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Algorithm Analysis 
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Running times and algorithms 

• When we run a program on large amounts of input, we  

must be certain that the program terminates within a 

reasonable amount of  time.  

• Although the amount of running time is somewhat 

dependent on the programming language we use, and to a 

smaller extent the methodology we use (such as procedural 

versus object-oriented), often those factors are 

unchangeable constants of the design.  

• Even so, the running time is most strongly correlated with 

the choice of algorithms.  
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Algorithm 

• An algorithm is a clearly specified set of instructions the 

computer will follow to solve a problem.  

• Once an algorithm is given for a problem and  determined 

to be correct, the next step is to determine the amount of 

resources, such as time and space, that the algorithm will 

require.  

• This step is called algorithm analysis.  

• An algorithm that requires several gigabytes of  main 

memory is not useful for most current machines, even if it 

is completely correct.  
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Some questions 

• How to estimate the time required for an algorithm  

• How to use techniques that drastically reduce the 

running time of an algorithm  

• How to use a mathematical framework that more 

rigorously describes the running time of an 

algorithm  
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Algorithms and Input size 

• The amount of time that any algorithm takes to run almost 

always depends on the amount of input that it must 

process.  

• We expect, for instance, that sorting 10,000 elements 

requires more time than sorting 10 elements.  

• The running time of an algorithm is thus a function of the 

input size.  

• The exact value of the function depends on many factors, 

such as the speed of the host machine, the quality of the 

compiler, and in some cases, the quality of the program.  
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Running times for small inputs 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-9 

Example of linear algorithm 
• An example is the problem of downloading a file over the 

Internet.  

• Suppose  there is an initial 2-sec delay (to set up a connection), 

after which the download proceeds at 1.6 K/sec.  

• Then if the file is N kilobytes, the time to download is  

described by the formula T(N) = N/l.6 + 2. This is a linear 

function.  

• Downloading an 80K file takes approximately 52 sec, whereas 

downloading a file twice as large (160K) takes about 102 sec, or 

roughly twice as long.  

• This  property, in which time essentially is directly proportional 

to amount of input,  is the signature of a linear algorithm, which 

is the most efficient algorithm.  
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Important issues 

• Is it always important to be on the most efficient 

curve?  

• How much better is one curve than another?  

• How do you decide which curve a particular 

algorithm lies on?  

• How do you design algorithms that avoid being on 

less-efficient curves?  
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Running times for moderate inputs 
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Cubic function 

• A cubic function is a function whose dominant term is 

some constant times N3. As an example, 10N3 + N2 + 40N 

+ 80 is a cubic function.   

• Similarly, a quadratic function has a dominant term that is 

some constant times N2, and a linear function has a 

dominant term that is some constant times N.  

• The expression O( N log N) represents a function whose 

dominant term is N times the logarithm of N.  

• The logarithm is a slowly growing function; for instance, 

the logarithm of 1,000,000 (with the typical base 2) is only 

20. The logarithm grows more slowly than a square or 

cube (or any) root.  
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Growth rate of a function 
• Either of two functions may be smaller than the other at any given 

point, so claiming, for instance, that F(N)<G(N) does not make sense.  

• Instead, we  measure the functions' rates of growth.  

• This is justified for three reasons.  

• First, for cubic functions such as the one shown in Figure 5.2, when N 

is 1,000 the value of the cubic function is almost entirely determined 

by the cubic term. In the function 10N3 + N2 + 40N + 80, for N = 1,000, 

the value of the function is 10,001,040,080, of which 10,000,000,000 

is due to the 10N3 term.  

• If we were to use only the cubic term to estimate the entire function, an 

error of about 0.01 percent would result.  

• For sufficiently large N, the value of a function is largely determined 

by its dominant term (the meaning of the term sufficiently large varies 

by function).  
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Growth rate of a function 

• The second reason we measure the functions' growth rates is 

that the exact value of the leading constant of the dominant term 

is not meaningful across different machines 

– For instance, the quality of the compiler could have a large 

influence on the leading constant.  

 

• The third reason is that small values of N generally are not 

important. For N = 20, Figure 5.1 shows that all algorithms 

terminate within 5 ms.  

– The difference between the best and worst algorithm is less 

than a blink of the eye.  
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Big-Oh notation  

• We use Big-Oh notation to capture the most 

dominant term in a function and to represent the 

growth rate.  

• For instance, the running time of a quadratic 

algorithm is specified as O(N2) (pronounced 

"order en-squared").  

• Big-Oh notation also allows us to establish a 

relative order among functions by comparing 

dominant terms. 
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Small inputs 

• For small amounts of input, making comparisons between  

functions is difficult because leading constants become very 

significant.  

• The function N + 2,500 is larger than N2 when N is less than 50.  

• Eventually, the linear function is always less than the quadratic 

function.  

• Most important, for small input sizes the running times are 

generally inconsequential, so we need not worry about them. 

• Figure 5.1 shows that when N is less than 25, all four algorithms 

run in less than 10 ms.  

• Consequently, when input sizes are very small, a good rule of 

thumb is to use the simplest algorithm. 
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Optimizing the algorithm 

• The most striking feature of these curves is that the 

quadratic and cubic algorithms are not competitive with 

the others for reasonably large inputs.  

• We can code the quadratic algorithm in highly efficient 

machine language and do a poor job coding the linear 

algorithm, and the quadratic algorithm will still lose badly.  

• Even the most clever programming tricks cannot make an 

inefficient algorithm fast.  

• Thus, before we waste effort attempting to optimize code, 

we need to optimize the algorithm.  
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Examples of algorithm  

running times  
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Minimum element in an array  

• Given an array of N items, find the smallest item.  

• The minimum element problem is fundamental in computer science. It 

can be solved as follows:  

1. Maintain a variable min that stores the minimum element.  

2. Initialize min to the first element.  

3. Make a sequential scan through the array and update min as 

appropriate.  

 

• The running time of this algorithm will be O(N), or linear, because we 

will repeat a fixed amount of work for each element in the array.  



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-21 

Closest points in the plane  
• Given N points in a plane (that is, an x-y coordinate system), find the 

pair of points that are closest together.  

• The closest points problem is a fundamental problem in graphics that 

can be solved as follows:  

1. Calculate the distance between each pair of points.  

2. Retain the minimum distance.  

• This calculation is expensive, however, because there are N(N - l)/2 

pairs of points.  

• Thus there are roughly N2 pairs of points. Examining all these pairs 

and finding the minimum distance among them takes quadratic time.  

• (Beyond the scope of this course: A better algorithm runs in O( N log 

N) time and works by avoiding the computation of all distances. There 

is also an algorithm that is expected to take O(N) time.) 
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Analysis of algorithms 
• Problem 

– The maximum contiguous subsequence sum problem  

• Given (possibly negative) integers A1,A2,..,AN, find (and identify the 

sequence corresponding to) the maximum value of SUM(Ak).  

– The maximum contiguous  subsequence sum is zero if all the integers are 

negative. 

 

• As an example, if the input is {-2, 11, -4, 13, -5, 2}, then the answer is 

20, which represents the contiguous subsequence encompassing items 

2 through 4 (shown in boldface type).  

• As a second example, for the input { 1, -3, 4, -2, -1, 6 }, the answer is 

7 for the subsequence encompassing the last four items.   
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Algorithms that solve the problem 

• There are lots of drastically different algorithms 

(in terms of efficiency) that can be used to solve 

the maximum contiguous subsequence sum 

problem.  
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Cubic: a brute force algorithm 

The dominant 

term 
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Analysis of the algorithm 

• Four expressions that are repeatedly executed:  

1. The initialization k = i  

2. The test k <= j  

3. The increment thisSum += a[ k ]  

4. The adjustment k++  

 

• The number of times expression 3 is executed 

makes it the dominant term among the four 

expressions.  
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Analysis of the algorithm 

• The number of times line 15 is executed is exactly 
equal to the number of ordered triplets (i, j, k) that 
satisfy 1<i<k<j<N.  

• The reason is that the index i runs over the entire 
array, j runs from i to the end of the array, and k 
runs from i to j.  

• A quick and dirty estimate is that the number of 
triplets is somewhat less than N x N x N, or N3, 
because i, j, and k can each assume one of N 
values.  
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Theorem 5.1  

• The number of integer-ordered triplets (i, j, 

k) that satisfy 1<i<k<j<N is N(N+l)(N + 

2)/6. 

 

• The result of Theorem 5.1 is that the 

innermost for loop accounts for cubic 

running time.   
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Big-Oh estimation 
• The previous combinatorial argument allows us to obtain 

precise calculations on the number of iterations in the inner 

loop.  

• For a Big-Oh calculation, this is not really necessary; we need to 

know only that the leading term is some constant times N3.  

• Looking at the algorithm, we see a loop that is potentially of 

size N inside a loop that is potentially of size N inside another 

loop that is potentially of size N.  

• This configuration tells us that the triple loop has the potential 

for N x N x N iterations.  

• This potential is only about six times higher than what our 

precise calculation of what actually occurs.  
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An improved algorithm: quadratic 
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How about a linear algorithm? 

• We need to remove another loop. 

• The only way we can attain a subquadratic bound 

is to find a clever way to eliminate from 

consideration a large number of subsequences, 

without actually computing their sum and testing 

to see if that sum is a new maximum.  



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-31 

A linear algorithm 

One for loop 
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General big-oh rules  
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Interpretation of notations 
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Observed running times 

Ooopss… 
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The Searching Problem 

• Static searching problem  

– Given an integer X and an array A, return the 

position of X in A or an indication that it is not 

present.  

– If X occurs more than once, return any 

occurrence. The array A is never altered.  
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Sequential search  

• When the input array is not sorted, we have little choice 

but to do a linear sequential search, which steps through 

the array sequentially until a match is found.  

• The complexity of the algorithm is analyzed in three ways.  

– First, we provide the cost of an unsuccessful search.  

– Then, we give the worst-case cost of a successful 

search.  

– Finally, we find the average cost of a successful search.  
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Worst cases 

• An unsuccessful search requires the examination of every 

item in the  array, so the time will be O(N).  

• In the worst case, a successful search, too, requires the 

examination of every item in the array because we might 

not find a match until the last item.  

– Thus the worst-case running time for a successful 

search is also linear.  

• On average, however, we search only half of the array.  

• However, N/2 is still O(N).  



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-38 

Binary search  

• If the input array has been sorted, we have 

an alternative to the sequential search, the 

binary search, which is performed from the 

middle of the array rather than the end.  
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the number of iterations  

will be O(log N).  

Binary search 
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Limitations of Big-oh 

• Big-Oh analysis is a very effective tool, but it does have 

limitations.  

• As already mentioned, its use is not appropriate for small 

amounts of input.  

• For small amounts of input, use the simplest algorithm.  

• Also, for a particular algorithm, the constant implied by the Big-

Oh may be too large to be practical.  

• For example, if one algorithm's running time is governed by the 

formula 2N log N and another has a running time of 1000N, 

then the first algorithm would most likely be better, even though 

its growth rate is larger.  
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Limitations of Big-oh 

• Large constants can come into play when an algorithm is 

excessively complex.  

• They also come into play because our analysis disregards 

constants and thus cannot differentiate between things like 

memory access (which is cheap) and disk access (which 

typically is many thousand times more expensive).  

• Our analysis assumes infinite memory, but in applications 

involving large data sets, lack of sufficient memory can be 

a severe problem.  
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End of PART I 

• Readings 

– Chapter 5 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-43 

PART II 

• Linked Lists 
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Chapter 17 

Linked Lists 
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Linked Lists 

• With stacks and queues we have demonstrated that linked 
lists can be used to store items noncontiguously.  

• The linked lists used until now were simplified, with all the 
accesses performed at one of the list's two ends.  

• We will now show: 

– How to allow access to any item by using a general 
linked list  

– The general algorithms for the linked list operations  

– How the iterator class provides a safe mechanism for 
traversing and accessing linked lists.  

 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-46 

Singly linked list 

• The basic linked list consists of a collection of 

connected, dynamically allocated nodes.  

 

• In a singly linked list, each node consists of the 

data element and a link to the next node in the list.  

 

• The last node in the list has a null next link.  
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ListNode 

class ListNode  

 {  

  Object element;  

  ListNode next;  

 }  
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Basic linked list 

We can print or search in the linked list by starting at 

the first item and following the chain of next links.  

The two basic operations that must be performed are 

insertion and deletion of an arbitrary item x.  
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Insertion 

In code: 

 

tmp = new ListNode( ); // Create a new node  

tmp.element = x; // Place x in the element member  

tmp.next = current.next; // x's next node is b  

current.next = tmp; // a's next node is x  
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Insertion 

• We can simplify the code if the ListNode has a constructor 
that initializes the data members directly. In that case, we 
obtain: 

 

tmp = new ListNode( x, current.next );  // Create new node  

current.next = tmp;    // a's next node is x 

  

• We now see that tmp is no longer necessary. Thus we have 
the one-liner  

 

current.next = new ListNode( x, current.next );  
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In code: 

current.next = current.next.next;  

To remove item x from the linked list, we set 

current to be the node prior to x and then have 

current's next link bypass x.  

Deletion 
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Header nodes 

• There is one problem with the basic description: It assumes 
that whenever an item x is removed, some previous item is 
always present to allow a bypass.  

• Consequently, removal of the first item in the linked list 
becomes a special case.  

• Similarly, the insert routine does not allow us to insert an 
item to be the new first element in the list.  

• The reason is that insertions must follow some existing 
item.  

• So, although the basic algorithm works fine, some 
annoying special cases must be dealt with.  
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A header node holds no data but serves to satisfy the 

requirement that every node have a previous node.  

A header node allows us to avoid special cases such as 

insertion of a new first element and removal of the first 

element.  

Header node 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-54 

Header node 

• Refering to Fig. 17.4, note that a is no longer a 
special case.  

• It can be deleted just like any other node by 
having current reference the node before it.  

• We can also add a new first element to the list by 
setting current equal to the header node and 
calling the insertion routine.  

• By using the header node, we greatly simplify the 
code — with a negligible space penalty.  
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Use of header in isEmpty 

With a dummy header node, a list is empty if 

header.next is null.  
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Implementation 
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The current position 

• By storing a current position in a list class, we 

ensure that access is controlled.  

 

• As all access to the list goes through the class 

methods, we can be certain that current always 

represents a node in the list, the header node, or 

null.  
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Iterators 

• The scheme with current has a problem: With only one 

position, the case of two iterators needing to access the list 

independently is left unsupported.  

• One way to avoid this problem is to define a separate 

iterator class, which maintains a notion of its current 

position.  

• A list class would then not maintain any notion of a current 

position and would only have methods that treat the list as 

a unit, such as isEmpty and makeEmpty, or that accept an 

iterator as a parameter, such as insert.  
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Iterators 

• Routines that depend only on an iterator itself, such as 
the advance routine that advances the iterator to the 
next position, would reside in the iterator class.  

 

• Access to the list is granted by making the iterator 
class either package-visible or an inner class.  

 

• We can view each instance of an iterator class as one 
in which only legal list operations, such as advancing 
in the list, are allowed.  
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Example: Use of iterator 

We initialize itr to the first element in theList (skipping over the header, of 

course) by referencing the iterator given by the List.first( ).  

The test itr.isValid( ) attempts to mimic the test p!=null that would be 

conducted if p were a visible reference to a node. Finally, the expression 

itr.advance( ) mimics the conventional idiom p=p.next.  
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Current: helps to 

maintain the notion 

of the current 

position 
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Header node 
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static printList(List) 
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find( X ) 
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remove( X ) 
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findPrevious( X ) 
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insert (X ) 
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End of PART II 

• Readings 

– Chapter 17 
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Lab exercises 

Perform the following on the given implementation: 

• Modify the find routine in the nonstandard LinkedList class to 
return the last position of item x.  

• Modify remove in the nonstandard LinkedList class to remove 
all occurrences of x. 

• Clone: replicate a list in another list. 

• FindMinimum: find the smallest element in the list 
• Hint: you need to use the following signature: 

public AnyType findMinimum(Comparator<AnyType> cmp) 

• Hint: Define a comparator similar to the queue exercise 

• Hint: define BookComparator and the method compare 
that returns -1, 0, or 1. 

 

• Test all these in a testing class  
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