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Lesson 8

• Part I – Fault tolerance

• Part II – Lab session on distributed object-based 

systems



Fault tolerance

• Concepts

• Process Resilience

• Reliable Group Communication

• Recovery



Dependable Systems

Basics

• A component provides services to clients. 

• To provide services, the component may require the 

services from other components => a component may 

depend on some other component.

• Requirements for Dependability

– Availability: Readiness for usage

– Reliability: Continuity of service delivery

– Safety: Very low probability of catastrophes

– Maintainability: How easy can a failed system be 

repaired



Definitions

• A system is said to fail when it cannot meet its promises.

• An error is a part of a system's state that may lead to a 
failure. 

• The cause of an error is called a fault. Clearly, finding 
out what caused an error is important. 



Fault Tolerance

• Building dependable systems closely relates to 

controlling faults. 

– A distinction can be made between preventing, 

removing, and forecasting faults. 

• For our purposes, the most important issue is fault 

tolerance, meaning that a system can provide its 

services even in the presence of faults. 

– In other words, the system can tolerate faults and 

continue to operate normally.



Types of Faults

• Faults:

– Transient: occur once and then disappear

– Intermittent: appears, disappears, and so on

– Permanent: exists until the faulty component 

is replaced



Failure Models

Figure 8-1. Different types of failures.



Failure Masking by Redundancy

• If a system is to be fault tolerant, the best it can do is to 

try to hide the occurrence of failures from other 

processes. 

• The key technique for masking faults is to use 

redundancy. 

• Three kinds are possible: 

– Information redundancy: Example => Hamming code 

– Time redundancy: perform operation again

– Physical redundancy: extra equipment of processes



Fault tolerance

• Concepts

• Process Resilience

• Reliable Group Communication

• Recovery



Process Resilience

Basic issue

Protect yourself against faulty processes by replicating 

processes into a group.

• Flat groups: Good for fault tolerance as information 

exchange immediately occurs with all group members 

– However, may impose more overhead as control is 

completely distributed (hard to implement).

• Hierarchical groups: All communication through a single 

coordinator => not really fault tolerant and scalable, but 

relatively easy to implement.



Flat Groups versus Hierarchical Groups

• Figure 8-3. (a) Communication in a flat group. 
(b) Communication in a simple hierarchical group.



Groups and failure masking

K-fault tolerant group

• When a group can mask any k concurrent member 

failures (k is called degree of fault tolerance).

How large does a k-fault tolerant group need to be?

• Assume crash semantics => a total of k+1 members are 

needed to survive k member failures.

• Assume arbitrary failure semantics, and group output 

defined by voting => a total of 2k+1 members are 

needed to survive k member failures.



Agreement in Faulty Systems

Possible cases:

1. Synchronous versus asynchronous systems.

2. Communication delay is bounded or not.

3. Message delivery is ordered or not.

4. Message transmission is done through 

unicasting or multicasting.



Distributed Agreement in 

Faulty Systems

Figure 8-4. Circumstances under which distributed 

agreement can be reached.



Byzantine Agreement Problem 

(Lamport, 1982)

Scenario

• Group members are not identical, i.e., we have a distributed 

computation => Nonfaulty group members should reach 

agreement on the same value.



Bizantine Agreement in Faulty Systems: 

Step 1

• Figure 8-5. The Byzantine agreement problem for three 

nonfaulty and one faulty process.

• (a) Step 1: Each process sends their value to the 

others (process 1 sends 1) 



Bizantine Agreement in Faulty Systems: Step 2 

and 3

(b) Step 2: the vectors that each process assembles based on (a). 

(c)  Step 3: consists of every process passing its vector from Fig. 8-5(b) to 
every other process. In this way, every process gets three vectors, 
one from every other process. Here, too, process 3 lies, inventing 12 
new values, a through l.

• Processes 1, 2 and 4 come to agreement on the values for V1,V2,V4. 



Agreement in Faulty Systems
• Finally, in step 4, each process examines the ith element 

of each of the newly received vectors. 

• If any value has a majority, that value is put into the 

result vector. If no value has a majority, the 

corresponding element of the result vector is marked 

UNKNOWN. 

• From Fig. (c) we see that 1, 2, and 4 all come to 

agreement on the values for v1, v 2, and v 4, which is 

the correct result. 

• What these processes conclude regarding v3 cannot be 

decided, but is also irrelevant. 

• The goal of Byzantine agreement is that consensus is 

reached on the value for the nonfaulty processes only.



Failure of Agreement

Figure 8-6. Failure of producing agreement.

Neither of the correctly behaving processes sees a majority for element 1, 

element 2, or element 3, so all of them are marked UNKNOWN.



Byzantine Agreement 

Requirements

• In their paper, Lamport et al. (1982) proved that in a 

system with k faulty processes, agreement can be 

achieved only if 2k + 1 correctly functioning processes 

are present, for a total of 3k + 1. 

• Put in slightly different terms, agreement is possible only 

if more than two-thirds of the processes are working 

properly.



Fault tolerance

• Concepts

• Process Resilience

• Reliable Group Communication

• Recovery



Reliable multicasting

Basic model

• We have a multicast channel c with two (possibly 

overlapping) groups:

– The sender group SND(c) of processes that 

submit messages to channel c

– The receiver group RCV(c) of processes that 

can receive messages from channel c



Reliable multicasting

• Simple reliability: If process P ϵ RCV(c) at the 

time message m was submitted to c, and P does 

not leave RCV(c), m should be delivered to P.

• Atomic multicast: How can we ensure that a 

message m submitted to channel c is delivered 

to process P ϵ RCV(c) only if m is delivered to all 

members of RCV(c)?



Basic Reliable-Multicasting Schemes

Figure 8-9.Receivers are known and assumed not to fail. 

(a) Message transmission with sequence numbering. (b) Reporting 
feedback, missed message #24.



Reliable-Multicasting: 

Feedback suppression

Figure 8-10. Several receivers have scheduled a request for 

retransmission, but the first retransmission request leads to the 

suppression of others.



Hierarchical Feedback Control

Figure 8-11. Hierarchical reliable multicasting: Each local 

coordinator forwards the message to its children and later 

handles retransmission requests.



Fault tolerance

• Concepts
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• Reliable Group Communication

• Recovery



Recovery

• Checkpointing



Backward Recovery

• In backward recovery, the main issue is to bring the 

system from its present erroneous state back into a 

previously correct state. 

– To do so, it will be necessary to record the 

system's state from time to time, and to restore 

such a recorded state when things go wrong. 

– Each time (part of) the system's present state is 

recorded, a checkpoint is said to be made.



Forward Recovery

• Another form of error recovery is forward recovery. 

• In this case, when the system has entered an erroneous 

state, instead of moving back to a previous, 

checkpointed state, an attempt is made to bring the 

system in a correct new state from which it can continue 

to execute. 

– The main problem with forward error recovery 

mechanisms is that it has to be known in advance 

which errors may occur.



Erasure Correction

• In this approach, a missing packet is constructed from 

other, successfully delivered packets. 

• For example, in an (n, k) block erasure code, a set of k 

source packets is encoded into a set of n encoded 

packets, such that any set of n encoded packets is 

enough to reconstruct the original k source packets. 

• If not enough packets have yet been delivered, the 

sender will have to continue transmitting packets until a 

previously lost packet can be constructed. 

• Erasure correction is a typical example of a forward error 

recovery approach.



Checkpointing

Figure 8-24. A recovery line.

We need to record a consistent global state, also called a distributed 

snapshot. 

In a distributed snapshot, if a process P has recorded the receipt of a 

message, then there should also be a process Q that has recorded 

the sending of that message. 

After all, it must have come from somewhere.



Independent Checkpointing

and the domino effect

Figure 8-25. The domino effect.



Coordinated Checkpointing
• In coordinated checkpointing all processes synchronize to 

jointly write their state to local stable storage. 

– The main advantage of coordinated checkpointing is that 

the saved state is automatically globally consistent, so that 

cascaded rollbacks leading to the domino effect are 

avoided. 

• A solution is to use a two-phase blocking protocol. 

– A coordinator first multicasts a CHECKPOINT_REQUEST 

message to all processes. 

– When a process receives such a message, it takes a local 

checkpoint, queues any subsequent message handed to it 

by the application it is executing, and acknowledges to the 

coordinator that it has taken a checkpoint. 

• When the coordinator has received an acknowledgment from 

all processes, it multicasts a CHECKPOINT_DONE message 

to allow the (blocked) processes to continue.



End of PART I

• Readings

– Distributed Systems, Chapter 8



Part II – Lab Session



Distributed Objects

Figure 10-1. Common organization of a remote 
object with client-side proxy.



J2EE



Example: Enterprise Java Beans

Figure 10-2. General 

architecture of an 

EJB server.



Enterprise JavaBeans (EJB)

• A managed, server-side component architecture for modular 

construction of enterprise applications.

• The EJB specification is one of several Java APIs in the Java 

EE specification. 

• EJB is a server-side model that encapsulates the business 

logic of an application.

• The EJB specification intends to provide a standard way to 

implement the back-end 'business' code typically found in 

enterprise applications (as opposed to 'front-end' interface 

code).

• EJBs are intended to handle such common concerns as 

persistence, transactional integrity, and security in a standard 

way, leaving programmers free to concentrate on the 

particular problem at hand.



The container

• The important issue is that an EJB is embedded inside a 

container which effectively provides interfaces to 

underlying services that are implemented by the 

application server. 

• The container can more or less automatically bind the 

EJB to these services, meaning that the correct 

references are readily available to a programmer.

• Typical services include those for remote method 

invocation (RMI), database access (JDBC), naming 

(JNDI), and messaging (JMS).



Java EE Application Server

• The Enterprise JavaBean specification defines 

the roles played by the EJB container and the 

EJBs as well as how to deploy the EJBs in a 

container.

• To deploy and run EJB beans, a Java EE 

Application server can be used, as these include 

an EJB container by default.



Persistent Vs. Transient Objects

• A persistent object is one that continues to exist

even if it is currently not contained in the address 

space of any server process.

– In practice, this means that the server that is 

currently managing the persistent object, can 

store the object's state on secondary storage and 

then exit. 

– Later, a newly started server can read the 

object's state from storage into its own address 

space, and handle invocation requests.



Persistent Vs. Transient Objects

• A transient object is an object that exists only as long as 

the server that is hosting the object. 

– As soon as that server exits, the object ceases to 

exist as well. 

• To take the discussion away from middleware issues, 

most object-based distributed systems simply support 

both types.



Remote Objects

• A characteristic, but somewhat counterintuitive 

feature of most distributed objects is that their 

state is not distributed: it resides at a single 

machine. 

• Only the interfaces implemented by the object 

are made available on other machines. 

• Such objects are also referred to as remote 

objects.



Session Beans

• A session bean represents a single client inside 

the J2EE server. 

• To access an application that is deployed on the 

server, the client invokes the session bean's 

methods. 

• The session bean performs work for its client, 

shielding the client from complexity by executing 

business tasks inside the server. 



Session Beans

• A session bean is similar to an interactive session. 

• A session bean is not shared - it may have just one 

client, in the same way that an interactive session may 

have just one user. 

• Like an interactive session, a session bean is not 

persistent. 

– That is, its data is not saved to a database. 

– When the client terminates, its session bean 

appears to terminate and is no longer associated 

with the client. 



Stateful Session Beans

• The state of an object consists of the values of its 

instance variables. 

• In a stateful session bean, the instance variables 

represent the state of a unique client-bean session. 

• Because the client interacts ("talks") with its bean, 

this state is often called the conversational state. 

• The state is retained for the duration of the client-

bean session. 

• If the client removes the bean or terminates, the 

session ends and the state disappears.



Stateless Session Beans

• A stateless session bean does not maintain a 

conversational state for a particular client. 

• When a client invokes the method of a stateless 

bean, the bean's instance variables may contain a 

state, but only for the duration of the invocation. 

• When the method is finished, the state is no longer 

retained. 



Practical Session: EJBs

• What do you need?

– J2EE SDK

• JSDK will install also Glassfish Server

– NetBeans (or Eclipse)

• This may come with his own Glassfish Server 

setup



Practical Session: EJBs

• Examples in Netbeans

– Cart

• EJB (stateful bean)

– Counter

• Facelets + EJB (singleton bean)

– Converter

• Java Servlets + EJB (stateless bean)

– HelloService

• Web Service + EJB (stateless bean)

– Timer

• Automatic: time-out every minute

• Programmatic: time-out every N seconds from the setting of 

the timer, ex. 8 seconds.



Develop a simple Bank Manager 

Bean

• Develop the application based on Lab 

Manual on EJBs given in class



End of Lesson 8

• Readings

– Distributed Systems, Chapter 10

• Lab Manual on EJBs given in class


