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Synchronization

• It is important that multiple processes do not 

simultaneously access a shared resource, such as 

printer, but instead cooperate in granting each other 

temporary exclusive access. 

• Moreover multiple processes may sometimes need to 

agree on the ordering of events, such as whether 

message m1 from process P was sent before or after 

message m2 from process Q.



Synchronization in distributed 

systems
• While communication is important, it is not 

everything.

– Closely related is how processes cooperate 

and synchronize with one another.

• Synchronization in distributed systems is often 

much more difficult compared to synchronization 

in uniprocessor or multiprocessor systems.



CLOCK SYNCHRONIZATION

• Physical clocks

• Logical clocks

• Vector clocks



The Clock problem

• In a centralized system, time is unambiguous. 

– When a process wants to know the time, it makes a system 
call and the kernel tells it. 

• If process A asks for the time, and then a little later process B 
asks for the time, the value that B gets will be higher than (or 
possibly equal to) the value A got. 

– It will certainly not be lower. 

• In a distributed system, achieving agreement on time is not 
trivial.

• Is it possible to synchronize all the clocks in a distributed 
system? 

– The answer is surprisingly complicated.



Computer’s clock
• All computers have a circuit for keeping track of time. Despite the 

widespread use of the word "clock" to refer to these devices, they 

are not actually clocks in the usual sense. 

• A computer timer is usually a precisely machined quartz crystal. 

• When kept under tension, quartz crystals oscillate at a well-defined 

frequency that depends on the kind of crystal, how it is cut, and the 

amount of tension. 

• Associated with each crystal are two registers, a counter and a 

holding register.

• Each oscillation of the crystal decrements the counter by one. When 

the counter gets to zero, an interrupt is generated and the counter is 

reloaded from the holding register. 

• In this way, it is possible to program a timer to generate an interrupt 

60 times a second, or at any other desired frequency. 

• Each interrupt is called one clock tick.



Clocks on different machines

• With a single computer and a single clock, it does not matter much if 

this clock is off by a small amount. 

– Since all processes on the machine use the same clock, they will 

still be internally consistent.

• As soon as multiple CPUs are introduced, each with its own clock, the 

situation changes radically. 

– Although the frequency at which a crystal oscillator runs is usually 

fairly stable, it is impossible to guarantee that the crystals in 

different computers all run at exactly the same frequency. 

• In practice, when a system has n computers, all n crystals will run at 

slightly different rates, causing the (software) clocks gradually to get 

out of synch and give different values when read out. 

– This difference in time values is called clock skew.



External Physical Clocks

• In some systems (e.g., real-time systems), the actual 
clock time is important.

• Under these circumstances, external physical clocks are 
needed. 

• For reasons of efficiency and redundancy, multiple 
physical clocks are generally considered desirable, 
which yields two problems: 

(1) How do we synchronize them with realworld 
clocks and 

(2) How do we synchronize the clocks with each 
other?



Solar second
• Since the invention of mechanical clocks in the 17th 

century, time has been measured astronomically. 

• Every day, the sun appears to rise on the eastern 
horizon, then climbs to a maximum height in the sky, and 
finally sinks in the west. 

• The event of the sun's reaching its highest apparent 
point in the sky is called the transit of the sun. 

• This event occurs at about noon each day. 

• The interval between two consecutive transits of the sun 
is called the solar day. 

• Since there are 24 hours in a day, each containing 3600 
seconds, the solar second is defined as exactly 
1/86400th of a solar day.



Mean Solar Second
• In the 1940s, it was established that the period of the earth's rotation 

is not constant.

• The earth is slowing down due to tidal friction and atmospheric drag.

• Based on studies of growth patterns in ancient coral, geologists now 

believe that 300 million years ago there were about 400 days per 

year. 

• The length of the year (the time for one trip around the sun) is not 

thought to have changed; the day has simply become longer.

• In addition to this long-term trend, short-term variations in the length 

of the day also occur, probably caused by turbulence deep in the 

earth's core of molten iron. 

• These revelations led astronomers to compute the length of the day 

by measuring a large number of days and taking the average before 

dividing by 86,400. 

• The resulting quantity was called the mean solar second.



TAI
• With the invention of the atomic clock in 1948, it became possible to 

measure time much more accurately, and independent of the 

wiggling and wobbling of the earth, by counting transitions of the 

cesium 133 atom. 

– The physicists took over the job of timekeeping from the astronomers 

and defined the second to be the time it takes the cesium 133 atom to 

make exactly 9,192,631,770 transitions. 

• The choice of 9,192,631,770 was made to make the atomic second 

equal to the mean solar second in the year of its introduction.

• Currently, several laboratories around the world have cesium 133 

clocks. 

• Periodically, each laboratory tells the Bureau International de 

l'Heure (BIR) in Paris how many times its clock has ticked. The BIR 

averages these to produce International Atomic Time, which is 

abbreviated TAl. 

• Thus TAI is just the mean number of ticks of the cesium 133 clocks 

since midnight on Jan. 1,1958 (the beginning of time) divided by 

9,192,631,770.



Time really matters
• Although TAl is highly stable and available to anyone who wants to 

go to the trouble of buying a cesium clock, there is a serious 

problem with it; 

– 86,400 TAl seconds is now about 3 msec less than a mean solar 

day (because the mean solar day is getting longer all the time).

• Using TAl for keeping time would mean that over the course of the 

years, noon would get earlier and earlier, until it would eventually 

occur in the first hours of the morning. 

Curiosity

• People might notice this and we could have the same kind of situation as occurred in 

1582 when Pope Gregory XIII decreed that 10 days be omitted from the calendar. 

• This event caused riots in the streets because landlords demanded a full month's rent 

and bankers a full month's interest, while employers refused to pay workers for the 10 

days they did not work, to mention only a few of the conflicts. 

– The Protestant countries, as a matter of principle, refused to have anything to do 

with papal decrees and did not accept the Gregorian calendar for 170 years. ☺



TAI Vs Solar Seconds and 

Leap Seconds

BIR solves the problem by introducing leap seconds whenever the discrepancy 

between TAI and solar time grows to 800 msec. The use of leap seconds as a 

correction gives rise to a time system based on constant TAl seconds but which 

stays in phase with the apparent motion of the sun. 

It is called Universal Coordinated Time, but is abbreviated as UTC. UTC is the 

basis of all modern civil timekeeping. It has essentially replaced the old standard, 

Greenwich Mean Time which is astronomical time.



NIST

• To provide UTC to people who need precise time, the National 

Institute of Standard Time (NIST) operates a shortwave radio station 

with call letters WWV from Fort Collins, Colorado. 

• WWV broadcasts a short pulse at the start of each UTC second. 

• The accuracy of WWV itself is about ±1 msec, but due to random 

atmospheric fluctuations that can affect the length of the signal path, 

in practice the accuracy is no better than ±10 msec. 

• Several earth satellites also offer a UTC service. The Geostationary 

Environment Operational Satellite can provide UTC accurately to 0.5 

msec, and some other satellites do even better.



Global Positioning System

• As a step toward actual clock synchronization problems, 

we first consider a related problem, namely determining 

one's geographical position anywhere on Earth. 

• This positioning problem is by itself solved through a 

highly specific dedicated distributed system, namely 

GPS, which is an acronym for global positioning system.

• GPS is a satellite-based distributed system that was 

launched in 1978. 

• Although it has been used mainly for military 

applications, in recent years it has found its way to many 

civilian applications, notably for traffic navigation.



GPS

• GPS uses many satellites each circulating in an orbit at a 

height of approximately 20,000 km. 

• Each satellite has up to four atomic clocks, which are 

regularly calibrated from special stations on Earth. 

• A satellite continuously broadcasts its position, and time 

stamps each message with its local time. 

• This broadcasting allows every receiver on Earth to 

accurately compute its own position using, in principle, 

only three satellites. 



GPS
• Let’s assume that all clocks, 

including the receiver's, are 
synchronized.

• In order to compute a position, 
consider first the two-
dimensional case, as shown 
here, in which two satellites are 
drawn, along with the circles 
representing points at the same 
distance from each respective 
satellite. 

• The y-axis represents the 
height, while the x-axis 
represents a straight line along 
the Earth's surface at sea level. 

• Ignoring the highest point, we 
see that the intersection of the 
two circles is a unique point.



GPS and synchronization

• The principle of intersecting circles can be expanded to 

three dimensions, meaning that we need three satellites to 

determine the longitude, latitude, and altitude of a receiver 

on Earth.

• This positioning is all fairly straightforward, but matters 

become complicated when we can no longer assume that 

all clocks are perfectly synchronized.

• There are two important real-world facts that we need to 

take into account:

1. It takes a while before data on a satellite's position 

reaches the receiver

2. The receiver's clock is generally not in synch with 

that of a satellite.



GPS

Slide from M. Van Steen

We get four equations in four unknowns, allowing us to

solve the coordinates x, y and z for the receiver, but also the unknown 

deviation ∆. 

In other words, a GPS measurement will also give an account of the actual 

time.



Machine Clocks and UTC

• There is a clock in machine p 
that ticks on each timer 
interrupt.

• Denote the value of that clock 
by Cp(t), where t is UTC time.

• Ideally, we have that for each 
machine p, Cp(t) = t, or, in 
other words, dC/dt = 1.

• The constant ρ (rho) is 
specified by the manufacturer 
and is known as the maximum 
drift rate.



Clock synchronization: Principle I

• Principle I

– Every machine asks a time server for the accurate time at least 

once every δ/2ρ seconds (Network Time Protocol).

• Note

– Okay, but you need an accurate measure of round trip delay, 

including interrupt handling and processing incoming messages.

• If the operating system designers want to guarantee that no two 

clocks ever differ by more than δ, clocks must be resynchronized (in 

software) at least every δ/2p seconds. 

• The various algorithms differ in precisely how this resynchronization 

is done.



Clock synchronization: Principle II

Principle II

• Let the time server scan all machines periodically, calculate an 

average, and inform each machine how it should adjust its time 

relative to its present time.

Note

• Okay, you’ll probably get every machine in sync. You don’t even 

need to propagate UTC time.



Network Time Protocol

• A common approach in many protocols is to let clients contact a time server.

– The latter can accurately provide the current time, for example, because 

it is equipped with a WWV receiver or an accurate clock. 

• The problem, of course, is that when contacting the server, message delays

will have outdated the reported time. 

– The trick is to find a good estimation for these delays.

Time Corrections

You’ll have to take into account that setting the time back is never

allowed => smooth adjustments.



Berkeley algorithm 

• In Berkeley UNIX, the time server (actually, a time daemon) is active, 

polling every machine from time to time to ask what time it is there. 

• Based on the answers, it computes an average time and tells all the 

other machines to advance their clocks to the new time or slow their 

clocks down until some specified reduction has been achieved. 

• This method is suitable for a system in which no machine has a WWV 

receiver. 

• The time daemon's time must be set manually by the operator 

periodically.



Berkeley algorithm



Berkeley algorithm

• Note that for many purposes, it is sufficient that all 

machines agree on the same time. 

• It is not essential that this time also agrees with the real 

time as announced on the radio every hour. 

• If in the example of Fig. 6-7 the time daemon's clock 

would never be manually calibrated, no harm is done 

provided none of the other nodes communicates with 

external computers. 

• Everyone will just happily agree on a current time, 

without that value having any relation with reality.



CLOCK SYNCHRONIZATION

• Physical clocks

• Logical clocks

• Vector clocks



Logical Clocks

• So far, we have assumed that clock synchronization is 

naturally related to real time. 

• However, it may be sufficient that every node agrees on 

a current time, without that time necessarily being the 

same as the real time.

• For most algorithms, it is conventional to speak of the 

clocks as logical clocks.

• We showed that although clock synchronization is 

possible, it need not be absolute. 



Agree on the order

• Lamport pointed out that what usually matters is not that 

all processes agree on exactly what time it is, but rather 

that they agree on the order in which events occur.

• The Lamport Algorithm was designed to synchronize 

logical clocks

• Leslie Lamport

– http://research.microsoft.com/en-us/um/people/lamport/

• Honors

– http://research.microsoft.com/en-

us/um/people/lamport/pubs/pubs.html

http://research.microsoft.com/en-us/um/people/lamport/


The Happened-before relationship

Problem

• We first need to introduce a notion of ordering before we 
can order anything.

The happened-before relation

• If a and b are two events in the same process, and a 
comes before b, then a→b.

• If a is the sending of a message, and b is the receipt of 
that message, then a→b

• If a→b and b→c, then a→c

Note

• This introduces a partial ordering of events in a system 
with concurrently operating processes.



Logical clocks

Problem

• How do we maintain a global view on the system’s behavior that is 

consistent with the happened-before relation?

Solution

• Attach a timestamp C(e) to each event e, satisfying the following 

properties:

P1 If a and b are two events in the same process, and a→b, then we 

demand that C(a) < C(b).

P2 If a corresponds to sending a message m, and b to the receipt of 

that message, then also C(a) < C(b).

Problem

• How to attach a timestamp to an event when there’s no global clock 

=> maintain a consistent set of logical clocks, one per process.



Lamport Algorithm

Solution

Each process Pi maintains a local counter Ci and adjusts this counter 

according to the following rules:

1: For any two successive events that take place within Pi , Ci is 

incremented by 1.

2: Each time a message m is sent by process Pi, the message receives 

a timestamp ts(m) = Ci.

3: Whenever a message m is received by a process Pj , Pj adjusts its 

local counter Cj to max{Cj ; ts(m)}; then executes step 1 before 

passing m to the application.

Notes

• Property P1 is satisfied by (1); Property P2 by (2) and (3).



Lamport algorithm



Logical clocks among layers

Synchronization of clocks is performed in the middleware layer.



Vector Clocks

• Lamport's logical clocks lead to a situation where all 

events in a distributed system are totally ordered with the 

property that if event a happened before event b, then a 

will also be positioned in that ordering before b, that is,  

C(a) < C (b).

• However, with Lamport clocks, nothing can be said 

about the relationship between two events a and b by 

merely comparing their time values C(a) and C(b), 

respectively. 

• In other words, if C(a) < C(b), then this does not 

necessarily imply that a indeed happened before b.

• This is possible with Vector Clocks.



Concurrency in 

Distributed Systems



Concurrency in 

Distributed Systems

• Fundamental to distributed systems is the concurrency and 

collaboration among multiple processes. 

• In many cases, this also means that processes will need to 

simultaneously access the same resources. 

• To prevent that such concurrent accesses corrupt the 

resource, or make it inconsistent, solutions are needed to 

grant mutual exclusive access by processes. 

• In this section, we take a look at some of the most important 

distributed algorithms that have been proposed.



Token-based solutions

• In token-based solutions mutual exclusion is achieved by 
passing a special message between the processes, 
known as a token. 

• There is only one token available and whoever has that 
token is allowed to access the shared resource.

• When finished, the token is passed on to a next process. 

• If a process having the token is not interested in 
accessing the resource, it simply passes it on.



Token-based solutions

• Token-based solutions have a few important properties. 

• First, depending on how the processes are organized, 

they can fairly easily ensure that every process will get a 

chance at accessing the resource. 

– In other words, they avoid starvation.

• Second, deadlocks by which several processes are 

waiting for each other to proceed, can easily be avoided, 

contributing to their simplicity. 



Token-based solutions

• Unfortunately, the main drawback of token-based 

solutions is a rather serious one: 

– when the token is lost (e.g., because the process 

holding it crashed), an intricate distributed 

procedure needs to be started to ensure that a 

new token is created, but above all, that it is also 

the only token.



Permission-based approach

• As an alternative, many distributed mutual exclusion 

algorithms follow a permission-based approach. 

• In this case a process wanting to access the resource 

first requires the permission of other processes. 

• There are many different ways toward granting such a 

permission:

– Via a centralized server.

– Completely decentralized, using a peer-to-peer 

system.

– Completely distributed, with no topology imposed.

– Completely distributed along a (logical) ring.



Centralized Algorithm

• The most straightforward way to achieve mutual 

exclusion in a distributed system is to simulate how it is 

done in a one-processor system. 

• One process is elected as the coordinator. Whenever a 

process wants to access a shared resource, it sends a 

request message to the coordinator stating which 

resource it wants to access and asking for permission. 

• If no other process is currently accessing that resource, 

the coordinator sends back a reply granting permission.



Centralized Algorithm



Centralized Algorithm

• The centralized approach has shortcomings. 

• The coordinator is a single point of failure, so if it 

crashes, the entire system may go down. 

• If processes normally block after making a request, they 

cannot distinguish a dead coordinator from "permission 

denied" since in both cases no message comes back. 

• In addition, in a large system, a single coordinator can 

become a performance bottleneck.

• Nevertheless, the benefits coming from its simplicity

outweigh in many cases the potential drawbacks.



Decentralized Algorithm

Principle

• Assume every resource is replicated n times, with each 
replica having its own coordinator => access requires a 
majority vote from m > n/2 coordinators. 

• A coordinator always responds immediately to a request.

Assumption

When a coordinator crashes, it will recover quickly, but will 
have forgotten about permissions it had granted.

• It has been shown that this algorithm is probabilistically 
correct: the probability of violating correctness is much 
smaller than the availability of any resource.



Distributed algorithm
• To many, having a probabilistically correct algorithm is 

just not good enough.

• So researchers have looked for deterministic distributed 
mutual exclusion algorithms.

– Lamport's 1978 paper on clock synchronization 
presented the first one.

– Ricart and Agrawala (1981) made it more efficient. 

• This algorithm requires that there be a total ordering of 
all events in the system. 

• That is, for any pair of events, such as messages, it must 
be unambiguous which one actually happened first. 

• Lamport's algorithm is one way to achieve this ordering 
and can be used to provide timestamps for distributed 
mutual exclusion.



Distributed algorithm

The algorithm works as follows:

• When a process wants to access a shared resource, it 

builds a message containing the name of the resource, 

its process number, and the current (logical) time. 

• It then sends the message to all other processes, 

conceptually including itself. 

• The sending of messages is assumed to be reliable; 

that is, no message is lost.

• When a process receives a request message from 

another process, the action it takes depends on its own 

state with respect to the resource named in the 

message.



Distributed algorithm

Three different cases:

1. If the receiver is not accessing the resource and does 

not want to access it, it sends back an OK message to 

the sender.

2. If the receiver already has access to the resource, it 

simply does not reply. Instead, it queues the request.

3. If the receiver wants to access the resource as well but 

has not yet done so, it compares the timestamp of the 

incoming message with the one contained in the 

message that it has sent everyone. The lowest one 

wins.



Distributed algorithm
• After sending out requests asking permission, a process sits back 

and waits until everyone else has given permission. 

• As soon as all the permissions are in, it may go ahead. 

• When it is finished with the resource, it sends OK messages to all 

processes on its queue and deletes them all from the queue.



A Token Ring Algorithm

• In software, a logical ring is constructed in which each process is 

assigned a position in the ring. 

• The ring positions may be allocated in numerical order of network 

addresses or some other means. 

• It does not matter what the ordering is. All that matters is that each 

process knows who is next in line after itself.



A Token Ring Algorithm
• When the ring is initialized, process 0 is given a token. 

• The token circulates around the ring. 

• It is passed from process k to process k +1 in point-to-

point messages. 

– When a process acquires the token from its neighbor, 

it checks to see if it needs to access the shared 

resource. 

– If so, the process goes ahead, does all the work it 

needs to, and releases the resources. 

– After it has finished, it passes the token along the 

ring. 

• It is not permitted to immediately enter the resource 

again using the same token.



A Token Ring Algorithm

• As usual, this algorithm has problems too. If the token is 

ever lost, it must be regenerated. 

• In fact, detecting that it is lost is difficult, since the 

amount of time between successive appearances of the 

token on the network is unbounded. 

• The fact that the token has not been spotted for an hour 

does not mean that it has been lost; somebody may still 

be using it.



A Token Ring Algorithm

• The algorithm also runs into trouble if a process crashes, 

but recovery is easier than in the other cases. 

• If we require a process receiving the token to 

acknowledge receipt, a dead process will be detected 

when its neighbor tries to give it the token and fails. 

• At that point the dead process can be removed from the 

group.



Election Algorithms

• Many distributed algorithms require one process to act 

as coordinator, initiator, or otherwise perform some 

special role. 

• In general, it does not matter which process takes on this 

special responsibility, but one of them has to do it. 

– Algorithms for electing a coordinator (using this as a 

generic name for the special process).

• If all processes are exactly the same, with no 

distinguishing characteristics, there is no way to select 

one of them to be special . 



Election Algorithms

• We will assume that each process has a unique number, 

for example, its network address (for simplicity, we will 

assume one process per machine). 

• In general, election algorithms attempt to locate the 

process with the highest process number and designate 

it as coordinator. 

• The algorithms differ in the way they do the location.



The Bully Algorithm

When any process notices that the coordinator is no longer 

responding to requests, it initiates an election. 

A process P holds an election as follows:

1. P sends an ELECTION message to all processes with 

higher numbers.

2. If no one responds, P wins the election and becomes 

coordinator.

3. If one of the higher-ups answers, it takes over. P’s job 

is done.



Election by bullying



End of PART I

• Readings

– Distributed Systems, Chapter 6.
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Reasons for Replication
• Data are replicated to increase the reliability of a system.

• Replication for performance

▪ Scaling in numbers

▪ Scaling in geographical area

▪ Place copies near the process that is using them

▪ Important features

▪ Gain in performance

▪ The process near the copy perceives good 

performance

▪ Cost of increased bandwidth for maintaining replication 

(updating all the replicas!!!)

▪ Price to be paid: Consistency



Access-to-update ratio

• Consider a process P that accesses a local replica N

times per second, whereas the replica itself is updated M 

times per second.

• Assume that an update completely refreshes the 

previous version of the local replica. 

• If N < M, that is, the access-to-update ratio is very low, 

we have the situation where many updated versions of 

the local replica will never be accessed by P, rendering 

the network communication for those versions useless.



Consistency
• A collection of copies is consistent when the copies are 

always the same. 

• This means that a read operation performed at any copy

will always return the same result. 

• Consequently, when an update operation is performed 

on one copy, the update should be propagated to all 

copies before a subsequent operation takes place, no 

matter at which copy that operation is initiated or 

performed.

• Update as single atomic operation or transaction.



Issues related to consistency

• Data-centric consistency

• Client-centric consistency

• Replica management

• Consistency protocols



Data-centric Consistency Models

• A data store may be physically distributed across 

multiple machines. 

• In particular, each process that can access data from the 

store is assumed to have a local (or nearby) copy 

available of the entire store. 

• Write operations are propagated to the other copies. 

• A data operation is classified as a write operation when it 

changes the data, and is otherwise classified as a read 

operation.



Data-centric Consistency Models

• Figure 7-1. The general organization of a logical 

data store, physically distributed and replicated across multiple 

processes.



Consistency Model

• A consistency model is essentially a contract between 

processes and the data store. 

• It says that if processes agree to obey certain rules, the 

store promises to work correctly. 

• Normally, a process that performs a read operation on a 

data item, expects the operation to return a value that 

shows the results of the last write operation on that data.



Content

• Data-centric consistency

• Client-centric consistency

• Replica management

• Consistency protocols



Client-centric consistency

Goal

• How we can perhaps avoid system wide 
consistency, by concentrating on what specific 
clients want, instead of what should be 
maintained by servers.



Client-centric consistency

Figure 7-11. The principle of a mobile user accessing 
different replicas of a distributed database.



Content

• Data-centric consistency

• Client-centric consistency

• Replica management

• Consistency protocols



Replica Management

• A key issue for any distributed system that supports 

replication is to decide:

– Where? 

– When? and 

– by whom replicas should be placed? 

– and subsequently which mechanisms to use for 

keeping the replicas consistent? 



Replica Management

• Two important issues: 

– Replica-server placement is concerned with 
finding the best locations to place a server 
that can host (part of) a data store. 

– Content placement deals with finding the best 
servers for placing content.



Replica-Server Placement

Figure 7-16. Choosing a proper cell size for server placement.

A region is identified to be a collection of nodes accessing the 

same content, but for which the internode latency is low. 

The goal of the algorithm is first to select the most demanding 

regions - that is, the one with the most nodes - and then to let 

one of the nodes in such a region act as replica server.



Content Replication and Placement: 

server-initiated and client-initiated

Figure 7-17. The logical organization of different kinds of copies of a 

data store into three concentric rings.



Permanent Replicas
• Permanent replicas can be considered as the initial set of 

replicas that constitute a distributed data store. 

• In many cases, the number of permanent replicas is small. 

• Consider, for example, a Web site. Distribution of a Web site 

generally comes in one of two forms: 

1. The first kind of distribution is one in which the files that 

constitute a site are replicated across a limited number of 

servers at a single location. Whenever a request comes in, 

it is forwarded to one of the servers, for instance, using a 

round-robin strategy.

2. The second form of distributed Web sites is what is called 

mirroring. In this case, a Web site is copied to a limited 

number of servers, called mirror sites, which are 

geographically spread across the Internet. In most cases, 

clients simply choose one of the various mirror sites from a 

list offered to them.



Server-Initiated Replicas

Figure 7-18. Counting access requests from different 
clients.



Deletion and replication thresholds

Algorithm:

Keep track of access counts per file, aggregated by 

considering server closest to requesting clients

• Number of accesses drops below threshold D => drop 

file

• Number of accesses exceeds threshold R => 

replicate file

• Number of accesses between D and R => migrate file



Client-Initiated Replicas

• Client-initiated replicas are more commonly known as 

(client) caches.

• Data are generally kept in a cache for a limited amount 

of time

• Placement of client caches is relatively simple: a cache 

is normally placed on the same machine as its client, or 

otherwise on a machine shared by clients on the same 

local-area network. 

• However, in some cases, extra levels of caching are 

introduced by system administrators by placing a shared 

cache between a number of departments or 

organizations, or even placing a shared cache for an 

entire region such as a province or country.



Push and pull-based protocol

• Push-based (or server-based protocol)

– Updates are propagated to other replicas without

those replicas asking for the updates.

– Applied when replicas need to maintain high degree 

of consistency

• Pull-based (or client-based protocol)

– A server or client requests another server or client to  

send it any updates it has at that moment.

– Efficient when the read-to-update ratio is relatively 

low.



Content

• Data-centric consistency

• Client-centric consistency

• Replica management

• Consistency protocols



Consistency Protocols

A consistency protocol describes an 

implementation of a specific consistency model.

• Primary-based protocols

• Replicated-write protocols



Remote-Write Protocols

All write operations need to be forwarded to a fixed single server. 

Read operations can be carried out locally. Such schemes are also 
known as primary-backup protocols



Local-Write Protocols

Figure 7-21. Primary-backup protocol in which the primary 

migrates to the process wanting to perform an update.



Consistency Protocols

A consistency protocol describes an 

implementation of a specific consistency model.

• Primary-based protocols

• Replicated-write protocols



Active Replication

• In replicated-write protocols, write operations can be 

carried out at multiple replicas instead of only one.

• In active replication, each replica has an associated 

process that carries out update operations. 

• In other words, the operation is sent to each replica. 



Quorum-Based Protocols

• Clients have to request and acquire the permission of 

multiple servers before either reading or writing a 

replicated data item.

• Majority scheme

• Gifford’s scheme, two constraints:

1. NR + NW > N

2. NW > N / 2

Where N is the number of replicas, NR is the read 

quorum, NW is the write quorum.

• To read or write a file, NR and NW must be achieved.



End of PART II

• Readings

– Distributed Systems, Chapter 7


