Data Structures
Lesson 4

BSc in Computer Science
University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-1

Outline

* Doubly Linked Lists
* Circular Doubly Linked Lists

e Exercises

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-2

Chapter 17

Linked Lists

Addison-Wesley
is an imprint of

Data Structures & Problem Solving Using

Java

~

VP EARSO N Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Doubly Linked Lists

* The singly linked list does not efficiently
support some important operations.

* For instance, although 1t 1s easy to go to the
front of the list, 1t 1s time consuming to go
to the end.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-4

A doubly linked list

T T T T figure 17.15

L, - Foaat- o beabio- --a - A doubly linked list

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-5

Empty list

. . figure 17.16
I ——- I
L, i - - An empty doubl
l \ :/ linked i?’[(/
head tail
1-6

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Insertion

figure 17.17

Insertion in a doubly
linked list by getting
new node ang then
changing pointers in
the order indicated

Ay

Insert after current: current is node with a

newNode = new DoublyLinkedListNode(x);
newNode.prev = current; // Set x's prev link
newNode.next = current.next; // Set x's next link
newNode.prev.next = newNode; // Set a's next link
newNode.next.prev = newNode; // Set b's prev link
current = newNode;

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Ky

1-7

Circularly and doubly linked list

figure 17.18

. . e S Y I : A circularly and doubly
R B - b --- R e d - -- linked list

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-8

Sorted linked lists

* Sometimes we want to keep the 1tems in a linked
list 1n sorted order, which we can do with a sorted

linked list.

 The fundamental difference between a sorted
linked list and an unsorted linked list is the

1nsertion routine.

* Indeed, we can obtain a sorted list class by simply
altering the insertion routine from our already

written list class.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-9

1 package weiss.nonstandard;
2
3 // SortedlLinkedlList class
4
5 // CONSTRUCTION: with no initializer
6 // Access is via LinkedlListIterator class
7
8 ﬁ; *Q***ﬁ#**ﬁ********PUBLIC OPERATIUNS'P(k**************k****
9 // void insert(x) --> Insert x AnyType must implement the
10 // void insert(x, p) --> Insert x (ignore p) ble i face:
11 // A11 other LinkedList operations Comparable interface:
19 [FEERERRR kR ERRORSH #H d ks ks kb kbbb bk k& compareTo() methods.
13 // No special errors
14
15 public class SortedlLinkedList<AnyType extends Comparable<? super AnyType>>
16 extends LinkedList<AnyType>
17 {
18 /**
19 * Insert after p.
20 * @param x the item to insert.
21 * @param p this parameter is ignored.
22 */
23 public void insert(AnyType x, LinkedListIterator<AnyType> p)
24 {
25 insert(x);
26 }
27
28 /**
29 * Insert in sorted order.
30 * @param x the item to insert.
31 */
32 public void insert(AnyType x)
33 {
34 LinkedListIterator<AnyType> prev = zeroth();
35 LinkedListIterator<AnyType> curr = first();
36
37 while(curr.isValid() && x.compareTo(curr.retrieve()) > 0)
38 { .
39 prev.advance(); S——___ Insert right before
40 curr.advance();
“) larger element
43 super.insert(x, prev);
44 } than X
45 }
figure 17.19

The SortedLinkedList class, in which insertions are restricted to sorted order

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-10

1 package weiss.util;
2 public class LinkedList<AnyType> extends AbstractCollection<AnyType>

3

4 {

5

6 {/*
7

8 { /%
9
10 public
11 {/*
12 public
13 { /%
14
15 public
16 {/*
17 public
18 { /%
19 public
20 {/*
21 public
22 {/*
23 public
24 {/*
25 public
26 { /%
27 public
28 {/*
29 public
30 {/*
31 public
32 {/*

figure 17.20a

Class skeleton for standard LinkedList class (continues)

implements List<AnyType>, Queue<AnyType>

private static class Node<AnyType>

Figure 17.21 */ }

private class LinkedListIterator<AnyType> implements ListIterator<AnyType>

Figure 17.30 */ }

LinkedList()

Figure 17.22 */ }

LinkedList(Collection<AnyType> other)
Figure 17.22 */ }

int size()

Figure 17.23 */ }

boolean contains(Object x)
Figure 17.23 */ }

boolean add(AnyType x)
Figure 17.24 */ }

void add(int idx, AnyType x)
Figure 17.24 */ }

void addFirst(AnyType x)
Figure 17.24 */ }

void addLast(AnyType x)
Figure 17.24 */ }

AnyType element()

Added in Java 5; same as getFirst */ }
AnyType getFirst()

Figure 17.25 */ }

AnyType getlLast()

Figure 17.25 */ }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-11

figure 17.20b 33

Class skeleton for 34
standard LinkedList 35
class (continued) 36

37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66 }

pubTic
{ /"
pubTic
{/*
public
{ /%
public
{ /*
pubTic
{ /"
public
{/*
public
{ /%
public
{ /¥
pubTic
{ /"
public
{/*

private int theSize;
private Node<AnyType> beginMarker;

AnyType remove()

Added in Java 5; same as removeFirst */ }
AnyType removeFirst()

Figure 17.27 */ }

AnyType removelast()

Figure 17.27 */ }

boolean remove(Object x)

Figure 17.28 */ }

AnyType get(int idx)

Figure 17.25 */ }

AnyType set(int idx, AnyType newVal)
Figure 17.25 */ }

AnyType remove(int idx)

Figure 17.27 */ }

void clear()

Figure 17.22 */ }

Tterator<AnyType> iterator()

Figure 17.29 */ }

ListIterator<AnyType> TistIterator(int idx)

Figure 17.29 */ }

private Node<AnyType> endMarker;
private int modCount = 0;

private static final Node<AnyType> NOT_FOUND = null;

private Node<AnyType> findPos(Object x)

{/*

Figure 17.23 */ }

private AnyType remove(Node<AnyType> p)

{/*

Figure 17.27 */ }

private Node<AnyType> getNode(int idx)

{7

Figure 17.26 */}

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Head
and tail

modCount is used
by the iterators to
determine if the list
has changed

while an iteration is

in progress;

1-12

1 ¥ figure 17.21

2 * This is the doubly Tinked 1list node. Nisda riastad dlass for
3 *[. standard LinkedList
4 private static class Node<AnyType> class

5 {

6 public Node(AnyType d, Node<AnyType> p, Node<AnyType> n)

7 {

8 data = d; prev = p; next = n;

9 }

10

11 public AnyType data;

12 public Node<AnyType> prev;

13 public Node<AnyType> next;

14 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-13

—
OWWW~NOWU AWN =

MR = = 24 24
CONOAELON =220 O0O0NO0OERWLN =

30

JR* figure 17.22

* Construct an empty LinkedList. Constructors and

*/
. . . clear method for
public LinkedList() standard LinkedList
class
clear();
}
/1!'*
* Construct a LinkedList with same items as another Collection.
*/
public LinkedList(Collection<AnyType> other)
{
clear();
for(AnyType val : other)
add(val);
}
f**
* Change the size of this collection to zero.
®/
public void clear()
{
beginMarker = new Node<AnyType>(null, null, null);
endMarker = new Node<AnyType>(null, beginMarker, null);
beginMarker.next = endMarker;
theSize = 0;
modCount++;
}

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-14

W~ s wWwhN =

figure 17.23

X**
* Returns the number of items in this collection.
* @return the number of items in this collection.
*/

public int size()

{
}
f**

* Tests if some item is in this collection.

* @param x any object.

* @return true if this collection contains an item equal to x.
*/

public boolean contains(Object x)

return theSize;

{
return findPos(x) != NOT_FOUND;
}
/**
* Returns the position of first item matching x
* in this collection, or NOT_FOUND if not found.
* @param x any object.
* @return the position of first item matching x
* in this collection, or NOT_FOUND if not found.
*/
private Node<AnyType> findPos(Object x)
{
for(Node<AnyType> p = beginMarker.next; p != endMarker; p = p.next)
if(x == null)
if(p.data == null)
return p;
else if(x.equals(p.data))
return p;
return NOT_FOUND;
}

size and contains for standard LinkedList class

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-15

1 [*¥ figure 17.24
2 * Adds an item tolth1s collection, at the end. add methods for
3 * @param x any object. standard LinkedList
4 * @return true. class
5 *f

6 pubTic boolean add(AnyType x)

7

8 addLast(x);

9 return true;

10 }

1

12 /s‘u’r

13 * Adds an item to this collection, at the front.

14 % Qther items are slid one position higher.

15 * @param x any object.

16 w/

17 public void addFirst(AnyType x)

18 {

19 add(0, x);

20 }

21

29 /**

23 * Adds an item to this collection, at the end.

24 * @param x any object.

25 */

26 public void addLast(AnyType x)

27 {

28 add(size(), x);

29 }

30

31 /**

32 * Adds an item to this collection, at a specified position.

33 * Items at or after that position are slid one position higher.

34 * @param x any object.

35 * @param idx position to add at.

36 * @throws IndexOutOfBoundsException if idx is not

37 * between 0 and size(), inclusive.

g W

39 public void add(int idx, AnyType x)

40 { \
44 Node<AnyType> p = getNode(idx);

42 Node<AnyType> newNode = new Node<AnyType>(x, p.prev, p); X 1118(3rt€:(1 rlggllt l)f?ft)rfi
43 newNode.prev.next = newNode; 1
44 p.prev = newNode; IlOdC at ldX
45 theSize++;
46 modCount++;
47 }
1-16

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

figure 17.25

get and set methods
for standard
LinkedList class

0~ bW =

bbb PR R BB WWWWWWWWWWMNRNNRERNRERMNRRNRN = = = o o
N O b WN =0 ©O©0=N005LWGKN=0®©O=NO00U050IWN=0®O0=0uU5hhN=0:w®

/**
* Returns the first item in the list.
* @throws NoSuchElementException if the list is empty.
*/
pubTic AnyType getFirst()
{

if(isEmpty())
throw new NoSuchElementException();
return getNode(0).data;

}

/*i{

* Returns the Tast item in the list.

* @throws NoSuchElementException if the Tist is empty.
*/

public AnyType getLast()

if(isEmpty())
throw new NoSuchElementException();
return getNode(size() - 1).data;

}
/*1\'
* Returns the item at position idx.
* @param idx the index to search in.
* @throws IndexOutOfBoundsException if index is out of range.
*/

public AnyType get(int idx)
{

return getNode(idx).data;

* Changes the item at position idx.

* @param idx the index to change.

* @param newVal the new value.

* @return the old value.

* @throws IndexOutOfBoundsException if index is out of range.
®/

public AnyType set(int idx, AnyType newVal)

Node<AnyType> p = getNode(idx);
AnyType oldVal = p.data;

p.data = newVal;
return oldval;

1-17

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1 }#*
2 * Gets the Node at position idx, which must range from 0 to size().
3 * @param idx index to search at.
4 * @return internal node corresponding to idx.
5 * @throws IndexOutOfBoundsException if idx is not
6 * between 0 and size(), inclusive.
7 */
8 private Node<AnyType> getNode(int idx)
9 {
10 Node<AnyType> p;
11
12 ifCidx < 0 || idx > size())
13 throw new IndexQOutOfBoundsException(); Starts from
14
15 if(idx < size() / 2) head
16 {
17 p = beginMarker.next;
18 for(int i =0; 1 < idx; i++)
19 p = p.next,
20 }
21 else Starts
22 {
23 p = endMarker; :
24 for(int i = size(); 1 > idx; i--) fI'OIIl tall
25 p = p.prev;
26 }
27
28 return p;
29
figure 17.26
Private getNode for standard LinkedList class
1-18

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

figure 17.27

remove methods for
standard LinkedList
class

0~k WwNN =

/-k*
* Removes the first item in the Tist.
* @return the item was removed from the collection.
* @throws NoSuchElementException if the list is empty.
*/
public AnyType removeFirst()
{

if(isEmpty())
throw new NoSuchElementException();
return remove(getNode(0));

}
/*s‘(

* Removes the last item in the Tist.

* @return the item was removed from the collection.

* @throws NoSuchElementException if the list is empty.
*/

public AnyType removelast()

if(isEmpty())
throw new NoSuchElementException();
return remove(getNode(size() - 1));

}
/**

* Removes an item from this collection.
* @param idx the index of the object.

* @return the item that was removed from the collection.
*/

public AnyType remove(int idx)
{

return remove(getNode(idx));

}
/**

* Removes the object contained in Node p.
* @aram p the Node containing the object.
¥ @return the item that was removed from the collection.

*f
private AnyType remove(Node<AnyType> p)
{

p.next.prev = p.prev;

p.prev.next = p.next;

theSize--;

modCount++;

return p.data;

1-19

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1 JE* figure 17.28

2 * Removes an item from this collection. Additional remove
3 * @param x any object. method for standard
4 * @return true if this item was removed from the collection. LinkedList class
5 ®/

6 public boolean remove(Object x)

7 {

8 Node<AnyType> pos = findPos(x);

9

10 if(pos == NOT_FOUND)

11 return false;

12 else

13 {

14 remove(pos);

15 return true;

16 }

17 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-20

Summary: Key Concepts

e Circularly linked list: A linked list in which the last cell's next link references
first.

* Doubly linked list: A linked list that allows bidirectional traversal by storing
two links per node.

* Header node: An extra node in a linked list that holds no data but serves to
satisfy the requirement that every node have a previous node. A header node
allows us to avoid special cases such as the insertion of a new first element and
the removal of the first element.

« [terator class: A class that maintains a current position in a container, such as a
list. An iterator class is usually in the same package as, or an inner class of, a
list class.

 Sorted linked list: A list in which 1items are in sorted order. A sorted linked list
class can be derived from a list class.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-21

Exercises

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-22

PrintInverse()

 Print the LinkedList in reverse order

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-23

Find number of occurrences of an element 1n a
list

* Scan the list and update a counter every time you
find an element 1n the list

e Use comparator

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-24

Efficiently find an element in a
sorted list

« Hint: If the book title starts with a letter greater than the
middle of the alphabet then start searching from tail.

« Even better: binary search

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-25

MoveTloFront

MoveToFront

 If the order that items 1n a list are stored i1s not important, you
can frequently speed searching with the heuristic known as
move to front:

 Whenever an item 1s accessed, move it to the front of the list.

* This action usually results in an improvement because
frequently accessed items tend to migrate toward the front of the
list, whereas less frequently accessed items tend to migrate
toward the end of the list.

« Consequently, the most frequently accessed items tend to
require the least searching. Implement the move-to-front
heuristic for linked lists.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-26

Remove Duplicates

 Remove duplicate elements from the list

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-27

Project: Part 1

« Write a line-based text editor.
* The command syntax 1s similar to the Unix line editor ed.

* The internal copy of the file 1s maintained as a linked list
of lines.

« To be able to go up and down 1n the file, you have to
maintain a doubly linked list. Most commands are
represented by a one-character string.

« Some are two characters and require an argument (or two).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-28

figure 17.31

Command Function
Copmands foregitor | Go tothe top.
a Add text after current line until . on its own line
d Delete current line.
dr num num Delete several lines.
f name Change name of the current file (for next write).
g num Go to a numbered line.
h Get help.
i Like append, but add lines before current line.
m num Move current line after some other line.
mr num hum num Move several lines as a unit after some other line.
n Toggle whether line numbers are displayed.
p Print current line.
pr num hum Print several lines.
q! Abort without write.
r name Read and paste another file into the current file.
s text text Substitute text with other text.
t num Copy current line to after some other line.
tr num num num Copy several lines to after some other line.
W Write file to disk.
x! Exit with write.
$ Go to the last line.

- Go up one line.
+ Go down one line.

= Print current line number.

/ text Search forward for a pattern.
? text Search backward for a pattern.
Print number of lines and characters in file.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-29

Project Part 1 Deadline

— Zip the project into a .zip document

— Rename the file in “Name Surname Exercise Number .zip”

— Submit the file by email to: marenglenbiba@unyt.edu.al.

— Mail Subject: DSSPRING16 — Project Part 1 - Name Surname
— Deadline 01/06/2017 23:59.

— 20% penalty if the above rules are not respected as written.

— 20% penalty for each day of delay

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-30

