Distributed Systems

Lesson 10

University of New York in Tirana Master of Science in Computer Science Prof. Dr. Marenglen Biba

Lesson 10

- 01: Introduction
- 02: Architectures
- 03: Processes
- 04: Communication
- 05: Naming
- 06: Synchronization
- 07: Consistency & Replication
- 08: Fault Tolerance
- 09: Security
- 10: Distributed Object-Based Systems
- 11: Distributed File Systems
- 12: Distributed Web-Based Systems
- 13: Distributed Coordination-Based Systems
- 14: Amazon Web Services

PART I

- 01: Introduction
- 02: Architectures
- 03: Processes
- 04: Communication
- 05: Naming
- 06: Synchronization
- 07: Consistency & Replication
- 08: Fault Tolerance
- 09: Security
- 10: Distributed Object-Based Systems
- 11: Distributed File Systems
- 12: Distributed Web-Based Systems
- 13: Distributed Coordination-Based Systems

Overall Approach

Figure 13-2. The principle of exchanging data items between publishers and subscribers.

Publish/subscribe systems in action

- Example: Reading stocks
 - https://www.tibco.com
 - https://demos.lightstreamer.com/

Java Spaces

- A tuple space is an implementation of the associative memory paradigm for parallel/distributed computing.
- It provides a repository of tuples that can be accessed concurrently.
- The implementation of tuple spaces for Java is JavaSpaces.
- JavaSpaces is a service specification providing a distributed object exchange and coordination mechanism for Java objects.
- It is used to store the distributed system state and implement distributed algorithms.
- In a JavaSpace, all communication partners (peers) communicate and coordinate by sharing state.

Example: Jini and JavaSpaces

Figure 13-3. The general organization of a JavaSpace in Jini.

Events

- Events complicate the processing of subscriptions.
- Consider the subscription:
 - "Notify when room R4.20 is unoccupied and the door is unlocked".
 - A distributed system supporting these subscriptions could be implemented by placing sensors.
- We would need to compose such primitive events into a publishable data item to which processes can then subscribe.
 - Event composition is hard!

Describing Composite Events (1)

Ex.	Description
S1	Notify when room R4.20 is unoccupied
S2	Notify when R4.20 is unoccupied and the door is unlocked
S3	Notify when R4.20 is unoccupied for 10 seconds while the door is unlocked
S4	Notify when the temperature in R4.20 rises more than 1 degree per 30 minutes
S5	Notify when the average temperature in R4.20 is more than 20 degrees in the past 30 minutes

Figure 13-9. Examples of events in a distributed system.

Describing Composite Events (2)

Figure 13-10. The finite state machine for subscription S3

Describing Composite Events (3)

Figure 13-11. Two coupled FSMs.

Security in publish/subscribe systems

- Information confidentiality
 - It is sometimes important to disallow the middleware to inspect published data.
 - Solved through end-to-end encryption
- Subscription confidentiality
 - Subscriptions may not be disclosed to the middleware
- Publication confidentiality
 - Publishers may want to explicitly restrict the group of possible subscribers.

Decoupling Publishers from Subscribers

Figure 13-18. Decoupling publishers from subscribers using an additional trusted service.

End of PART I

• Readings

– Distributed Systems, Chapter 13

PART II

- 01: Introduction
- 02: Architectures
- 03: Processes
- 04: Communication
- 05: Naming
- 06: Synchronization
- 07: Consistency & Replication
- 08: Fault Tolerance
- 09: Security
- 10: Distributed Object-Based Systems
- 11: Distributed File Systems
- 12: Distributed Web-Based Systems
- 13: Distributed Coordination-Based Systems
- 14: Amazon Web Services

Amazon Web Services Cloud Computing Services

Amazon WS: Regions and AZ

Amazon WS

Region Name	Region	Endpoint	Protocol
US East (Ohio)	us-east-2	rds.us-east- 2.amazonaws.c om	HTTPS
US East (N. Virginia)	us-east-1	rds.us-east- 1.amazonaws.c om	HTTPS
US West (N. California)	us-west-1	rds.us-west- 1.amazonaws.c om	HTTPS
US West (Oregon)	us-west-2	rds.us-west- 2.amazonaws.c om	HTTPS
Asia Pacific (Hong Kong)	ap-east-1	rds.ap-east- 1.amazonaws.c om	HTTPS
Asia Pacific (Mumbai)	ap-south-1	rds.ap-south- 1.amazonaws.c om	HTTPS
Asia Pacific (Osaka-Local)	ap-northeast-3	rds.ap- northeast- 3.amazonaws.c om	HTTPS
Asia Pacific (Seoul)	ap-northeast-2	rds.ap- northeast- 2.amazonaws.c om	HTTPS
Asia Pacific (Singapore)	ap-southeast-1	rds.ap- southeast- 1.amazonaws.c om	HTTPS
Asia Pacific (Sydney)	ap-southeast-2	rds.ap- southeast- 2.amazonaws.c om	HTTPS
Asia Pacific (Tokyo)	ap-northeast-1	rds.ap- northeast- 1.amazonaws.c om	HTTPS
Canada (Central)	ca-central-1	rds.ca-central- 1.amazonaws.c om	HTTPS
China (Beijing)	cn-north-1	rds.cn-north- 1.amazonaws.c om.cn	HTTPS
China (Nimmin)		unda an	

Regions in AWS

EU (Frankfurt)	eu-central-1	rds.eu-central- 1.amazonaws. com	HTTPS
EU (Ireland)	eu-west-1	rds.eu-west- 1.amazonaws. com	HTTPS
EU (London)	eu-west-2	rds.eu-west- 2.amazonaws. com	HTTPS
EU (Paris)	eu-west-3	rds.eu-west- 3.amazonaws. com	HTTPS
EU (Stockholm)	eu-north-1	rds.eu-north- 1.amazonaws. com	HTTPS
South America (São Paulo)	sa-east-1	rds.sa-east- 1.amazonaws. com	HTTPS
AWS GovCloud (US-East)	us-gov-east-1	rds.us-gov- east- 1.amazonaws. com	HTTPS
AWS GovCloud (US)	us-gov-west-1	rds.us-gov- west- 1.amazonaws. com	HTTPS

Amazon VPC

Internet

Amazon Elastic Compute Cloud (Amazon EC2)

Amazon AMI

Instances

Instance Name	vCPUs	RAM	Local Storage	EBS-Optimized Bandwidth	Network Bandwidth
m5ad.large	2	8 GiB	1 x 75 GB NVMe SSD	Up to 2.120 Gbps	Up to 10 Gbps
m5ad.xlarge	4	16 GiB	1 x 150 GB NVMe SSD	Up to 2.120 Gbps	Up to 10 Gbps
m5ad.2xlarge	8	32 GiB	1 x 300 GB NVMe SSD	Up to 2.120 Gbps	Up to 10 Gbps
m5ad.4xlarge	16	64 GiB	2 x 300 GB NVMe SSD	2.120 Gbps	Up to 10 Gbps
m5ad.12xlarge	48	192 GiB	2 x 900 GB NVMe SSD	5 Gbps	10 Gbps
m5ad.24xlarge	96	384 GiB	4 x 900 GB NVMe SSD	10 Gbps	20 Gbps

Instances

Instance Name	vCPUs	RAM	Local Storage	EBS-Optimized Bandwidth	Network Bandwidth
r5ad.large	2	16 GiB	1 x 75 GB NVMe SSD	Up to 2.120 Gbps	Up to 10 Gbps
r5ad.xlarge	4	32 GiB	1 x 150 GB NVMe SSD	Up to 2.120 Gbps	Up to 10 Gbps
r5ad.2xlarge	8	64 GiB	1 x 300 GB NVMe SSD	Up to 2.120 Gbps	Up to 10 Gbps
r5ad.4xlarge	16	128 GiB	2 x 300 GB NVMe SSD	2.120 Gbps	Up to 10 Gbps
r5ad.12xlarge	48	384 GiB	2 x 900 GB NVMe SSD	5 Gbps	10 Gbps
r5ad.24xlarge	96	768 GiB	4 x 900 GB NVMe SSD	10 Gbps	20 Gbps

Instances

Auto scaling

Amazon EBS

Amazon EFS

Amazon RDS

DB Engines

elect engine		
Engine options		
 Amazon Aurora Amazon Aurora 	O MySQL	O MariaDB
O PostgreSQL	Oracle	Microsoft SQL Server
MySQL		
MySQL is the most popular oper MySQL community edition with database.	source database in the world. MySQL on the flexibility to easily scale compute reso	RDS offers the rich features of the ources or storage capacity for your
 Supports database size up to 	16 TB.	
Instances offer up to 32 vCPU	Is and 244 GiB Memory.	
Supports automated backup	and point-in-time recovery.	
 Supports automateu backup 		

Amazon Aurora DB Clusters

End of Part II

Reading

- AWS Documentation

Lab Session

- Web Server: Java EE 6 Web
- Web Interface Tier:

Servlets

- Processing Tier
 - Enteprise Java Beans
- Applications
 - Web Banking
- Follow the manual given in class.

End of Lab Session

- Readings
 - Lab Manual on EJBs + Servlets + MySQL + Client given in class