
Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-1

Data Structures

Lesson 3

BSc in Computer Science

University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-2

Outline

• PART I: Algorithm analysis

• PART II: Linked Lists

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Chapter 5

Algorithm Analysis

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-4

Running times and algorithms

• When we run a program on large amounts of input, we

must be certain that the program terminates within a

reasonable amount of time.

• Although the amount of running time is somewhat

dependent on the programming language we use, and to a

smaller extent the methodology we use (such as procedural

versus object-oriented), often those factors are

unchangeable constants of the design.

• Even so, the running time is most strongly correlated with

the choice of algorithms.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-5

Algorithm

• An algorithm is a clearly specified set of instructions the

computer will follow to solve a problem.

• Once an algorithm is given for a problem and determined

to be correct, the next step is to determine the amount of

resources, such as time and space, that the algorithm will

require.

• This step is called algorithm analysis.

• An algorithm that requires several gigabytes of main

memory is not useful for most current machines, even if it

is completely correct.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-6

Some questions

• How to estimate the time required for an algorithm

• How to use techniques that drastically reduce the

running time of an algorithm

• How to use a mathematical framework that more

rigorously describes the running time of an

algorithm

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-7

Algorithms and Input size

• The amount of time that any algorithm takes to run almost

always depends on the amount of input that it must

process.

• We expect, for instance, that sorting 10,000 elements

requires more time than sorting 10 elements.

• The running time of an algorithm is thus a function of the

input size.

• The exact value of the function depends on many factors,

such as the speed of the host machine, the quality of the

compiler, and in some cases, the quality of the program.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-8

Running times for small inputs

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-9

Example of linear algorithm
• An example is the problem of downloading a file over the

Internet.

• Suppose there is an initial 2-sec delay (to set up a connection),

after which the download proceeds at 1.6 K/sec.

• Then if the file is N kilobytes, the time to download is

described by the formula T(N) = N/l.6 + 2. This is a linear

function.

• Downloading an 80K file takes approximately 52 sec, whereas

downloading a file twice as large (160K) takes about 102 sec, or

roughly twice as long.

• This property, in which time essentially is directly proportional

to amount of input, is the signature of a linear algorithm, which

is the most efficient algorithm.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-10

Important issues

• Is it always important to be on the most efficient

curve?

• How much better is one curve than another?

• How do you decide which curve a particular

algorithm lies on?

• How do you design algorithms that avoid being on

less-efficient curves?

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-11

Running times for moderate inputs

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-12

Cubic function

• A cubic function is a function whose dominant term is

some constant times N3. As an example, 10N3 + N2 + 40N

+ 80 is a cubic function.

• Similarly, a quadratic function has a dominant term that is

some constant times N2, and a linear function has a

dominant term that is some constant times N.

• The expression O(N log N) represents a function whose

dominant term is N times the logarithm of N.

• The logarithm is a slowly growing function; for instance,

the logarithm of 1,000,000 (with the typical base 2) is only

20. The logarithm grows more slowly than a square or

cube (or any) root.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-13

Growth rate of a function
• Either of two functions may be smaller than the other at any given

point, so claiming, for instance, that F(N)<G(N) does not make sense.

• Instead, we measure the functions' rates of growth.

• This is justified for three reasons.

• First, for cubic functions such as the one shown in Figure 5.2, when N

is 1,000 the value of the cubic function is almost entirely determined

by the cubic term. In the function 10N3 + N2 + 40N + 80, for N = 1,000,

the value of the function is 10,001,040,080, of which 10,000,000,000

is due to the 10N3 term.

• If we were to use only the cubic term to estimate the entire function, an

error of about 0.01 percent would result.

• For sufficiently large N, the value of a function is largely determined

by its dominant term (the meaning of the term sufficiently large varies

by function).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-14

Growth rate of a function

• The second reason we measure the functions' growth rates is

that the exact value of the leading constant of the dominant term

is not meaningful across different machines

– For instance, the quality of the compiler could have a large

influence on the leading constant.

• The third reason is that small values of N generally are not

important. For N = 20, Figure 5.1 shows that all algorithms

terminate within 5 ms.

– The difference between the best and worst algorithm is less

than a blink of the eye.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-15

Big-Oh notation

• We use Big-Oh notation to capture the most

dominant term in a function and to represent the

growth rate.

• For instance, the running time of a quadratic

algorithm is specified as O(N2) (pronounced

"order en-squared").

• Big-Oh notation also allows us to establish a

relative order among functions by comparing

dominant terms.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-16

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-17

Small inputs

• For small amounts of input, making comparisons between

functions is difficult because leading constants become very

significant.

• The function N + 2,500 is larger than N2 when N is less than 50.

• Eventually, the linear function is always less than the quadratic

function.

• Most important, for small input sizes the running times are

generally inconsequential, so we need not worry about them.

• Figure 5.1 shows that when N is less than 25, all four algorithms

run in less than 10 ms.

• Consequently, when input sizes are very small, a good rule of

thumb is to use the simplest algorithm.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-18

Optimizing the algorithm

• The most striking feature of these curves is that the

quadratic and cubic algorithms are not competitive with

the others for reasonably large inputs.

• We can code the quadratic algorithm in highly efficient

machine language and do a poor job coding the linear

algorithm, and the quadratic algorithm will still lose badly.

• Even the most clever programming tricks cannot make an

inefficient algorithm fast.

• Thus, before we waste effort attempting to optimize code,

we need to optimize the algorithm.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-19

Examples of algorithm

running times

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-20

Minimum element in an array

• Given an array of N items, find the smallest item.

• The minimum element problem is fundamental in computer science. It

can be solved as follows:

1. Maintain a variable min that stores the minimum element.

2. Initialize min to the first element.

3. Make a sequential scan through the array and update min as

appropriate.

• The running time of this algorithm will be O(N), or linear, because we

will repeat a fixed amount of work for each element in the array.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-21

Closest points in the plane
• Given N points in a plane (that is, an x-y coordinate system), find the

pair of points that are closest together.

• The closest points problem is a fundamental problem in graphics that

can be solved as follows:

1. Calculate the distance between each pair of points.

2. Retain the minimum distance.

• This calculation is expensive, however, because there are N(N - l)/2

pairs of points.

• Thus there are roughly N2 pairs of points. Examining all these pairs

and finding the minimum distance among them takes quadratic time.

• (Beyond the scope of this course: A better algorithm runs in O(N log

N) time and works by avoiding the computation of all distances. There

is also an algorithm that is expected to take O(N) time.)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-22

Analysis of algorithms
• Problem

– The maximum contiguous subsequence sum problem

• Given (possibly negative) integers A1,A2,..,AN, find (and identify the

sequence corresponding to) the maximum value of SUM(Ak).

– The maximum contiguous subsequence sum is zero if all the integers are

negative.

• As an example, if the input is {-2, 11, -4, 13, -5, 2}, then the answer is

20, which represents the contiguous subsequence encompassing items

2 through 4 (shown in boldface type).

• As a second example, for the input { 1, -3, 4, -2, -1, 6 }, the answer is

7 for the subsequence encompassing the last four items.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-23

Algorithms that solve the problem

• There are lots of drastically different algorithms

(in terms of efficiency) that can be used to solve

the maximum contiguous subsequence sum

problem.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-24

Cubic: a brute force algorithm

The dominant

term

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-25

Analysis of the algorithm

• Four expressions that are repeatedly executed:

1. The initialization k = i

2. The test k <= j

3. The increment thisSum += a[k]

4. The adjustment k++

• The number of times expression 3 is executed

makes it the dominant term among the four

expressions.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-26

Analysis of the algorithm

• The number of times line 15 is executed is exactly
equal to the number of ordered triplets (i, j, k) that
satisfy 1<i<k<j<N.

• The reason is that the index i runs over the entire
array, j runs from i to the end of the array, and k
runs from i to j.

• A quick and dirty estimate is that the number of
triplets is somewhat less than N x N x N, or N3,
because i, j, and k can each assume one of N
values.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-27

Theorem 5.1

• The number of integer-ordered triplets (i, j,

k) that satisfy 1<i<k<j<N is N(N+l)(N +

2)/6.

• The result of Theorem 5.1 is that the

innermost for loop accounts for cubic

running time.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-28

Big-Oh estimation
• The previous combinatorial argument allows us to obtain

precise calculations on the number of iterations in the inner

loop.

• For a Big-Oh calculation, this is not really necessary; we need to

know only that the leading term is some constant times N3.

• Looking at the algorithm, we see a loop that is potentially of

size N inside a loop that is potentially of size N inside another

loop that is potentially of size N.

• This configuration tells us that the triple loop has the potential

for N x N x N iterations.

• This potential is only about six times higher than what our

precise calculation of what actually occurs.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-29

An improved algorithm: quadratic

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-30

How about a linear algorithm?

• We need to remove another loop.

• The only way we can attain a subquadratic bound

is to find a clever way to eliminate from

consideration a large number of subsequences,

without actually computing their sum and testing

to see if that sum is a new maximum.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-31

A linear algorithm

One for loop

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-32

General big-oh rules

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-33

Interpretation of notations

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-34

Observed running times

Ooopss…

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-35

The Searching Problem

• Static searching problem

– Given an integer X and an array A, return the

position of X in A or an indication that it is not

present.

– If X occurs more than once, return any

occurrence. The array A is never altered.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-36

Sequential search

• When the input array is not sorted, we have little choice

but to do a linear sequential search, which steps through

the array sequentially until a match is found.

• The complexity of the algorithm is analyzed in three ways.

– First, we provide the cost of an unsuccessful search.

– Then, we give the worst-case cost of a successful

search.

– Finally, we find the average cost of a successful search.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-37

Worst cases

• An unsuccessful search requires the examination of every

item in the array, so the time will be O(N).

• In the worst case, a successful search, too, requires the

examination of every item in the array because we might

not find a match until the last item.

– Thus the worst-case running time for a successful

search is also linear.

• On average, however, we search only half of the array.

• However, N/2 is still O(N).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-38

Binary search

• If the input array has been sorted, we have

an alternative to the sequential search, the

binary search, which is performed from the

middle of the array rather than the end.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-39

the number of iterations

will be O(log N).

Binary search

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-40

Limitations of Big-oh

• Big-Oh analysis is a very effective tool, but it does have

limitations.

• As already mentioned, its use is not appropriate for small

amounts of input.

• For small amounts of input, use the simplest algorithm.

• Also, for a particular algorithm, the constant implied by the Big-

Oh may be too large to be practical.

• For example, if one algorithm's running time is governed by the

formula 2N log N and another has a running time of 1000N,

then the first algorithm would most likely be better, even though

its growth rate is larger.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-41

Limitations of Big-oh

• Large constants can come into play when an algorithm is

excessively complex.

• They also come into play because our analysis disregards

constants and thus cannot differentiate between things like

memory access (which is cheap) and disk access (which

typically is many thousand times more expensive).

• Our analysis assumes infinite memory, but in applications

involving large data sets, lack of sufficient memory can be

a severe problem.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-42

End of PART I

• Readings

– Chapter 5

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-43

PART II

• Linked Lists

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Chapter 17

Linked Lists

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-45

Linked Lists

• With stacks and queues we have demonstrated that linked
lists can be used to store items noncontiguously.

• The linked lists used until now were simplified, with all the
accesses performed at one of the list's two ends.

• We will now show:

– How to allow access to any item by using a general
linked list

– The general algorithms for the linked list operations

– How the iterator class provides a safe mechanism for
traversing and accessing linked lists.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-46

Singly linked list

• The basic linked list consists of a collection of

connected, dynamically allocated nodes.

• In a singly linked list, each node consists of the

data element and a link to the next node in the list.

• The last node in the list has a null next link.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-47

ListNode

class ListNode

 {

 Object element;

 ListNode next;

 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-48

Basic linked list

We can print or search in the linked list by starting at

the first item and following the chain of next links.

The two basic operations that must be performed are

insertion and deletion of an arbitrary item x.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-49

Insertion

In code:

tmp = new ListNode(); // Create a new node

tmp.element = x; // Place x in the element member

tmp.next = current.next; // x's next node is b

current.next = tmp; // a's next node is x

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-50

Insertion

• We can simplify the code if the ListNode has a constructor
that initializes the data members directly. In that case, we
obtain:

tmp = new ListNode(x, current.next); // Create new node

current.next = tmp; // a's next node is x

• We now see that tmp is no longer necessary. Thus we have
the one-liner

current.next = new ListNode(x, current.next);

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-51

In code:

current.next = current.next.next;

To remove item x from the linked list, we set

current to be the node prior to x and then have

current's next link bypass x.

Deletion

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-52

Header nodes

• There is one problem with the basic description: It assumes
that whenever an item x is removed, some previous item is
always present to allow a bypass.

• Consequently, removal of the first item in the linked list
becomes a special case.

• Similarly, the insert routine does not allow us to insert an
item to be the new first element in the list.

• The reason is that insertions must follow some existing
item.

• So, although the basic algorithm works fine, some
annoying special cases must be dealt with.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-53

A header node holds no data but serves to satisfy the

requirement that every node have a previous node.

A header node allows us to avoid special cases such as

insertion of a new first element and removal of the first

element.

Header node

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-54

Header node

• Refering to Fig. 17.4, note that a is no longer a
special case.

• It can be deleted just like any other node by
having current reference the node before it.

• We can also add a new first element to the list by
setting current equal to the header node and
calling the insertion routine.

• By using the header node, we greatly simplify the
code — with a negligible space penalty.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-55

Use of header in isEmpty

With a dummy header node, a list is empty if

header.next is null.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-56

Implementation

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-57

The current position

• By storing a current position in a list class, we

ensure that access is controlled.

• As all access to the list goes through the class

methods, we can be certain that current always

represents a node in the list, the header node, or

null.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-58

Iterators

• The scheme with current has a problem: With only one

position, the case of two iterators needing to access the list

independently is left unsupported.

• One way to avoid this problem is to define a separate

iterator class, which maintains a notion of its current

position.

• A list class would then not maintain any notion of a current

position and would only have methods that treat the list as

a unit, such as isEmpty and makeEmpty, or that accept an

iterator as a parameter, such as insert.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-59

Iterators

• Routines that depend only on an iterator itself, such as
the advance routine that advances the iterator to the
next position, would reside in the iterator class.

• Access to the list is granted by making the iterator
class either package-visible or an inner class.

• We can view each instance of an iterator class as one
in which only legal list operations, such as advancing
in the list, are allowed.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-60

Example: Use of iterator

We initialize itr to the first element in theList (skipping over the header, of

course) by referencing the iterator given by the List.first().

The test itr.isValid() attempts to mimic the test p!=null that would be

conducted if p were a visible reference to a node. Finally, the expression

itr.advance() mimics the conventional idiom p=p.next.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-61

Current: helps to

maintain the notion

of the current

position

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-62

Header node

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-63

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-64

static printList(List)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-65

find(X)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-66

remove(X)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-67

findPrevious(X)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-68

insert (X)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-69

End of PART II

• Readings

– Chapter 17

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-70

Lab exercises

Perform the following on the given implementation:

• Modify the find routine in the nonstandard LinkedList class to
return the last position of item x.

• Modify remove in the nonstandard LinkedList class to remove
all occurrences of x.

• Clone: replicate a list in another list.

• FindMinimum: find the smallest element in the list
• Hint: you need to use the following signature:

public AnyType findMinimum(Comparator<AnyType> cmp)

• Hint: Define a comparator similar to the queue exercise

• Hint: define BookComparator and the method compare
that returns -1, 0, or 1.

• Test all these in a testing class

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-71

