
Distributed Systems

Lesson 2

Architectures

University of New York in Tirana

Master of Science in Computer Science

Prof. Dr. Marenglen Biba



Lesson 2

01: Introduction

02: Architectures

03: Processes

04: Communication

05: Naming

06: Synchronization

07: Consistency & Replication

08: Fault Tolerance

09: Security

10: Distributed Object-Based Systems

11: Distributed File Systems

12: Distributed Web-Based Systems

13: Distributed Coordination-Based Systems



Lesson 2: Architectures

• ARCHITECTURAL STYLES

• SYSTEM ARCHITECTURES

– Centralized Architectures

– Decentralized Architectures

– Hybrid Architectures

• ARCHITECTURES VERSUS MIDDLEWARE

– Wrappers

– Interceptors

– General Approaches to Adaptive Software

• SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS

– The Feedback Control Model



Organization of DSs

• Distributed systems are often complex pieces of software of which 
the components are by definition dispersed across multiple 
machines. 

– To master their complexity, it is crucial that these systems are 
properly organized. 

• There are different ways on how to view the organization of a 
distributed system, but an obvious one is to make a distinction 
between: 

– the logical organization of the collection of software components 

– the actual physical realization.

• The organization of distributed systems is mostly about the software 
components that constitute the system. 

– These software architectures tell us how the various software 
components are to be organized and how they should interact.



System Architecture

• The actual realization of a distributed system requires 
that we instantiate and place software components on 
real machines. 

– There are many different choices that can be made in 
doing so.

• The logical organization of distributed systems into 
software components is referred to as software 
architecture. 

• The final instantiation of a software architecture is also 
referred to as a system architecture.



Architectural Style

• Basic idea

– Organize into logically different components, and distribute 

those components over the various machines.

• An architectural style is formulated in terms of: 

– components, 

– the way that components are connected to each other 

– the data exchanged between components

– how these elements are jointly configured into a system. 



Components and Connectors
• A component is a modular unit with well-defined required and 

provided interfaces that is replaceable within its environment.

– The important issue about a component for distributed systems 

is that it can be replaced, provided we respect its interfaces. 

• A connector is generally described as a mechanism that mediates 

communication, coordination, or cooperation among components 

– For example, a connector can be formed by the facilities for 

(remote) procedure calls, message passing, or streaming data. 

• Using components and connectors, we can come to various 

configurations, which, in turn have been classified into architectural 

styles.



Architectural Styles

1. Layered architectures

2. Object-based architectures

3. Data-centered architectures

4. Event-based architectures



Layered architectures

A component at layer L is allowed to call components at layer Li-1but not the 

other way around.

This model has been widely adopted by the networking community



Object-based Architectures

• In essence, each object corresponds to what we have defined as a 

component, and these components are connected through a remote 

procedure call (RPC) mechanism. 

• Not surprisingly, this software architecture matches a client-server system 

architecture. 

• The layered and object-based architectures still form the most important 

styles for large software systems



Data Centered Architectures
• Data-centered architectures evolve around the idea that processes 

communicate through a common (passive or active) repository. 

• It can be argued that for distributed systems these architectures are 

as important as the layered and object-based architectures. 

• For example, a wealth of networked applications have been 

developed that rely on a shared distributed file system in which 

virtually all communication takes place through files. 

• Likewise, Web-based distributed systems are largely data-centric: 

processes communicate through the use of shared Web-based data 

services.



Event-based Architectures

• In event-based architectures, processes essentially 

communicate through the propagation of events, which 

optionally also carry data.

• For distributed systems, event propagation has generally 

been associated with what are known as publish/subscribe 

systems. 



Publish/subscribe Systems

• The basic idea is that processes publish events after 
which the middleware ensures that only those processes 
that subscribed to those events will receive them. 

• The main advantage of event-based systems is that 
processes are loosely coupled. 

– In principle, they need not explicitly refer to each 
other. 

– This is also referred to as being decoupled in space, 
or referentially decoupled.



Forms of coordination



Shared Data Spaces
• Decoupling processes in space

(“anonymous”) and also time

(“asynchronous”) has led to alternative 

styles.

• Event-based architectures can be 

combined with data-centered 

architectures, yielding what is also 

known as shared data spaces. 

• The essence of shared data spaces is 

that processes are now also decoupled 

in time: they need not both be active 

when communication takes place. 

• Furthermore, many shared data spaces 

use a SQL-like interface to the shared 

repository in that sense that data can be 

accessed using a description rather than 

an explicit reference, as is the case with 

files.



Architectural styles based on coordination



Distribution Transparency and Architectural 

Styles

• What makes the software architectures important for distributed 

systems is that they all aim at achieving (at a reasonable level) 

distribution transparency.

• However, distribution transparency requires making trade-offs 

between performance, fault tolerance, ease-of-programming, and so 

on. 

• As there is no single solution that will meet the requirements for all 

possible distributed applications, researchers have abandoned the 

idea that a single distributed system can be used to cover 90% of all 

possible cases.



Lesson 2: Architectures

• ARCHITECTURAL STYLES

• SYSTEM ARCHITECTURES

– Centralized Architectures

– Decentralized Architectures

– Hybrid Architectures

• ARCHITECTURES VERSUS MIDDLEWARE

– Wrappers

– Interceptors

– General Approaches to Adaptive Software

• SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS

– The Feedback Control Model



System Architectures

• Deciding on software components, their interaction, and 

their placement leads to an instance of a software 

architecture also called a system architecture

• These are of three types:

– Centralized Architectures

– Decentralized Architectures

– Hybrid forms



Centralized Architectures

Basic Client–Server Model

• Characteristics:

– There are processes offering services (servers)

– There are processes that use services (clients)

– Clients and servers can be on different machines

– Clients follow request/reply model wrt to using services



Client-Server in Layered 

Architectural Style
• Considering that many client-server applications are targeted 

toward supporting user access to databases, many people 

have advocated a distinction between the following three 

levels, essentially following the layered architectural style we 

discussed previously:

– The user-interface level

– The processing level

– The data level



Example: Internet Search Engine



Example: Decision support for stock brokerage

• As a second example, consider a decision support system for a stock 

brokerage.

• Such a system can be divided into: 

– a front end implementing the user interface, 

– a back end for accessing a database with the financial data

– the analysis programs between these two. 

• Analysis of financial data may require sophisticated methods and 

techniques from statistics and artificial intelligence. 

• In some cases, the core of a financial decision support system may 

even need to be executed on high-performance computers in order to 

achieve the throughput and responsiveness that is expected from its 

users.



Multi-tiered Architectures

• The distinction into three logical levels as discussed so 

far, suggests a number of possibilities for physically 

distributing a client-server application across several 

machines. 

• The simplest organization is to have only two types of 

machines:

1. A client machine containing only the programs 

implementing (part of) the user-interface level

2. A server machine containing the rest, that is the 

programs implementing the processing and data level



Three-tiered Architecture
• Single-tiered: dumb terminal/mainframe configuration

• Two-tiered: client/single server configuration

• Three-tiered: each layer on separate machine



Three-tiered Architecture



Lesson 2: Architectures

• ARCHITECTURAL STYLES

• SYSTEM ARCHITECTURES

– Centralized Architectures

– Decentralized Architectures

– Hybrid Architectures

• ARCHITECTURES VERSUS MIDDLEWARE

– Wrappers

– Interceptors

– General Approaches to Adaptive Software

• SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS

– The Feedback Control Model



Vertical Distribution
• Multitiered client-server architectures are a direct consequence of 

dividing applications into a user-interface, processing components, 

and a data level. 

– The different tiers correspond directly with the logical 

organization of applications. 

• In many business environments, distributed processing is equivalent 

to organizing a client-server application as a multitiered architecture. 

• We refer to this type of distribution as vertical distribution. 

– The characteristic feature of vertical distribution is that it is 

achieved by placing logically different components on different 

machines.



Horizontal Distribution

• From a system management perspective, having a vertical 

distribution can help: functions are logically and physically split

across multiple machines, where each machine is tailored to a 

specific group of functions. 

• In modem architectures, it is often the distribution of the clients and 

the servers that counts, which we refer to as horizontal distribution. 

• In this type of distribution, a client or server may be physically split 

up into logically equivalent parts, but each part is operating on its 

own share of the complete data set, thus balancing the load. 

• A class of modern system architectures that support horizontal 

distribution is known as peer-to-peer systems (P2P).



Peer-to-Peer Systems

• From a high-level perspective, the processes that constitute a P2P

system are all equal. 

• This means that the functions that need to be carried out are 

represented by every process that constitutes the distributed 

system. 

• As a consequence, much of the interaction between processes is 

symmetric: each process will act as a client and a server at the 

same time (which is also referred to as acting as a servent).



Overlay Networks
• Given the symmetric behavior, P2P architectures evolve around the 

question how to organize the processes in an overlay network, that is, a 

network in which the nodes are formed by the processes and the links 

represent the possible communication channels (which are usually realized 

as TCP connections). 

• In general, a process cannot communicate directly with an arbitrary other 

process, but is required to send messages through the available 

communication channels.

• Types of overlay networks: 

– Structured P2P: nodes are organized following a specific distributed 

data structure

– Unstructured P2P: nodes have randomly selected neighbors

– Hybrid P2P: some nodes are appointed special functions in a well-

organized fashion



Structured P2P
• In a structured peer-to-peer architecture, the overlay network is 

constructed using a deterministic procedure. 

• By far the most-used procedure is to organize the processes through a 

distributed hash table (DHT).

– In a DHT-based system, data items are assigned a random key

from a large identifier space, such as a 128-bit or 160-bit identifier. 

– Likewise, nodes in the system are also assigned a random 

number from the same identifier space. 

• The effort of every DHT-based system is then to implement an efficient

and deterministic scheme that uniquely maps the key of a data item to 

the identifier of a node based on some distance metric 

• Most importantly, when looking up a data item, the network address of 

the node responsible for that data item is returned. 

• Effectively, this is accomplished by routing a request for a data item to 

the responsible node.



Unstructured P2P Networks
• Unstructured peer-to-peer systems largely rely on randomized 

algorithms for constructing an overlay network. 

• The main idea is that each node maintains a list of neighbors

– This list is constructed in a more or less random way.
• Also known as random graph 

• Likewise, data items are assumed to be randomly placed on 
nodes. 

• As a consequence, when a node needs to locate a specific 
data item, the only thing it can effectively do is flood the 
network with a search query.



Superpeers

• Notably in unstructured peer-to-peer systems, locating 

relevant data items can become problematic as the 

network grows. 

• The reason for this scalability problem is simple: 

– As there is no deterministic way of routing a lookup 

request to a specific data item, essentially the only 

technique a node can resort to is flooding the request.

• Many peer-to-peer systems have proposed to make use 

of special nodes that maintain an index of data items.



Superpeers Example: CDNs

• In a collaborative content delivery network (CDN), nodes 
may offer storage for hosting copies of Web pages 
allowing Web clients to access pages nearby, and thus 
to access them quickly. 

– In this case a node P may need to seek for resources 
in a specific part of the network. 

• In that case, making use of a broker that collects 
resource usage for a number of nodes that are in each 
other's proximity will allow to quickly select a node with 
sufficient resources.

• This broker is called superpeer.



Superpeers



Lesson 2: Architectures

• ARCHITECTURAL STYLES

• SYSTEM ARCHITECTURES

– Centralized Architectures

– Decentralized Architectures

– Hybrid Architectures

• ARCHITECTURES VERSUS MIDDLEWARE

– Wrappers

– Interceptors

– General Approaches to Adaptive Software

• SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS

– The Feedback Control Model



Hybrid Architectures 

Client-Superpeer relation

• In many cases, the client-superpeer relation is fixed:

whenever a regular peer joins the network, it attaches to one 

of the superpeers and remains attached until it leaves the 

network.

• Having a fixed association with a superpeer may not always 

be the best solution.

– For example, in the case of file-sharing networks, it may 

be better for a client to attach to a superpeer that 

maintains an index of files that the client is generally 

interested in. 

– In that case, chances are bigger that when a client is 

looking for a specific file, its superpeer will know where to 

find it.



Edge-server Systems

• An important class of distributed systems that is organized 

according to a hybrid architecture is formed by edge-server 

systems. 

– These systems are deployed on the Internet where servers 

are placed "at the edge" of the network. 

• This edge is formed by the boundary between enterprise 

networks and the actual Internet, for example, as provided by 

an Internet Service Provider (ISP). 

– Likewise, where end users at home connect to the Internet 

through their ISP, the ISP can be considered as residing at 

the edge of the Internet.



Hybrid Architectures

Client-server combined with P2P

• Edge-server architectures, which are often used for 

Content Delivery Networks.



Collaborative Distributed Sytems

• Hybrid structures are notably deployed in collaborative 

distributed systems.

• Once a node has joined the system, it can use a fully 

decentralized scheme for collaboration.

• Example: BitTorrent file-sharing system

– BitTorrent is a peer-to-peer file downloading system



BitTorrent
• To download a file, a user needs to access a global 

directory, which is just one of a few well-known Web sites. 

– Such a directory contains references to what are called 

.torrent files. A .torrent file contains the information that is 

needed to download a specific file. 

– In particular, it refers to what is known as a tracker, which 

is a server that is keeping an accurate account of active

nodes that have (chunks) of the requested file. 

– An active node is one that is currently downloading 

another file. 

• Obviously, there will be many different trackers, although 

(there will generally be only a single tracker per file (or 

collection of files).



Hybrid Architectures: C/S with P2P – BitTorrent

Once a node has identified where to download a file from, it joins 
a swarm of downloaders who in parallel get file chunks from 
the source, but also distribute these chunks amongst each 
other.



Lesson 2: Architectures

• ARCHITECTURAL STYLES

• SYSTEM ARCHITECTURES

– Centralized Architectures

– Decentralized Architectures

– Hybrid Architectures

• ARCHITECTURES VERSUS MIDDLEWARE

– Wrappers

– Interceptors

– General Approaches to Adaptive Software

• SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS

– The Feedback Control Model



Architectures Vs. Middleware

• In many cases, distributed systems/applications are 

developed according to a specific architectural style. 

• For example, many middleware solutions have adopted an 

object-based architectural style, such as CORBA. 

• Others, like TIB/Rendezvous (TIBCO) provide middleware 

that follows the event-based architectural style.



CORBA
• The Common Object Request Broker Architecture (CORBA) is a 

standard defined by the Object Management Group (OMG) that:

– enables software components written in multiple computer 

languages and running on multiple computers to work together, 

i.e. it supports multiple platforms.

• DCOM and Web Services

– Microsoft's counterpart to CORBA is its COM-based Distributed 

COM (DCOM) architecture. COM/CORBA interoperability is 

required to integrate Windows desktops into a CORBA-based 

system.

• Although CORBA and DCOM have achieved some success, Web 

services on the Internet have become far more triumphant. 

• CORBA software from different vendors may not always 

interoperate at all levels, and DCOM is a Windows-based solution 

only.



CORBA: simple schema



Event-based architecture



TIBCO

• TIBCO Software Inc. is a global company that develops integration 

software for companies including those in the energy, 

manufacturing, retail, healthcare, and financial services industries. 

Its headquarters is in Palo Alto, California, with offices in North 

America, Europe, Asia, the Middle East, Africa and South America. 

– The company's major commercial competitors are IBM, Oracle 

Corporation, and SAP AG.

• Enterprise application integration

• Business Process Management

• Enterprise service bus

• And many more….

• http://www.tibco.com/



TIBCO: message-oriented 

middleware
• In addition, TIBCO offers the message-oriented middleware product 

Rendezvous. 

• TIBCO provides a message bus for enterprise application integration 

(EAI).

• TIBCO provides messaging APIs in C, C++, Java, Visual BASIC , 

Perl and .NET to receive data feeds on MS Excel spreadsheets and 

other applications of choice.

• Considerable "Enterprise" functionality is layered onto this.



Enterprise Service Bus



TIBCO: Enterprise Service Bus



TIBCO: Enterprise Message Service



TIBCO: Business Process Automation



Lesson 2: Architectures

• ARCHITECTURAL STYLES

• SYSTEM ARCHITECTURES

– Centralized Architectures

– Decentralized Architectures

– Hybrid Architectures

• ARCHITECTURES VERSUS MIDDLEWARE

– Wrappers

– Interceptors

– General Approaches to Adaptive Software

– Discussion

• SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS

– The Feedback Control Model



Wrappers

• When building a distributed system out of existing components, 

we immediately bump into a fundamental problem: the 

interfaces offered by the legacy component are most likely not 

suitable for all applications. 

• A wrapper or adapter is a special component that offers an 

interface acceptable to a client application, of which the 

functions are transformed into those available at the 

component. In essence, it solves the problem of incompatible 

interfaces.

• Facilitating a reduction of the number of wrappers is typically 

done through middleware. One way of doing this is 

implementing a so called broker, which is logically a 

centralized component that handles all the accesses between 

different applications. 



Wrappers



Architectures Vs. Middleware

• Problem

– The chosen style may not be optimal in all cases. 

– Need to (dynamically) adapt the behavior of the 

middleware.

• Interceptors

– Intercept the usual flow of control when invoking a remote 

object.



Adaptive Middleware

• Although middleware is meant to provide distribution transparency, it 

is generally felt that specific solutions should be adaptable to 

application requirements. 

• One solution to this problem is to make several versions of a 

middleware system, where each version is tailored to a specific 

class of applications.

• An approach that is generally considered better is to make 

middleware systems such that they are easy to configure, adapt, 

and customize as needed by an application.



Interceptors

• Conceptually, an interceptor is nothing but a software construct that 

will break the usual flow of control and allow other (application 

specific) code to be executed. 

• To make interceptors generic may require a substantial 

implementation effort, and it is unclear whether in such cases 

generality should be preferred over restricted applicability and 

simplicity.

• Also, in many cases having only limited interception facilities will 

improve management of the software and the distributed system as 

a whole.



Interceptors in Object-based DSs

• Imagine that object B is 
replicated.

• In that case, each replica 
should actually be invoked. 

• This is a clear point where 
interception can help.

• What the request-level 
interceptor will do is simply 
call invoke(B, 
&do_something, value) for 
each of the replicas. 

• The beauty of this is that 
the object A need not be 
aware of the replication of 
B



Lesson 2: Architectures

• ARCHITECTURAL STYLES

• SYSTEM ARCHITECTURES

– Centralized Architectures

– Decentralized Architectures

– Hybrid Architectures

• ARCHITECTURES VERSUS MIDDLEWARE

– Wrappers

– Interceptors

– General Approaches to Adaptive Software

• SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS

– The Feedback Control Model



Adaptive Software

• What interceptors actually offer is a means to adapt the 

middleware. 

• The need for adaptation comes from the fact that the 

environment in which distributed applications are executed 

changes continuously.

• Rather than making applications responsible for reacting to 

changes, this task is placed in the middleware.

• These strong influences from the environment have brought 

many designers of middleware to consider the construction of 

adaptive software. 

• However, adaptive software has not been as successful as 

anticipated.



Do we need Adaptive software?

• The underlying assumption is that we need adaptive software in the 

sense that the software should be allowed to change as the 

environment changes. 

– However, one should question whether adapting to a changing 

environment is a good reason to adopt changing the software.

– Faulty hardware, security attacks, energy drainage, and so on, 

all seem to be environmental influences that can (and should) be 

anticipated by software.

• The strongest, and certainly most valid, argument for supporting 

adaptive software is that many distributed systems cannot be shut 

down. 

• This constraint calls for solutions to replace and upgrade 

components on the fly, but is not clear whether any of the solutions 

proposed are the best ones to tackle this maintenance problem.



Lesson 2: Architectures

• ARCHITECTURAL STYLES

• SYSTEM ARCHITECTURES

– Centralized Architectures

– Decentralized Architectures

– Hybrid Architectures

• ARCHITECTURES VERSUS MIDDLEWARE

– Wrappers

– Interceptors

– General Approaches to Adaptive Software

• SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS

– The Feedback Control Model



Self-managing Distributed Systems

• When adaptation needs to be done automatically, we see a 

strong interplay between system architectures and software 

architectures.

– On the one hand, we need to organize the components of 

a distributed system such that monitoring and adjustments 

can be done, while on the other hand we need to decide 

where the processes are to be executed that handle the 

adaptation.

• Explicit attention is dedicated to organizing distributed 

systems as high-level feedback-control systems allowing 

automatic adaptations to changes.

• This phenomenon is also known as autonomic computing



Autonomic Computing

• This name indicates the variety by which automatic 
adaptations are being captured: 

– self-managing 

– self-healing

– self-configuring 

– self-optimizing

– Self-*

• We resort simply to using the name self-managing 
systems as coverage of its many variants.

• In many cases, self-* systems are organized as a 
feedback control system.



Feedback control system

This shows the logical organization of a self-managing system, and as 

such corresponds to what we have seen when discussing software 

architectures. However, the physical organization may be very different.

For example, the analysis component may be fully distributed across 

the system.



End of Lesson 2

• Readings

– Distributed Systems, Chapter 2.


