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Outline 

• Queues 

• Queues: Implementation with Array 

• Queues: Implementation with Linked List 
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Queues 
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Queue 

• The queue is another constrained linear data 
structure.  

• The elements in a queue are ordered from least 
recently added (the front) to most recently added 
(the rear). 

• Insertions are performed at the rear of the queue, 
and deletions are performed at the front.  

• You use the enqueue operation to insert elements 
and the dequeue operation to remove elements.  
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Queue: FIFO mode of operation 

• The movement of elements through a queue reflects the 

First in, First out (FIFO) behavior that is characteristic of 

the flow of customers in a line or the transmission of 

information across a data channel.  

• Queues are routinely used to regulate the flow of physical 

objects, information, and requests for resources (or 

services) through a system.  

• Operating systems, for example, use queues to control 

access to system resources such as printers, files, and 

communications lines. 
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Basic array implementation 

• The fundamental problem with the basic 

array approach is that after some enqueue 

operations, we cannot add any more items 

even though the queue is not really full. 

– See Line 1 of Figure 16.9 
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Cannot add any more 

if we use the basic 

array implementation 

Circular array implementation 

Solution: 

Wraparound, 

when either front 

or back reaches 

the end of the 

array, reset it to 

the beginning. 

This is called 

circular array 

implementation. 

Continues 

from Fig. 

16.8 
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Array of the queue 

Actual size of the 

queue 

Capacity of the 

queue 

Back and front of 

the queue 
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Increment( ) 
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Constructor( ) 
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isEmpty( ) 
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Enqueue(x) 

Increment back 
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DoubleQueue( ) 

Copy all the elements: 

increment count i and front 
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Dequeue( ) and getFront( ) 

Increment 

front 
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makeEmpty( ) 

For an empty queue, back must 

be initialized to -1. 
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Linked List Implementation 
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Two listnodes: back 

and front 
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Constructor( ) 
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Enqueue 
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Enqueue( ) and Dequeue( )  

Two cases: 

empty and 

non-empty 

Removes the 

front element 

and makes front 

point to the next 

listnode 

Makes 

back.next 

point to the 

new node 
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getFront( ), makeEmpty() and isEmpty( ) 
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Readings 

• Book 

– Chapter 16 
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Laboratory Exercises 

• Add to the ADT, for both implementations that we have defined, the following 
methods: 

– ShowElements: shows all the elements in the queue in FIFO order 

– ShowInverse: show the elements in inverse order. 

– New constructor which specifies size of queue (for the array 
implementation) as parameter. 

– Clone: replicate a queue in another queue. 

– FindMinimum: find the smallest element in the queue 

• Hint: you need to use the following signature: 

public AnyType findMinimum(Comparator<AnyType> cmp) 

and use compare( ) of cmp to compare two AnyType objects. 

• Hint: define interface Comparator<AnyType> and class 
BookComparator<Book> implements Comparator<Book> 

• Hint: then define in BookComparator the method compare() that 
returns -1, 0, or 1. Class book must implement the interface 
Comparator<Book>. 

• Test all these in a testing class 

 


