Data Structures
esson 2

BSc in Computer Science
University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-1

Outline

* Queues
* Queues: Implementation with Array

* Queues: Implementation with Linked List

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-2

Chapter 16

Queues

Addison-Wesley
is an imprint of

Data Structures & Problem Solving Using

Java

~

VP EARSO N Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Queue

* The queue 1s another constrained linear data
structure.

e The elements 1n a queue are ordered from least
recently added (the front) to most recently added
(the rear).

 Insertions are performed at the rear of the queue,
and deletions are performed at the front.

* You use the enqueue operation to insert elements
and the dequeue operation to remove elements.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-4

Queue: FIFO mode of operation

 The movement of elements through a queue reflects the
First in, First out (FIFO) behavior that is characteristic of
the flow of customers in a line or the transmission of
information across a data channel.

* Queues are routinely used to regulate the flow of physical
objects, information, and requests for resources (or
services) through a system.

* Operating systems, for example, use queues to control
access to system resources such as printers, files, and
communications lines.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-5

figure 16.8 back

Basic array
implementation of makeEmpty()
the queue .
size =0
enqueue(a)
size =1
enqueue(b)
size =2
dequeue()
size = 1
dequeue()
size =0

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

front
back
a
front
back
a b
front
back
b
front
back

front

1-6

Basic array implementation

* The fundamental problem with the basic
array approach is that after some enqueue
operations, we cannot add any more 1tems
even though the queue 1s not really full.

— See Line 1 of Figure 16.9

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved -7

Circular array implementation

After 3 enqueues

/ size = 3

Continues
) enqueue(f)
from Fig.
16.8 size = 4
dequeue()
size = 3
dequeue()
size =2
dequeue()
size = 1

TT—

back
C d e
front
back
f C d e
front
back
f d e
front
back
7 e
front
back
f
front

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

figure 16.9

Array implementation
of the queue with
wraparound

Cannot add any more
if we use the basic
array implementation

Solution:
Wraparound,
when either front
or back reaches
the end of the
array, reset it to
the beginning.

This is called
circular array
implementation.

1-8

figure 16.10

Skeleton for the
array-based queue
class

W~ A WwWN =

- bk b b ok ok
s wWhN =+ 0O w

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

package weiss.nonstandard;
// ArrayQueue class

// CONSTRUCTION: with no initializer

;; #*****ﬁk***ﬁ******PUBLIC OPERATIONS***************##****

// void enqueue(x) --> Insert x

// AnyType getFront() --> Return least recently inserted item
// AnyType dequeue() --> Return and remove least recent item
// boolean isEmpty() --> Return true if empty; else false

// void makeEmpty() --> Remove all items

X/ *****ﬁﬁk***ﬁ****ﬁﬁERRORS*****&**********ﬁ***ﬁﬁ****ﬁ*****

// getFront or dequeue on empty queue

public class ArrayQueue<AnyType>
{
pubTic ArrayQueue()
{ /* Figure 16.12 */ }

pubTic boolean isEmpty()
{ /* Figure 16.13 */ }
public void makeEmpty()
{ /* Figure 16.17 */ }
public AnyType dequeue()
{ /* Figure 16.16 */ }
public AnyType getFront()
{ /* Figure 16.16 */ }
public void enqueue(AnyType x)
{ /* Figure 16.14 */ }

private int increment(int x)
{ /% Figure 16.11 */ }
private void doubleQueue()
{ /% Figure 16.15 */ }

queue

Array of the queue

Actual size of the

Back and front of

private AnyType [] theArray;
private int currentSize; the queue
private int front;

Capacity of the

back;
private static final int DEFAULT_CAPACITY = 10;

private int

) queue

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-9

Increment()

L

1 /* figure 16.11
2 * Internal methgd to increment w1lth wraparound. The wraparound
3 * @param x any index in theArray's range. routine

4 * @return x+1, or 0 if x is at the end of theArray.

5 */

6 private int increment(int x)

7 {

8 if(++x == theArray.length)

9 X = 0;

10 return X;
11 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-10

Constructor()

Fhd figure 16.12
: Construct the queue. The constructor for
/ the ArrayQueue class

public ArrayQueue()

theArray = (AnyType []) new Object[DEFAULT_CAPACITY];
makeEmpty();

0=~ s WK =

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 111

1IsEmpty()

[** figure 16.13

return currentSize == 0;

1

2 : Test if the queue is logically empty. The 1 sEmpty routine
3 * @return true if empty, false otherwise. for the ArrayQueue
4 ¥/ class

5 public boolean isEmpty()

6 {

7

8

}

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-12

Enqueue(x)

figure 16.14 1 J*E
The enqueue routine 2 * Insert a new 1:tem 1'nt9 the queue.
for the ArrayQueue 3 * @param x the item to insert.
class 4 ¥/
5 public void enqueue(AnyType x)
6 {
7 1f(currentSize == theArray. length)
8 doubleQueue():
9 back = increment(back);
10 theArray[back] = x;
11 currentSize++;
12 }

Increment back

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-13

DoubleQueue()

1 /’1‘;'.":

2 * Internal method to expand theArray.

3 */

4 private void doubleQueue()

5 {

6 AnyType [] newArray;

7

8 newArray = (AnyType []) new Object[theArray.length * 2];
9

10 // Copy elements that are logically in the queue

11 for(int i = 0; i < currentSize; i++, front = increment(front))
12 newArray[1] = theArray[front];

13

14 theArray = newArray;

15 front = 0;

16 back = currentSize - 1;

17 }

figure 16.15

Dynamic expansion for the ArrayQueue class

Copy all the elements:
increment count 1 and front

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-14

Dequeue() and getFront()

1 [r% figure 16.16

2 * Return and remove the Teast recently inserted item The dequeue and

3 * from the queue. getFront routines for
4 * @return the Teast recently inserted item in the queue. the ArrayQueue class
5 * @throws UnderflowException if the queue is empty.

6 %/

7 public AnyType dequeue()

8 {

9 if(isEmpty())
10 throw new UnderflowException("ArrayQueue dequeue");
11 currentSize--;

12
13 AnyType returnValue = theArray[front];

14 front = increment(front);
15 return returnValue; <_--—_—___--—_____''''__“““—-———————________ IIl(:rf:IIlf:Ilt
16 }

17 front
18 S

19 * Cet the least recently inserted item in the queue.
20 * Does not alter the queue.
21 * @return the least recently inserted item in the queue.
22 * @throws UnderflowException if the queue is empty.
23 */
24 public AnyType getFront()
25 {
26 if(isEmpty())
27 throw new UnderflowException("ArrayQueue getFront");
28 return theArray[front];
29 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-15

makeEmpty()

1 JE* figure 16.17

2 * Make the queue logically empty. The makeEnpty routine
3 */ for the ArrayQueue

4 public void makeEmpty() class

5 {

6 currentSize = 0;

7 front = 0;

8 back = -1;

9

For an empty queue, back must
be initialized to -1.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-16

Linked List Implementation

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-17

figure 16.22

front back
Linked list
implementation of the
T . T . queue class
A i+l B i4—s C i1t D i-
: : |] L

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-18

figure 16.23 1 package weiss.nonstandard;
Skeleton for the 2 ,
linked list-based 3 // ListQueue class
queue class 4
5 // CONSTRUCTION: with no initializer
6
7 ;; **********k*******PUBLIC OPERATIONS*********************
8 // void enqueue(x) --> Insert x
9 [/ AnyType getFront() --> Return least recently inserted item
10 // AnyType dequeue() --> Return and remove least recent item
11 // boolean isEmpty() --> Return true if empty; else false
12 // void makeEmpty() --> Remove all items

13 // #***#*ﬁ**#*##*****ERRORS****k*****#***##ﬁ**#*#*****#**#*

14 [/ getFront or dequeue on empty queue

15

16 public class ListQueue<AnyType>

17 {

18 pubTic ListQueue()

19 { /* Figure 16.24 */ }

20 public boolean isEmpty()

21 { /* Figure 16.27 */ }

22 public void enqueue(AnyType x)

23 { /* Figure 16.25 */ }

24 public AnyType dequeue()]

25 { /* Figure 16.25 */ } Two listnodes: back
26 pubTic AnyType getFront()

27 { /* Figure 16.27 */ } and front
28 pubTlic void makeEmpty()

29 { /* Figure 16.27 */ }

30

3 private ListNode<AnyType> front;

32 private ListNode<AnyType> back;

33 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-19

Constructor()

figure 16.24 1 f**
Constructor for the 2 * Construct the queue.
linked list-based 3 */
ListQueue class 4 public ListQueue()
5 {
G front = back = null;
7 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-20

Enqueue

figure 16.26 back

The enqueue a?eraﬁon
for the linked list-
based implementation

I

LI I JE—
I
|

[
(a) Before
e \
L X 1 I_ |_
R
(b) After

1-21

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Enqueue() and Dequeue()

1 JEx figure 16.25

2 * Insert a new item into the queue. The enqueue and

3 * @param X the item to -insert. dequeue routines for

4 */ the ListQueue class

5 public void enqueue(AnyType x)

6 { Two cases:

7 if(isEmpty()) // Make a queue of one element empty and

8 back = front = new ListNode<AnyType>(x); «—

9 else // Regular case non-empty
10 back = back.next = new ListNode<AnyType>(x);

11 } \

13 [E Makes

14 * Return and remove the least recently inserted item back.next
15 * from the queue. point to the
16 * @return the least recently inserted item in the queue. d

17 * @throws UnderflowException if the queue is empty. new node
18 ¥/

19 public AnyType dequeue()

20 {

21 if(isEmpty())

22 throw new UnderflowException("ListQueue dequeue");

23

24 AnyType returnValue = front.element; Removes the
25 front = front.next; < front element
26 return returnValue;

07) and makes front

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

point to the next
listnode

1-22

getFront(), makeEmpty() and 1sEmpty()

figure 16.27 1 JE*
Supporting routines 2 : Get the least recently inserted item in the queue.
for the ListQueue 3 Does not alter the queue.
class 4 * @return the least recently inserted item in the queue.
5 * @throws UnderflowException if the queue is empty.
6 */
7 public AnyType getFront()
8 {
9 if(isEmpty())
10 throw new UnderflowException("ListQueue getFront");
11 return front.element;
12 }
13
14 /-.Mr
15 * Make the queue Togically empty.
16 */
17 public void makeEmpty()
18 {
19 front = null;
20 back = null;
21 }
22
23 JH%
24 * Test if the queue is logically empty.
25 LY
26 public boolean isEmpty()
27 {
28 return front == null;
29 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-23

Readings

* Book
— Chapter 16

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-24

Laboratory Exercises

* Add to the ADT, for both implementations that we have defined, the following
methods:

— ShowElements: shows all the elements in the queue in FIFO order
— ShowlInverse: show the elements in inverse order.

— New constructor which specifies size of queue (for the array
implementation) as parameter.

— Clone: replicate a queue in another queue.

— FindMinimum: find the smallest element in the queue
* Hint: you need to use the following signature:
public AnyType findMinimum(Comparator<AnyType> cmp)
and use compare() of cmp to compare two AnyType objects.

* Hint: define interface Comparator<AnyType> and class
BookComparator<Book> implements Comparator<Book>

* Hint: then define in BookComparator the method compare() that
returns -1, 0, or 1. Class book must implement the interface
Comparator<Book>.

» Test all these in a testing class

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-25

