
Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-1

Data Structures

Lesson 6

BSc in Computer Science

University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-2

Outline

• PART I – Introduction to Recursion

• PART II - Trees

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-3

Recursion

• A method that is partially defined in terms of itself is

called recursive.

• Recursion, which is the use of recursive methods, is a

powerful programming tool that in many cases can

yield both short and efficient algorithms.

• We begin our discussion of recursion by examining

the mathematical principle on which it is based:

mathematical induction.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-4

Recursion

• A recursive method is a method that either directly

or indirectly makes a call to itself.

• This action may seem to be circular logic: How

can a method F solve a problem by calling itself?

• The key is that the method F calls itself on a

different, generally simpler, instance.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-5

Recursion and infinite loops

• Recursion is a powerful problem-solving tool.

– Many algorithms are most easily expressed in a

recursive formulation.

– Furthermore, the most efficient solutions to many

problems are based on this natural recursive

formulation.

• But you must be careful not to create circular logic

that would result in infinite loops.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-6

Proofs by mathematical induction

• Induction is commonly used to establish theorems
that hold for positive integers.

• Theorem 7.1:

• This particular theorem can be easily established
by using other methods, but often a proof by
induction is the simplest mechanism.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-7

Proof by induction

• A proof by induction is carried out in two steps.

• First we show that the theorem is true for the smallest
cases.

• We then show that if the theorem is true for the first few
cases, it can be extended to include the next case.

• For instance, we show that a theorem that is true for all
1≤N ≤ k must be true for 1 ≤ N ≤ k + 1.

• Once we have shown how to extend the range of true
cases, we have shown that it is true for all cases.

• The reason is that we can extend the range of true cases
indefinitely.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-8

The basis

• Why does this constitute a proof?

• First, the theorem is true for N = 1, which is called the
basis.

• We can view it as being the basis for our belief that the
theorem is true in general.

• In a proof by induction, the basis is the easy case that can
be shown by hand.

• Once we have established the basis, we use inductive
hypothesis to assume that the theorem is true for some
arbitrary k and that, under this assumption, if the theorem
is true for k, then it is true for k + 1.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-9

Sum of the first N integers

• Sometimes mathematical functions are defined recursively.

• For instance, let S(N) be the sum of the first N integers.

Then S(1) = 1, and we can write

– S(N) = S(N- 1) + N.

• Here we have defined the function S in terms of a smaller

instance of itself.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-10

Sum of the first N integers

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-11

Sum of the first N integers

• Note that, although s seems to be calling itself, in reality it

is calling a clone of itself.

• That clone is simply another method with different

parameters.

• At any instant only one clone is active; the rest are

pending.

• It is the computer's job, not yours, to handle all the

bookkeeping.

• If there were too much bookkeeping even for the

computer, then it would be time to worry.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-12

Rules of Recursion

• We thus have our first two (of four) fundamental rules of

recursion.

1. Base case: Always have at least one case that can be

solved without using recursion.

2. Make progress: Any recursive call must progress

toward a base case.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-13

Cost of bookkeeping

• A problem is that if the parameter n is large, but not so
large that the answer does not fit in an int, the program can
crash or hang.

• Our system, for instance, cannot handle N > 8,882.

• The reason is that the implementation of recursion requires
some bookkeeping to keep track of the pending recursive
calls, and for sufficiently long chains of recursion, the
computer simply runs out of memory.

• This routine also is somewhat more time consuming than
an equivalent loop because the bookkeeping also uses
some time.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-14

Third rule of induction

• When designing a recursive algorithm, we can always

assume that the recursive calls work (if they progress

toward the base case) because, when a proof is performed,

this assumption is used as the inductive hypothesis.

 3. Always assume that the recursive call works.

• At first glance such an assumption seems strange.

– However, recall that we always assume that method

calls work, and thus the assumption that the recursive

call works is really no different.

• Rule 3 tells us that when we design a recursive method, we

do not have to attempt to trace the possibly long path of

recursive calls.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-15

How is recursion implemented in

programming languages?

• The implementation of recursion requires additional

bookkeeping on the part of the computer.

• Said another way, the implementation of any method

requires bookkeeping, and a recursive call is not

particularly special (except that it can overload the

computer's bookkeeping limitations by calling itself too

many times).

• In Java, like other languages such as C++, implements

methods by using an internal stack of activation records.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-16

Activation records

• An activation record contains relevant information

about the method, including, for instance, the

values of the parameters and local variables.

• The actual contents of the activation record is

system dependent.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-17

The stack and activation records

• The stack of activation records is used because methods

return in reverse order of their invocation.

• Recall that stacks are great for reversing the order of things.

• In the most popular scenario, the top of the stack stores the

activation record for the currently active method.

• When method G is called, an activation record for G is

pushed onto the stack, which makes G the currently active

method.

• When a method returns, the stack is popped and the

activation record that is the new top of the stack contains the

restored values.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-18

Activation records

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-19

A bad algorithm

The underlying problem is that this recursive routine performs

redundant calculations. To compute fib(n), we recursively

compute fib(n-l). When the recursive call returns, we compute

fib(n-2) by using another recursive call.

But we have already computed fib(n-2) in the process of

computing fib(n-l), so the call to fib(n-2) is a wasted, redundant

calculation.

In effect, we make two calls to fib(n-2) instead of only one.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-20

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-21

Fourth rule of recursion

• Compound interest rule: Never duplicate

work by solving the same instance of a

problem in separate recursive calls.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-22

Factorial

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-23

Greatest Common Divisor

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-24

End of Part I

• Readings

– Chapter 7

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-25

PART II - Trees

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-26

Trees

• The tree is a fundamental structure in computer

science.

• Almost all operating systems store files in trees or

treelike structures.

• Trees are also used in compiler design, text

processing, and searching algorithms.

• Artificial intelligence and many other subfields of

computer science make use of trees heavily.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-27

General trees

• Trees can be defined in two ways: nonrecursively and

recursively.

• The nonrecursive definition is the more direct

technique, so we begin with it.

• The recursive formulation allows us to write simple

algorithms to manipulate trees.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-28

Tree definition
• Nonrecursively, a tree consists of a set of nodes and a set of

directed edges that connect pairs of nodes.

• Throughout this text we consider only rooted trees.

• A rooted tree has the following properties.

– One node is distinguished as the root.

– Every node c, except the root, is connected by an edge from
exactly one other node p. Node p is c's parent, and c is one of
p's children.

– A unique path traverses from the root to each node. The
number of edges that must be followed is the path length.

• Parents and children are naturally defined. A directed edge
connects the parent to the child.

• A node that has no children is called a leaf.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-29

Depth and Height

• The depth of a node in a tree is the length of the

path from the root to the node.

• Thus the depth of the root is always 0, and the

depth of any node is 1 more than the depth of its

parent.

• The height of a node in a tree is the length of the

path from the node to the deepest leaf.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-30

Example of a tree

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-31

Definitions

• Nodes with the same parent are called siblings; thus B, C,

D, and E are all siblings.

• If there is a path from node u to node v, then u is an

ancestor of v and v is a descendant of u.

• If u ≠ v, then u is a proper ancestor of v and v is a proper

descendant of u.

• The size of a node is the number of descendants the node

has (including the node itself). Thus the size of B is 3, and

the size of C is 1.

• The size of a tree is the size of the root.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-32

An alternative definition of the tree is recursive: Either a

tree is empty or it consists of a root and zero or more

nonempty subtrees T1, T2,…, Tk, each of whose roots

are connected by an edge from the root.

Recursive Definition

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-33

Implementation

• One way to implement a tree would be to have in each

node a link to each child of the node in addition to its data.

• However, as the number of children per node can vary

greatly and is not known in advance, making the children

direct links in the data structure might not be feasible —

there would be too much wasted space.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-34

First child/next sibling method

• The first child/next sibling method is simple:

• Keep the children of each node in a linked list of tree

nodes, with each node keeping two links:

– one to its leftmost child (if the node is not a leaf) and

– one to its right sibling (if the node is not the rightmost sibling).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-35

First child/next sibling method

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-36

File systems and trees

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-37

Listing a directory: pre-order visit

We first process the current

node and then we go down

the tree

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-38

Preorder tree traversal

In this algorithmic technique, known as a preorder

tree traversal, work at a node is performed before

(pre) its children are processed.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-39

Postorder tree traversal

• The work at a node is performed after (post)

its children are evaluated.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-40

Postorder tree traversal

The numbers in parentheses represent the number of

disk blocks taken up by each file.

The directories themselves are files, so they also use

disk blocks (to store the names and information about

their children).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-41

Postorder tree traversal

• Suppose that we want to compute the total number of

blocks used by all files in our example tree.

• The most natural way to do so is to find the total

number of blocks contained in all the children (which

may be directories that must be evaluated recursively):

books (41), courses (8), and .login (2).

• The total number of blocks is then the total in all the

children plus the blocks used at the root (1), or 52.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-42

The size routine: post-order visit

We first go down the tree

and then

we return the size for each node

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-43

Postorder visit of a tree

We get a classic postorder signature because the

total size of an entry is not computable until the information

for its children has been computed.

The running time is linear.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-44

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-45

Binary Trees

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-46

Binary trees

• A binary tree is a tree in which no node can have
more than two children.

• Because there are only two children, we can name
them left and right.

• Recursively, a binary tree is either empty or
consists of a root, a left tree, and a right tree.

• The left and right trees may themselves be empty;
thus a node with one child could have either a left
or right child.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-47

Structure of

the node

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-48

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-49

Recursion and Trees

• Because trees can be defined recursively, many

tree routines, not surprisingly, are most easily

implemented by using recursion.

• We will see recursive implementations for almost

all the remaining BinaryNode and BinaryTree

methods.

• The resulting routines are amazingly compact.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-50

Duplicating a tree recursively

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-51

Calculating the size recursively

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-52

Calculating the size recursively

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-53

Calculating the height recursively

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-54

Calculating the height recursively

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-55

Tree traversals

• When recursion is applied, we compute information
about not only a node but also about all its
descendants.

• We say then that we are traversing the tree.

• In a preorder traversal, the node is processed and then
its children are processed recursively.

• In a postorder traversal, the node is processed after
both children are processed recursively.

• In a inorder traversal, the left child is recursively
processed, the current node is processed, and the right
child is recursively processed.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-56

Tree traversals

Print

before

Print

after

Print

inorder

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-57

Tree traversals

Numbers represent the order in which each of the nodes

is visited

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-58

Running time for tree traversals

• The running time of each algorithm is linear. In every case,

each node is output only once.

• Consequently, the total cost of an output statement over

any traversal is O(N).

• As a result, each if statement is also executed at most once

per node, for a total cost of O(N).

• The total number of method calls made (which involves

the constant work of the internal run-time stack pushes and

pops) is likewise once per node, or O(N).

• Thus the total running time is O(N).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-59

Trees: speed and recursion

• Must we use recursion to implement the traversals?

• The answer is clearly no, because, as discussed in

Section 7.3, recursion is implemented by using a stack.

• Thus we could keep our own stack.

• We might expect that a somewhat faster program could

result because we can place only the essentials on the

stack rather than have the compiler place an entire

activation record on the stack.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-60

Abstract

class

Structure of

iterator

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-61

Postorder traversal implementation
• The postorder traversal is implemented by using a stack to

store the current state.

• The top of the stack will represent the node that we are

visiting at some instant in the postorder traversal.

• However, we may be at one of three places in the

algorithm:

1. About to make a recursive call to the left subtree

2. About to make a recursive call to the right subtree

3. About to process the current node

• Consequently, each node is placed on the stack three times

during the course of the traversal. If a node is popped from

the stack a third time, we can mark it as the current node to

be visited.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-62

Postorder traversal implementation

• If the node is being popped for either the first time or the second

time, it is not yet ready to be visited, so we push it back onto the

stack and simulate a recursive call.

• If the node was popped for a first time, we need to push the left

child (if it exists) onto the stack.

• Otherwise, the node was popped for a second time, and we push

the right child (if it exists) onto the stack.

• In any event, we then pop the stack, applying the same test.

• Note that, when we pop the stack, we are simulating the

recursive call to the appropriate child.

• If the child does not exist and thus was never pushed onto the

stack, when we pop the stack we pop the original node again.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-63

Tracing of the stack states

Therefore the order of visit is d, b, e, c, a

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-64

The stack

node

The stack

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-65

Push left

child

Push right

child

Remove from

stack

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-66

Inorder traversal implementation

• The inorder traversal is the same as the postorder traversal,
except that a node is declared visited after it is popped a
second time.

• Prior to returning, the iterator pushes the right child (if it
exists) onto the stack so that the next call to advance can
continue by traversing the right child.

• Because this action is so similar to a postorder traversal,
we derive the InOrder class from the PostOrder class (even
though an IS-A relationship does not exist).

• The only change is the minor alteration to advance.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-67

Push right

child

Push left

child

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-68

Preorder traversal implementation
• The preorder traversal is the same as the inorder traversal,

except that a node is declared visited after it has been popped

the first time.

• Prior to returning, the iterator pushes the right child onto the

stack and then pushes the left child.

• Note the order: We want the left child to be processed before the

right child, so we must push the right child first and the left

child second.

• We could derive the PreOrder class from the InOrder or

PostOrder class, but doing so would be wasteful because the

stack no longer needs to maintain a count of the number of

times an object has been popped.

• Consequently, the PreOrder class is derived directly from

Treelterator.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-69

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-70

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-71

Level Order

• The level-order traversal processes nodes starting at the root and

going from top to bottom, left to right.

• The name is derived from the fact that we output level 0 nodes

(the root), level 1 nodes (root's children), level 2 nodes

(grandchildren of the root), and so on.

• A level-order traversal is implemented by using a queue instead

of a stack.

• The queue stores nodes that are yet to be visited.

• When a node is visited, its children are placed at the end of the

queue where they are visited after the nodes that are already in

the queue have been visited.

• This procedure guarantees that nodes are visited in level order.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-72

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-73

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-74

Test the iterators

for(itr.first(); itr.isValid(); itr.advance()){

 System.out.print(" " + itr.retrieve());

 System.out.println();

}

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-75

End of Lesson 6

• Readings

– PART I – Chapter 7

– PART II – Chapter 18

