used in very 

different ways by different users. 

– Sharing is the default: Nodes come and go, providing 

sharable services and information.



Home Systems

• An increasingly popular type of pervasive system, but which may 

perhaps be the least constrained, are systems built around home 

networks. 

• These systems generally consist of one or more personal 

computers, but more importantly integrate typical consumer 

electronics such as TVs, audio and video equipment. Gaming 

devices, (smart) phones, PDAs, and other personal wearables into a 

single system.

• In addition, we can expect that all kinds of devices such as kitchen 

appliances, surveillance cameras, clocks, controllers for lighting, 

and so on, will all be hooked up into a single distributed system. 

Welcome to the future!



Electronic health systems

• Devices are physically close to a person:

– Where and how should monitored data be stored?

– How can we prevent loss of crucial data?

– What is needed to generate and propagate alerts?

– How can security be enforced?

– How can physicians provide online feedback?



Electronic health systems



Mobile computing systems

• There are several issues that set mobile computing aside to 

pervasive systems in general.

• First, the devices that form part of a (distributed) mobile system 

may vary widely. Typically, mobile computing is now done with 

devices such as smartphones and tablet computers. However, 

completely different types of devices are now using the Internet 

Protocol (IP) to communicate, placing mobile computing in a 

different perspective. Such devices include remote controls, 

pagers, active badges, car equipment, various GPS-enabled 

devices, and so on. A characteristic feature of all these devices 

is that they use wireless communication.

• Second, in mobile computing the location of a device is 

assumed to change over time. A changing location has its 

effects on many issues. For example, if the location of a device 

changes regularly, so will perhaps the services that are locally 

available.



MANET

• Changing locations also has a profound effect on 

communication. To illustrate, consider a (wireless) mobile ad 

hoc network, generally abbreviated as a MANET. 

• Suppose that two devices in a MANET have discovered each 

other in the sense that they know each other’s network address. 

• How do we route messages between the two? 

• Static routes are generally not sustainable as nodes along the 

routing path can easily move out of their neighbor’s range, 

invalidating the path. 

• For large MANETs, using a priori set-up paths is not a viable 

option. 

• What we are dealing with here are so-called disruption-

tolerant networks: networks in which connectivity between two 

nodes can simply not be guaranteed. Getting a message from 

one node to another may then be problematic, to say the least.



Sensor Networks

• Another example of pervasive systems is sensor networks. 

• These networks in many cases form part of the enabling 

technology for pervasiveness and we see that many 

solutions for sensor networks return in pervasive 

applications. 

• What makes sensor networks interesting from a distributed 

system's perspective is that in virtually all cases they are 

used for processing information. 

– In this sense, they do more than just provide 

communication services. which is what traditional 

computer networks are all about.



Sensor Networks

Characteristics

The nodes to which sensors are attached are:

– Many (10s-1000s)

– Simple (small memory/compute/communication 

capacity)

– Often battery-powered (or even battery-less)



Sensor Networks as DSs

• The relation with distributed systems can be made clear 

by considering sensor networks as distributed 

databases. 

• This view is quite common and easy to understand when 

realizing that many sensor networks are deployed for 

measurement and surveillance applications. 

• In these cases, an operator would like to extract 

information from (a part of) the network by simply issuing 

queries such as "What is the traffic load on a certain 

highway?"



Sensor Networks (2)

Figure 1-13. Organizing a sensor network 
database, while storing and processing data (a) 
only at the operator’s site or …



Sensor Networks (3)

Figure 1-13. Organizing a sensor network database, while 
storing and processing data (b) only at the sensors.



End of Lesson 1

• Readings

– Distributed Systems, Principles and 

Paradigms, Chapter 1.


