
Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-1 1-1

Data Structures

Lesson 2

BSc in Computer Science

University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-2 1-2

Outline

• Queues

• Queues: Implementation with Array

• Queues: Implementation with Linked List

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Chapter 16

Queues

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-4

Queue

• The queue is another constrained linear data
structure.

• The elements in a queue are ordered from least
recently added (the front) to most recently added
(the rear).

• Insertions are performed at the rear of the queue,
and deletions are performed at the front.

• You use the enqueue operation to insert elements
and the dequeue operation to remove elements.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-5

Queue: FIFO mode of operation

• The movement of elements through a queue reflects the

First in, First out (FIFO) behavior that is characteristic of

the flow of customers in a line or the transmission of

information across a data channel.

• Queues are routinely used to regulate the flow of physical

objects, information, and requests for resources (or

services) through a system.

• Operating systems, for example, use queues to control

access to system resources such as printers, files, and

communications lines.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-6

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-7

Basic array implementation

• The fundamental problem with the basic

array approach is that after some enqueue

operations, we cannot add any more items

even though the queue is not really full.

– See Line 1 of Figure 16.9

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-8

Cannot add any more

if we use the basic

array implementation

Circular array implementation

Solution:

Wraparound,

when either front

or back reaches

the end of the

array, reset it to

the beginning.

This is called

circular array

implementation.

Continues

from Fig.

16.8

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-9

Array of the queue

Actual size of the

queue

Capacity of the

queue

Back and front of

the queue

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-10

Increment()

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-11

Constructor()

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-12

isEmpty()

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-13

Enqueue(x)

Increment back

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-14

DoubleQueue()

Copy all the elements:

increment count i and front

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-15

Dequeue() and getFront()

Increment

front

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-16

makeEmpty()

For an empty queue, back must

be initialized to -1.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-17

Linked List Implementation

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-18

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-19

Two listnodes: back

and front

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-20

Constructor()

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Enqueue

1-21

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-22

Enqueue() and Dequeue()

Two cases:

empty and

non-empty

Removes the

front element

and makes front

point to the next

listnode

Makes

back.next

point to the

new node

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-23

getFront(), makeEmpty() and isEmpty()

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-24 1-24

Readings

• Book

– Chapter 16

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-25 1-25

Laboratory Exercises

• Add to the ADT, for both implementations that we have defined, the following
methods:

– ShowElements: shows all the elements in the queue in FIFO order

– ShowInverse: show the elements in inverse order.

– New constructor which specifies size of queue (for the array
implementation) as parameter.

– Clone: replicate a queue in another queue.

– FindMinimum: find the smallest element in the queue

• Hint: you need to use the following signature:

public AnyType findMinimum(Comparator<AnyType> cmp)

and use compare() of cmp to compare two AnyType objects.

• Hint: define interface Comparator<AnyType> and class
BookComparator<Book> implements Comparator<Book>

• Hint: then define in BookComparator the method compare() that
returns -1, 0, or 1. Class book must implement the interface
Comparator<Book>.

• Test all these in a testing class

