
Distributed Systems

Lesson 6

Processes, Communication, Naming

University of New York in Tirana

Master of Science in Computer Science

Prof. Dr. Marenglen Biba

Lesson 6

01: Introduction

02: Architectures

03: Processes

04: Communication

05: Naming

06: Synchronization

07: Consistency & Replication

08: Fault Tolerance

09: Security

10: Distributed Object-Based Systems

11: Distributed File Systems

12: Distributed Web-Based Systems

13: Distributed Coordination-Based Systems

PART I - Processes

• Threads

• Virtualization

• Clients

• Servers

• Migration

Processes

• The concept of a process is fundamental in the field of

operating systems where it is generally defined as a

program in execution.

• From an operating-system perspective, the management

and scheduling of processes are perhaps the most

important issues to deal with.

• However, when it comes to distributed systems, other

issues turn out to be equally or more important.

Concurrency transparency

• An important issue is that the operating system takes

great care to ensure that:

independent processes cannot maliciously or

inadvertently affect the correctness of each other's

behavior.

• In other words, the fact that multiple processes may be

concurrently sharing the same CPU and other hardware

resources is made transparent.

Processes and threads

• We build virtual processors in software, on top of physical

processors:

– Processor: Provides a set of instructions along with the

capability of automatically executing a series of those

instructions.

– Thread: A minimal software processor in whose context a

series of instructions can be executed.

– Process: A software processor in whose context one or

more threads may be executed. Executing a thread,

means executing a series of instructions in the context of

that thread.

Single and Multithreaded

Processes

Multithreading for large applications

• Multithreading is also useful in the context of large

applications.

• Such applications are often developed as a collection of

cooperating programs, each to be executed by a separate

process.

• Cooperation is typical for a UNIX environment.

– Cooperation between programs is implemented by means

of interprocess communication (IPC) mechanisms.

– The major drawback of all IPC mechanisms is that

communication often requires extensive context switching.

Threads and Distributed Systems:

blocking system calls!

• An important property of threads is that they can provide

a convenient means of allowing blocking system calls

without blocking the entire process in which the thread is

running.

• This property makes threads particularly attractive to use

in distributed systems as it makes it much easier to

express communication in the form of maintaining

multiple logical connections at the same time.

• We illustrate this point by taking a closer look at

multithreaded clients and servers.

Threads and Distributed Systems

Multithreaded Web client

• Hiding network latencies:

– Web browser scans an incoming HTML page, and

finds that more files are to be fetched.

• Each file is fetched by a separate thread, each

doing a (blocking) HTTP request.

• As files come in, the browser displays them.

Multithreaded Web browsers

• If several connections are set up to the same server and

the server is heavily loaded, or just plain slow, no real

performance improvements will be noticed compared to

pulling in the files that make up the page strictly one after

the other.

• However, in many cases, Web servers have been

replicated across multiple machines, where each server

provides exactly the same set of Web documents.

• When using a multithreaded client, connections may be

set up to different replicas, allowing data to be transferred

in parallel,

– web document are fully displayed in a much shorter time than with

a nonreplicated server.

Multithreaded clients

Multiple request-response calls to other machines

(RPC)

– A client does several calls at the same time, each one by a

different thread.

– It then waits until all results have been returned.

– Note: if calls are to different servers, we may have a linear

speed-up.

• This approach is possible only if the client can handle

truly parallel streams of incoming data.

• Threads are ideal for this purpose.

Multithreaded Servers

PART I - Processes

• Threads

• Virtualization

• Clients

• Servers

• Migration

Resource Virtualization

• Threads and processes can be seen as a way to do

more things at the same time.

• In effect, they allow us to build programs that appear to

be executed simultaneously.

• On a single-processor computer, this simultaneous

execution is, of course, an illusion.

– As there is only a single CPU, only an instruction from a single

thread or process will be executed at a time.

Resource Virtualization

• By rapidly switching between threads and

processes, the illusion of parallelism is created.

• This separation between having a single CPU

and being able to pretend there are more can be

extended to other resources as well, leading to

what is known as resource virtualization.

Virtualization

• One of the most important reasons for introducing

virtualization in the 1970s, was to allow legacy software to run

on expensive mainframe hardware.

– The software not only included various applications, but in

fact also the operating systems they were developed for.

• This approach toward supporting legacy software has been

successfully applied on the IBM 370 mainframes (and their

successors) that offered a virtual machine to which different

operating systems had been ported.

Virtualization: Why?

• Virtualization is becoming increasingly

important:

– Hardware changes faster than software

– Ease of portability and code migration

– Isolation of failing or attacked components

Virtualization

Virtual Machines

Non-virtual Machine Virtual Machine

Virtual Machines

• A Virtual Machine Monitor (or System virtual machine) provides a

complete system platform which supports the execution of a

complete operating system (OS).

– VMware

– Virtual PC (Microsoft)

• A process virtual machine is designed to run a single program,

which means that it supports a single process.

– This type of VM has become popular with the Java programming

language, which is implemented using the Java virtual machine.

– Another example is the .NET Framework, which runs on a VM

called the Common Language Runtime.

Virtual Machines in Action

VMware Architecture

The Java Virtual Machine

.NET Architecture

Importance of VMMs

• VMMs have become increasingly important in the

context of reliability and security for (distributed)

systems.

• As they allow for the isolation of a complete application

and its environment, a failure caused by an error or

security attack need no longer affect a complete

machine.

• In addition, as we also mentioned before, portability is

greatly improved as VMMs provide a further decoupling

between hardware and software, allowing a complete

environment to be moved from one machine to another.

PART I - Processes

• Threads

• Virtualization

• Clients

• Servers

• Migration

Thin clients

In b) the client machine is used only as a terminal with no need for

local storage, leading to an application neutral solution.

In the case of networked user interfaces, everything is processed

and stored at the server.

This thin-client approach is receiving more attention as Internet

connectivity increases, and hand-held devices are becoming more

sophisticated.

PART I - Processes

• Threads

• Virtualization

• Clients

• Servers

• Migration

Servers anatomy

• There are several ways to organize servers.

• In the case of an iterative server, the server itself handles
the request and, if necessary, returns a response to the
requesting client.

• A concurrent server does not handle the request itself, but
passes it to a separate thread or another process, after
which it immediately waits for the next incoming request.

• A multithreaded server is an example of a concurrent
server.
– An alternative implementation of a concurrent server is to fork a

new process for each new incoming request.

Where clients contact a server

• Another issue is where clients contact a server.

• In all cases, clients send requests to an end point, also called a port,

at the machine where the server is running. Each server listens to a

specific end point.

• How do clients know the end point of a service? One approach is to

globally assign end points for well-known services.

• For example, servers that handle Internet FTP requests always

listen to TCP port 21. Likewise, an HTTP server for the World Wide

Web will always listen to TCP port 80.

• End points have been assigned by the Internet Assigned Numbers

Authority (lAN).

• With assigned end points, the client only needs to find the network

address of the machine where the server is running.

– As we will explain after, name services can be used for that purpose.

Ports for services

Daemons
• There are many services that do not require a preassigned end point.

For example, a time-of-day server may use an end point that is
dynamically assigned to it by its local operating system.

• In that case, a client will first have to look up the end point.

• One solution is to have a special daemon running on each machine
that runs servers.

• The daemon keeps track of the current end point of each service
implemented by a co-located server. The daemon itself listens to a
well-known end point. A client will first contact the daemon, request
the end point, and then contact the specific server.

Superserver

• It is common to associate an end point with a specific

service.

• However, actually implementing each service by means of

a separate server may be a waste of resources.

– For example, in a typical UNIX system, it is common to

have lots of servers running simultaneously, with most

of them passively waiting until a client request comes

in.

• Instead of having to keep track of so many passive

processes, it is often more efficient to have a single

superserver listening to each end point associated with a

specific service.

Superserver

Server Clusters

Critical element

The first tier is generally responsible for passing requests to an appropriate

server.

Server clusters for streaming media

• Of course, not all server clusters will follow this strict

separation in 3 parts.

• It is frequently the case that each machine is equipped

with its own local storage, often integrating application

and data processing in a single server leading to a two

tiered architecture.

• For example, when dealing with streaming media by

means of a server cluster, it is common to deploy a two-

tiered system architecture, where each machine acts as

a dedicated media server.

PART I - Processes

• Threads

• Virtualization

• Clients

• Servers

• Migration

Code Migration

• Many second-tier machines run only a single application.

– This limitation comes from dependencies on available

software and hardware, but also that different applications

are often managed by different administrators.

• As a consequence, we may find that certain machines are

temporarily idle, while others are receiving an overload of

requests.

– What would be useful is to temporarily migrate services to

idle machines.

– A solution is to use virtual machines allowing a relative

easy migration of code to real machines.

Distributed Servers

• The server clusters discussed so far are generally rather

statically configured.

– A separate administration machine keeps track of available

servers, and passes this information to other machines such

as the switch.

• Most server clusters offer a single access point. When that point

fails, the cluster becomes unavailable.

• To eliminate this potential problem, several access points can be

provided, of which the addresses are made publicly available.

Route optimization: different access points

Route optimization can be used to make different clients believe they are

communicating with a single server, where, in fact, each client is

communicating with a different member node of the distributed server

Code Migration

• Until now we have been mainly concerned with

distributed systems in which communication is limited to

passing data.

• However, there are situations in which passing

programs, sometimes even while they are being

executed, simplifies the design of a distributed system.

Heterogeneity: moving processes

on Process VMs

• About 25 years later, code migration in heterogeneous

systems is being attacked by scripting languages and

highly portable languages such as Java.

• All such solutions have in common that they rely on a

(process) virtual machine that either directly interprets

source code (as in the case of scripting languages), or

otherwise interprets intermediate code generated by a

compiler (as in Java).

Heterogeneity: moving entire

computing environment

• Recent developments have started to weaken the

dependency on programming languages.

• In particular, solutions have been proposed not only to

migrate processes, but to migrate entire computing

environments.

Migrating entire environments

• There are several reasons for wanting to migrate entire

environments, but perhaps the most important one is that it

allows continuation of operation while a machine needs to be

shutdown.

• For example, in a server cluster, the systems administrator

may decide to shut down or replace a machine, but will not

have to stop all its running processes.

– Instead, it can temporarily freeze an environment, move it

to another machine (where it sits next to other, existing

environments), and simply unfreeze it again.

• Clearly, this is an extremely powerful way to manage long-

running compute environments and their processes.

Migrating Operating Systems ☺

• The overall effect of migrating environments,

instead of migrating processes, is that now we

actually see that an entire operating system can

be moved between machines.

End of PART I

• Readings

– Distributed Systems, Chapter 3

PART II - Communication

• Fundamentals

• Remote Procedure Call

• Message-Oriented Middleware (MOM)

• Data streaming

Interprocess communication

• Interprocess communication is at the heart of all

distributed systems.

• Communication in distributed systems is always based

on low-level message passing as offered by the

underlying network.

– Expressing communication through message passing

is harder than using primitives based on shared

memory, as available for nondistributed platforms.

• Modern distributed systems often consist of thousands

or even millions of processes scattered across a network

with unreliable communication such as the Internet.

Protocols and Models
• The rules that communicating processes must adhere to are known

as protocols,

– We concentrate on structuring those protocols in the form of
layers.

• Low-level layers

• Transport layer

• Application layer

• Middleware layer

• Widely-used models for communication:

– Remote Procedure Call (RPC)

– Message-Oriented Middleware (MOM)

– Data streaming

Absence of shared memory

• Due to the absence of shared memory, all communication in

distributed systems is based on sending and receiving (low

level) messages.

• When process A wants to communicate with process B, it first

builds a message in its own address space.

• Then it executes a system call that causes the operating

system to send the message over the network to B.

• A and B have to agree on the meaning of the bits being sent!!!

– If A sends a brilliant new novel written in French and

encoded in IBM's EBCDIC character code, and B expects

the inventory of a supermarket written in English and

encoded in ASCII, communication will be less than

optimal. ☺

How do process agree?

• Many different agreements are needed.

– How many volts should be used to signal a 0-bit, and

how many volts for a 1-bit?

– How does the receiver know which is the last bit of the

message?

– How can it detect if a message has been damaged or

lost, and what should it do if it finds out?

– How long are numbers, strings, and other data items,

and how are they represented?

• In short, agreements are needed at a variety of levels,

varying from the low-level details of bit transmission to the

high-level details of how information is to be expressed.

The ISO/OSI reference model

• To make it easier to deal with the numerous levels and issues

involved in communication, the International Standards

Organization (ISO) developed a reference model that clearly

identifies the various levels involved, gives them standard

names, and points out which level should do which job.

• This model is called the Open Systems Interconnection

Reference Model usually abbreviated as ISO OSI or

sometimes just the OSI model.

The OSI model

Building messages

Transport Protocol

• The job of the transport layer is to provide a reliable connection.

– The idea is that the application layer should be able to deliver a

message to the transport layer with the expectation that it will be

delivered without loss.

– Upon receiving a message from the application layer, the transport

layer breaks it into pieces small enough for transmission, assigns

each one a sequence number, and then sends them all.

• The discussion in the transport layer header concerns:

– which packets have been sent

– which have been received

– how many more the receiver has room to accept

– which should be retransmitted

– and similar topics.

Problems of OSI

• What is missing in OSI is:

a clear distinction between applications, application-

specific protocols, and general-purpose protocols.

• Internet File Transfer Protocol (FTP) defines a protocol for

transferring files between a client and server machine.

– The protocol should not be confused with the ftp

program, which is an end-user application for

transferring files and which also (not entirely by

coincidence) happens to implement the Internet FTP.

Problems of OSI
• A typical application-specific protocol is the HyperText

Transfer Protocol (HTTP), designed to remotely manage the

transfer of Web pages. Implemented by Web browsers and

Web servers.

– However, HTTP is now also used by systems that are not

intrinsically tied to the Web.

– For example, Java's object-invocation mechanism uses

HTTP to request the invocation of remote objects that are

protected by a firewall (Sun Microsystems, 2004b).

• There are also many general-purpose protocols that are

useful to many applications, but which cannot be qualified as

transport protocols.

• In many cases, such protocols fall into the category of

middleware protocols

Middleware layer

• Middleware is invented to provide common services and

protocols that can be used by many different

applications.

• Middleware is an application that logically lives (mostly)

in the application layer, but which contains many

general-purpose protocols that warrant their own layers,

independent of other, more specific applications.

• A distinction can be made between high-level

communication protocols and protocols for establishing

various middleware services.

Middleware services

• There are numerous protocols to support a variety of

middleware services.

• Many protocols tend to have a general application-

independent nature

• For example:

– Authentication protocols are not closely tied to any

specific application, but instead, can be integrated

into a middleware system as a general service.

– Authorization protocols by which authenticated users

and processes are granted access only to those

resources for which they have authorization.

Middleware services

• Commit Protocols

– Commit protocols establish that in a group of processes
either all processes carry out a particular operation, or that
the operation is not carried out at all.

• This phenomenon is also referred to as atomicity and is
widely applied in transactions.

• Distributed locking protocol

– By which a resource can be protected against
simultaneous access by a collection of processes that are
distributed across multiple machines.

Middleware communication services

• Middleware communication protocols support high-level

communication services.

• For example, there are protocols that allow a process to call a

procedure or invoke an object on a remote machine in a highly

transparent way: Remote Method Invocation

• Likewise, there are high-level communication services:

– for setting and synchronizing streams

– for transferring real-time data, such as needed for multimedia

applications.

• Finally some middleware systems offer reliable multicast services

that scale to thousands of receivers spread across a wide area

network.

Plugging the Middleware

PART II - Communication

• Fundamentals

• Remote Procedure Call

• Message-Oriented Middleware (MOM)

• Data streaming

The RPC basic idea

• All application developers are familiar with simple procedure model

– Procedures operate in isolation (black box)

– There is no fundamental reason not to execute procedures on

separate machine

• A paper by Birrell and Nelson (1984) introduced a completely

different way of handling communication

– Allow programs to call procedures located on other machines.

– When a process on machine A calls' a procedure on machine B,

the calling process on A is suspended, and execution of the

called procedure takes place on B.

– Information can be transported from the caller to the callee in the

parameters and can come back in the procedure result.

• No message passing at all is visible to the programmer.

• This method is known as Remote Procedure Call, or often just

RPC.

Client-Server with RPC

RPC Step-by-Step

RPC: Parameter Passing
• The function of the client stub is to take its parameters, pack them

into a message, and send them to the server stub.

• Packing parameters into a message is called parameter

marshaling.

• Problems:

– Client and server machines may have different data

representations (for example byte ordering)

– Wrapping a parameter means transforming a value into a

sequence of bytes

– Client and server have to agree on the same encoding:

• How are basic data values represented (integers, floats,

characters)

• How are complex data values represented (arrays, unions)

– Client and server need to properly interpret messages,

transforming them into machine-dependent representations.

Types of RPCs: synchronous

Can we try to get rid of the strict request-reply behavior? Let the

client continue without waiting for an answer from the server. =>

next slide

Asynchronous RPCs

PART II - Communication

• Fundamentals

• Remote Procedure Call

• Message-Oriented Middleware (MOM)

• Data streaming

Message-Oriented Communication

• Transient Messaging

• Message-Queuing System

• Message Brokers

• Example: IBM Websphere

RPC: not always solves

• Remote procedure calls and remote object invocations contribute to

hiding communication in distributed systems, that is, they enhance

access transparency.

• Unfortunately, neither mechanism is always appropriate.

• When it cannot be assumed that the receiving side is executing at

the time a request is issued, alternative communication services are

needed.

• The inherent synchronous nature of RPCs, by which a client is

blocked until its request has been processed, sometimes needs to

be replaced by something else.

Transient messaging:

Berkeley sockets

• Conceptually, a socket is a communication end point to

which an application can write data that are to be sent

out over the underlying network, and from which

incoming data can be read.

• Definition: A socket forms an abstraction over the actual

communication end point that is used by the local

operating system for a specific transport protocol.

• (Dict. transient: Lasting only for a short time; impermanent)

Socket Primitives for TCP/IP

Transient messaging: sockets

MPI: Message Passing Interface

• The need to be hardware and platform independent

eventually has led to the definition of a standard for message

passing, simply called the Message-Passing Interface or MPI.

• MPI is designed for parallel applications and as such is

tailored to transient communication.

• MPI makes direct use of the underlying network.

MPI Primitives

Message-Oriented

Persistent Communication

• Asynchronous persistent communication through support of

middleware-level queues.

– Queues correspond to buffers at communication servers.

• Message-queuing systems

– An important aspect of message-queuing systems is that a

sender is generally given only the guarantees that its

message will eventually be inserted in the recipient's queue.

– No guarantees are given about when, or even if the message

will actually be read, which is completely determined by the

behavior of the recipient.

Architecture of a

Message-Queuing System

• The collection of queues is distributed across multiple machines.

• Consequently, for a message-queuing system to transfer messages, it

should maintain a mapping of queues to network locations.

• In practice, this means that it should maintain a (possibly distributed)

database of queue names to network locations.

• Such a mapping is analogous to the Domain Name System (DNS) for

e-mail in the Internet.

Message broker

Observation

– Message queuing systems assume a common messaging

protocol: all applications agree on message format (i.e.,

structure and data representation)

Message broker

Centralized component that takes care of application heterogeneity in

an MQ system:

– Transforms incoming messages to target format

– Very often acts as an application gateway

– May provide subject-based routing capabilities => Enterprise

Application Integration

Message Broker

Message Broker in Enterprise

Information Systems

• More common is the use of a message broker for advanced

enterprise application integration (EAI).

• In this case, rather than (only) converting messages, a broker is

responsible for matching applications based on the messages that

are being exchanged.

• In such a model, called publish/subscribe, applications send

messages in the form of publishing.

– In particular, they may publish a message on topic X, which is

then sent to the broker.

– Applications that have stated their interest in messages on topic

X, that is, who have subscribed to those messages, will then

receive these messages from the broker.

E-Mail systems

• E-mail systems are generally implemented through a collection

of mail servers that store and forward messages on behalf of the

users on hosts directly connected to the server.

– For example, in the mail protocol for the Internet, SMTP

(Postel, 1982), a message is transferred by setting up a direct

TCP connection to the destination mail server.

General message-queuing systems

• General message-queuing systems are not aimed at

supporting only end users.

– They are set up to enable persistent communication

between processes, regardless of whether a process is

running a user application, handling access to a database

or performing computations.

IBM Websphere

Message transfer

• Messages are transferred between queues

• Message transfer between queues at different processes,

requires a channel

• At each endpoint of channel is a message channel agent

(MCA)

• Message channel agents are responsible for:

– Setting up channels using lower-level network

communication facilities (e.g., TCP/IP)

– (Un)wrapping messages from/in transport-level packets

– Sending/receiving packets

Websphere

PART II - Communication

• Fundamentals

• Remote Procedure Call

• Message-Oriented Middleware (MOM)

• Data streaming

Stream-oriented communication

• Support for continuous media

• Streams in distributed systems

• Stream management

Continuous flow of data

Observation

• All communication facilities discussed so far are

essentially based on a discrete, that is time-independent

exchange of information

• Continuous media

– Characterized by the fact that values are time

dependent:

• Audio

• Video

• Animations

• Sensor data (temperature, pressure, etc.)

Continuous media

Transmission modes

Different timing guarantees with respect to data transfer:

• Asynchronous: no restrictions with respect to when data

is to be delivered

• Synchronous: define a maximum end-to-end delay for

individual data packets

• Isochronous: define a maximum and minimum end-to-

end delay

Stream
Definition

A (continuous) data stream is a connection-oriented

communication facility that supports isochronous data

transmission.

Some common stream characteristics

• Streams are unidirectional

• There is generally a single source, and one or more

destinations

• Simple stream: a single flow of data, e.g., audio or video

• Complex stream: multiple data flows, e.g., stereo audio

or combination audio/video

Streaming

Streams and QoS

Essence

• Streams are all about timely delivery of data. How do

you specify this Quality of Service (QoS)?

• Basics:

– The required bit rate at which data should be

transported.

– The maximum delay until a session has been set up

(i.e., when an application can start sending data).

– The maximum end-to-end delay (i.e., how long it will

take until a data unit makes it to a recipient).

– The maximum delay variance, or jitter.

– The maximum round-trip delay.

Stream synchronization

Problem

• Given a complex stream, how do you keep the

different substreams in synch?

Example

• Think of playing out two channels, that together

form stereo sound. Difference should be less

than 20–30 msec!

Stream explicit synchronization at

level data units

Stream synchronization:

high-level interface

• Multiplex all substreams into a single stream, and demultiplex at

the receiver.

• Synchronization is handled at multiplexing/demultiplexing point

(this approach is followed for MPEG streams).

End of PART II

• Readings

– Distributed Systems, Chapter 4.

PART III - Naming

• Names, Identifiers, and addresses

• Flat Naming

• Structured Naming

• Attributed-based Naming

Names

• Names are used to share resources, to uniquely identify

entities, to refer to locations, and more.

• An important issue with naming is that a name can be

resolved to the entity it refers to.

• Name resolution thus allows a process to access the named

entity.

• To resolve names, it is necessary to implement a naming

system.

Naming

• Names, identifiers, and addresses

• Name resolution

• Name space implementation

Names and Access Points

• A name in a distributed system is a string of bits or characters

that is used to refer to an entity.

– An entity in a distributed system can be practically

anything.

• To operate on an entity, it is necessary to access it, for which

we need an access point.

– An access point is yet another, but special, kind of entity in

a distributed system

– The name of an access point is called an address

Access Points

• An entity can offer more than one access point.

• In a distributed system, a typical example of an access point is

a host running a specific server, with its address formed by the

combination of, for example, an IP address and port number

(i.e., the server's transport-level address).

• An entity may change its access points in the course of time.

– For example. when a mobile computer moves to another

location, it is often assigned a different IP address than the

one it had before.

Location Independent

• If an entity offers more than one access point, it is not

clear which address to use as a reference.

• A much better solution is to have a single name for the

Web service independent from the addresses of the

different Web servers.

• Such a name is called location independent.

Identifiers

Pure name

A name that has no meaning at all; it is just a random string. Pure

names can be used for comparison only.

Identifier

A name having the following properties:

– Each identifier refers to at most one entity

– Each entity is referred to by at most one identifier

– An identifier always refers to the same entity (prohibits reusing

an identifier)

Name-to-address binding

• Having names, identifiers, and addresses brings us to the central

theme of naming: how do we resolve names and identifiers to

addresses?

– It is important to realize that there is often a close relationship

between name resolution in distributed systems and message

routing.

• In principle, a naming system maintains a name-to-address binding

which in its simplest form is just a table of (name, address) pairs.

• In distributed systems that span large networks and for which many

resources need to be named, a centralized table is not going to

work.

PART III - Naming

• Names, Identifiers, and addresses

• Flat Naming

• Structured Naming

• Attributed-based Naming

Flat Naming

Problem

Given an essentially unstructured name (e.g., an identifier),

how can we locate its associated access point?

• Simple solutions

– Broadcasting and Multicasting

• Home-based approaches

• Distributed Hash Tables (structured P2P)

• Hierarchical location service

Broadcasting

• Consider a distributed system built on a computer network

that offers efficient broadcasting facilities.

– Typically, such facilities are offered by local-area networks

in which all machines are connected to a single cable or

the logical equivalent thereof. Also, local-area wireless

networks fall into this category.

• Locating an entity in such an environment is simple: a

message containing the identifier of the entity is broadcast to

each machine and each machine is requested to check

whether it has that entity

– Only the machines that can offer an access point for the

entity send a reply message containing the address of that

access point.

Multicasting

• Multicasting can also be used to locate entities in point-

to-point networks.

– For example, the Internet supports network-level

multicasting by allowing hosts to join a specific

multicast group.

• Such groups are identified by a multicast address.

• When a host sends a message to a multicast address,

the network layer tries to deliver that message to all

group members.

Forwarding Pointers

• Another popular approach to locating mobile entities is to

make use of forwarding pointers.

• The principle is simple: when an entity moves from A to

B, it leaves behind in A a reference to its new location at

B.

– The main advantage of this approach is its simplicity:

as soon as an entity has been located, for example by

using a traditional naming service, a client can look

up the current address by following the chain of

forwarding pointers.

Home-based approaches

Single-tiered scheme

Let a home keep track of where the entity is:

• Entity’s home address registered at a naming service

• The home registers the foreign address of the entity

• Client contacts the home first, and then continues with

foreign location

Home-based approaches: Mobile IP

• Each mobile host uses a fixed IP address.

• All communication to that IP address is initially directed

to the mobile host's home agent.

• This home agent is located on the local-area network

corresponding to the network address contained in the

mobile host's IP address.

• In the case of IPy6, it is realized as a network-layer

component.

• Whenever the mobile host moves to another network, it

requests a temporary address that it can use for

communication.

• This care-of address is registered at the home agent.

Home-based approaches: Mobile IP

• When the home agent receives a packet for the mobile

host, it looks up the host's current location.

– If the host is on the current local network, the packet

is simply forwarded.

– Otherwise, it is tunneled to the host's current location,

that is, wrapped as data in an IP packet and sent to

the care-of address.

• At the same time, the sender of the packet is informed of

the host's current location.

Home-based approaches: Mobile IP

Home-based approaches

Problems with home-based approaches

• Home address has to be supported for entity’s lifetime

• Home address is fixed => unnecessary burden when the
entity permanently moves

• Poor geographical scalability (entity may be next to
client)

Question

• How can we solve the “permanent move” problem?

Distributed Hash Tables (DHT)

Consider the organization of many nodes into a logical ring

• Each node is assigned a random m-bit identifier.

• Every entity is assigned a unique m-bit key.

• Entity with key k falls under jurisdiction of node with
smallest id ≥ k (called its successor).

• DHT-based systems provide several name resolution
services

Hierarchical Location Services (HLS)

• In a hierarchical scheme, a network is divided into a

collection of domains.

– There is a single top-level domain that spans the entire network.

– Each domain can be subdivided into multiple, smaller

subdomains.

• A lowest-level domain, called a leaf domain, typically

corresponds to a local-area network in a computer

network or a cell in a mobile telephone network.

Directory nodes

• Each domain D has an associated directory node dir(D)

that keeps track of the entities in that domain.

• This leads to a tree of directory nodes

– The directory node of the top-level domain, called the

root (directory) node, knows about all entities keeping

for each of them a location record.

Directory nodes

HLS as a Tree

• Address of entity E is stored in a leaf or intermediate node

• Intermediate nodes contain a pointer to a child iff the subtree rooted

at the child stores an address of the entity

• The root knows about all entities

HLS: Look-up

Basic principles

• Start lookup at local leaf node

• Node knows about E => follow downward pointer, else go up

• Upward lookup always stops at root

PART III - Naming

• Names, Identifiers, and addresses

• Flat Naming

• Structured Naming

• Attributed-based Naming

Structured Naming

• From Flat Naming towards Structured

Naming

Structured Naming

• Flat names are good for machines, but are generally not

very convenient for humans to use.

• As an alternative, naming systems generally support

structured names that are composed from simple,

human-readable names.

• Not only file naming, but also host naming on the

Internet follow this approach.

• In this section, we concentrate on structured names and

the way that these names are resolved to addresses.

Name Spaces

• Names are commonly organized into what is called a name

space.

• Name spaces for structured names can be represented as a

labeled directed graph with two types of nodes.

– A leaf node represents a named entity and has the property

that it has no outgoing edges.

• A leaf node generally stores information on the entity it is

representing

– A directory node has a number of outgoing edges, each

labeled with a name

• Stores a table in which an outgoing edge is represented

as a pair (edge label, node identifier). This is called

directory table.

Naming Graph

Name Space

Observation

• We can easily store all kinds of attributes in a node,

describing aspects of the entity the node represents:

– Type of the entity

– An identifier for that entity

– Address of the entity’s location

– Nicknames

– ...

Note

• Directory nodes can also have attributes, besides just

storing a directory table with (edge label, node identifier)

pairs.

Name resolution

Problem

To resolve a name we need a directory node. How do we

actually find that (initial) node?

Closure mechanism

• Name resolution can take place only if we know how and

where to start.

• Knowing how and where to start name resolution is

generally referred to as a closure mechanism.

– www.cs.vu.nl: start at a DNS name server

– /home/steen/mbox: start at the local NFS file server

(possible recursive search)

Mounting remote name spaces

Figure 5-12. Mounting remote name spaces through a specific access protocol.

Name Space Distribution

• Concept: distribute the name resolution process as well

as name space management across multiple machines,

by distributing nodes of the naming graph.

• As before, assume such a name space has only a single

root node.

• To effectively implement such a name space, it is

convenient to partition it into logical layers.

– Global level

– Administrational level

– Managerial level

Name-space implementation

Name-space implementation

A comparison between name servers for implementing

nodes from a large-scale name space partitioned into

a global layer, an administrational layer, and a

managerial layer.

Iterative name resolution

Recursive name resolution

Example: The Domain Name

System

The comparison between recursive and iterative name

resolution with respect to communication costs.

Caching in name servers

Recursive name resolution of <nl, vu, cs, ftp>. Name

servers cache intermediate results for subsequent

lookups.

DNS

• One of the largest distributed naming services in use

today is the Internet Domain Name System (DNS).

• The DNS name space is hierarchically organized as a

rooted tree. A label is a case-insensitive string made up

of alphanumeric characters.

– A label has a maximum length of 63 characters; the

length of a complete path name is restricted to 255

characters.

• A subtree is called a domain

• The contents of a node is formed by a collection of

resource records.

DNS: Resource Records

DNS Implementation (1)

An excerpt from the DNS database for the zone cs.vu.nl.

DNS Implementation (2)

• Figure 5-20. An excerpt from the DNS

database for the zone cs.vu.nl.

PART III - Naming

• Names, Identifiers, and addresses

• Flat Naming

• Structured Naming

• Attributed-based Naming

ATTRIBUTE-BASED NAMING

Observation

• In many cases, it is much more convenient to name, and
look up entities by means of their attributes => traditional
directory services (ex. yellow pages).

Problem

• Lookup operations can be extremely expensive, as they
require to match requested attribute values, against
actual attribute values => inspect all entities (in
principle).

Solution

• Implement basic directory service as database, and
combine with traditional structured naming system.

LDAP

• A common approach to tackling distributed directory

services is to combine structured naming with attribute-

based naming.

• This approach has been widely adopted, for example, in

Microsoft's Active Directory service and other systems.

• Many of these systems use, or rely on the lightweight

directory access protocol commonly referred simply as

LDAP.

LDAP

• Conceptually, an LDAP directory service consists of a

number of records, usually referred to as directory

entries.

• A directory entry is comparable to a resource record in

DNS.

• Each record is made up of a collection of (attribute.

value) pairs, where each attribute has an associated

type.

LDAP Directory

Example: LDAP

Active Directory

• Active Directory is a technology created by Microsoft that

provides a variety of network services, including:

– LDAP-like directory services

– Kerberos-based authentication

– DNS-based naming and other network information

– Central location for network administration and

delegation of authority

– Information security and single sign-on for user

access to networked based resources

– The ability to scale up or down easily

– Central storage location for application data

– Synchronization of directory updates amongst several

servers

Active Directory

Hierarchical organization of AD

Active Directory organizes information hierarchically to ease network

use and management

Object-oriented storage in AD

Active Directory objects and attributes are protected by access control lists.

End of PART III

• Readings

– Distributed Systems, Chapter 5.

