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Recursion 

• A method that is partially defined in terms of itself is 

called recursive. 

• Recursion, which is the use of recursive methods, is a 

powerful programming tool that in many cases can 

yield both short and efficient algorithms.  

• We begin our discussion of recursion by examining 

the  mathematical principle on which it is based: 

mathematical induction.   
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Recursion 

• A recursive method is a method that either directly 

or indirectly makes a call to itself.  

• This action may seem to be circular logic: How 

can a method F solve a problem by calling itself?  

• The key is that the method F calls itself on a 

different, generally simpler, instance.  
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Recursion and infinite loops 

• Recursion is a powerful problem-solving tool.  

– Many algorithms are most  easily expressed in a 

recursive formulation.  

– Furthermore, the most efficient solutions to many 

problems are based on this natural recursive 

formulation.  

• But you must be careful not to create circular logic 

that would result in infinite loops.  
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Proofs by mathematical induction  

• Induction is commonly used to establish theorems 
that hold for positive integers. 

• Theorem 7.1:  

 

 

 

• This particular theorem can be easily established 
by using other methods, but often a proof by 
induction is the simplest mechanism.  
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Proof by induction 

• A proof by induction is carried out in two steps.  

• First we show that the theorem is true for the smallest 
cases.  

• We then show that if the theorem is true for the first few 
cases, it can be extended to include the next case.  

• For instance, we show that a theorem that is true for all 
1≤N ≤ k must be true for 1 ≤ N ≤ k + 1.  

• Once we have shown how to extend the range of true 
cases, we have shown that it is true for all cases.  

• The reason is that we can extend the range of true cases 
indefinitely.  
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The basis 

• Why does this constitute a proof?  

• First, the theorem is true for N = 1, which is called the 
basis.  

• We can view it as being the basis for our belief that the 
theorem is true in general.  

• In a proof by induction, the basis is the easy case that can 
be shown by hand.  

• Once we have established the basis, we use inductive 
hypothesis to assume that the theorem is true for some 
arbitrary k and that, under this assumption, if the theorem 
is true for k, then it is true for k + 1.  
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Sum of the first N integers 

• Sometimes mathematical functions are defined recursively.  

• For instance, let S(N) be the sum of the first N integers. 

Then S(1) = 1, and we can write  

– S(N) = S(N- 1) + N.  

• Here we have defined the function S in terms of a smaller 

instance of itself.  
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Sum of the first N integers 
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Sum of the first N integers 

• Note that, although s seems to be calling itself, in reality it 

is calling a clone of itself.  

• That clone is simply another method with different 

parameters.  

• At any instant only one clone is active; the rest are 

pending.  

• It is the  computer's job, not yours, to handle all the 

bookkeeping.  

• If there were too much bookkeeping even for the 

computer, then it would be time to worry.  
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Rules of Recursion 

• We thus have our first two (of four) fundamental rules of 

recursion.  

1. Base case: Always have at least one case that can be 

solved without using recursion.  

2. Make progress: Any recursive call must progress 

toward a base case.  
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Cost of bookkeeping 

• A problem is that if the parameter n is large, but not so 
large that the answer does not fit in an int, the program can 
crash or hang. 

• Our system, for instance, cannot handle N > 8,882.  

• The reason is that the implementation of recursion requires 
some bookkeeping to keep track of the pending recursive 
calls, and for sufficiently long chains of recursion, the 
computer simply runs out of memory.  

• This routine also is somewhat more time consuming than 
an equivalent loop because the bookkeeping also uses 
some time.  
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Third rule of induction 

• When designing a recursive algorithm, we can always 

assume that the recursive calls work (if they progress 

toward the base case) because, when a proof is  performed, 

this assumption is used as the inductive hypothesis. 

 3. Always assume that the recursive call works.  

• At first glance such an assumption seems strange.  

– However, recall that we always assume that method 

calls work, and thus the assumption that the recursive 

call works is really no different.  

• Rule 3 tells us that when we design a recursive method, we 

do not have to attempt to trace the possibly long path of 

recursive calls.  
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How is recursion implemented in 

programming languages? 

• The implementation of recursion requires additional 

bookkeeping on the part of the computer.  

• Said another way, the implementation of any method 

requires bookkeeping, and a recursive call is not 

particularly special (except that it can overload the 

computer's bookkeeping limitations by calling itself too 

many times).  

• In Java, like other languages such as C++, implements 

methods by using an internal stack of activation records.  
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Activation records 

• An activation record contains relevant information 

about the method, including, for instance, the 

values of the parameters and local variables.  

 

• The actual contents of the activation record is 

system dependent.  

 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-17 

The stack and activation records 

• The stack of activation records is used because methods 

return in reverse order of their invocation.  

• Recall that stacks are great for reversing the order of things.  

• In the most popular scenario, the top of the stack stores the 

activation record for the currently active method.  

• When method G is called, an activation record for G is 

pushed onto the stack, which makes G the currently active 

method.  

• When a method returns, the stack is popped and the 

activation record that is the new top of the stack contains the 

restored values.  
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Activation records 
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A bad algorithm 

The underlying problem is that this recursive routine performs 

redundant calculations. To compute fib(n), we recursively 

compute fib(n-l). When the recursive call returns, we compute 

fib(n-2) by using another recursive call.  

But we have already computed fib(n-2) in the process of 

computing fib(n-l), so the call to fib(n-2) is a wasted, redundant 

calculation.  

In effect, we make two calls to fib(n-2) instead of only one.  
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Fourth rule of recursion 

• Compound interest rule: Never duplicate 

work by solving the same instance of a 

problem in separate recursive calls.  
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Factorial 
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Greatest Common Divisor 
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End of Part I 

• Readings 

– Chapter 7 
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PART II - Trees 
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Trees 

• The tree is a fundamental structure in computer 

science.  

• Almost all operating systems store files in trees or 

treelike structures.  

• Trees are also used in compiler design, text 

processing, and searching algorithms. 

• Artificial intelligence and many other subfields of 

computer science make use of trees heavily. 
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General trees  

• Trees can be defined in two ways: nonrecursively and 

recursively.  

• The  nonrecursive definition is the more direct 

technique, so we begin with it.  

• The recursive formulation allows us to write simple 

algorithms to manipulate trees.  

 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-28 

Tree definition 
• Nonrecursively, a tree consists of a set of nodes and a set of 

directed edges that connect pairs of nodes.  

• Throughout this text we consider only rooted trees.  

• A rooted tree has the following properties.  

– One node is distinguished as the root.  

– Every node c, except the root, is connected by an edge from 
exactly one other node p. Node p is c's parent, and c is one of 
p's children.  

– A unique path traverses from the root to each node. The 
number of edges that must be followed is the path length.  

• Parents and children are naturally defined. A directed edge 
connects the  parent to the child.  

• A node that has no children is called a leaf.  
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Depth and Height 

• The depth of a node in a tree is the length of the 

path from the root to the node.  

• Thus the depth of the root is always 0, and the 

depth of any node is 1 more than the depth of its 

parent.  

• The height of a node in a tree is the length of the 

path from the node to the deepest leaf.  
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Example of a tree 
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Definitions 

• Nodes with the same parent are called siblings; thus B, C, 

D, and E are all siblings.  

• If there is a path from node u to node v, then u is an 

ancestor of v and v is a descendant of u.  

• If u ≠ v, then u is a proper ancestor of v and v is a proper 

descendant of u.  

• The size of a node is the number of descendants the node 

has (including the node itself). Thus the size of B is 3, and 

the size of C is 1.  

• The size of a tree is the size of the root.  
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An alternative definition of the tree is recursive: Either a 

tree is empty or it consists of a root and zero or more 

nonempty subtrees T1, T2,…, Tk, each of whose roots 

are connected by an edge from the root.  

Recursive Definition 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-33 

Implementation 

• One way to implement a tree would be to have in each 

node a link to each child of the node in addition to its data.  

 

• However, as the number of children per node can vary 

greatly and is not known in advance, making the children 

direct links in the data structure might not be feasible —

there would be too much wasted space.  
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First child/next sibling method  

• The first child/next sibling method is simple:  

• Keep the children of each node in a linked list of tree 

nodes, with each node keeping two links:  

– one to its leftmost child (if the node is not a leaf) and  

– one to its right sibling (if the node is not the rightmost sibling).  
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First child/next sibling method 
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File systems and trees 
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Listing a directory: pre-order visit 

We first process the current 

node and then we go down 

the tree 
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Preorder tree traversal  

In this algorithmic technique, known as a preorder 

tree traversal, work at a node is performed before 

(pre) its children are processed.  
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Postorder tree traversal 

• The work at a node is performed after (post) 

its children are evaluated. 
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Postorder tree traversal 

The numbers in parentheses represent the number of 

disk blocks taken up by each file.  

The directories themselves are files, so they also use 

disk blocks (to store the names and information about 

their children). 
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Postorder tree traversal 

• Suppose that we want to compute the total number of 

blocks used by all files in our example tree.  

• The most natural way to do so is to find the total 

number of blocks contained in all the children (which 

may be directories that must be evaluated recursively): 

books (41), courses (8), and .login (2). 

• The total number of blocks is then the total in all the 

children plus the blocks used at the root (1), or 52.   
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The size routine: post-order visit 

We first go down the tree 

 

and then 

 

we return the size for each node 
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Postorder visit of a tree 

We get a classic postorder signature because the  

total size of an entry is not computable until the information 

for its children has been computed.  

The running time is linear.  
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Binary Trees 
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Binary trees 

• A binary tree is a tree in which no node can have 
more than two children.  

• Because there are only two children, we can name 
them left and right.  

• Recursively, a binary tree is either empty or 
consists of a root, a left tree, and a right tree.  

• The left and right trees may themselves be empty; 
thus a node with one child could have either a left 
or right child.  
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Structure of 

the node 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-48 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-49 

Recursion and Trees 

• Because trees can be defined recursively, many 

tree routines, not surprisingly, are most easily 

implemented by using recursion.  

• We will see recursive implementations for almost 

all the remaining BinaryNode and BinaryTree 

methods.  

• The resulting routines are amazingly compact.  
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Duplicating a tree recursively 
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Calculating the size recursively 
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Calculating the size recursively 
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Calculating the height recursively 
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Calculating the height recursively 
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Tree traversals 

• When recursion is applied, we compute information 
about not only a node but also about all its 
descendants.  

• We say then that we are traversing the tree.  

• In a preorder traversal, the node is processed and then 
its children are  processed recursively.  

• In a postorder traversal, the node is processed after 
both children are  processed recursively.  

• In a inorder traversal, the left child is recursively 
processed, the current node is processed, and the right 
child is recursively processed.  
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Tree traversals 

Print 

before 

Print 

after 

Print 

inorder 
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Tree traversals 

Numbers represent the order in which each of the nodes 

is visited 
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Running time for tree traversals 

• The running time of each algorithm is linear. In every case, 

each node is output only once.  

• Consequently, the total cost of an output statement over 

any traversal is O(N).  

• As a result, each if statement is also executed at most once 

per node, for a total cost of O(N).  

• The total number of method calls made (which involves  

the constant work of the internal run-time stack pushes and 

pops) is likewise once per node, or O(N).  

• Thus the total running time is O(N).  
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Trees: speed and recursion 

• Must we use recursion to implement the traversals?  

• The answer is clearly no, because, as discussed in 

Section 7.3, recursion is implemented by using a stack.  

• Thus we could keep our own stack.  

• We might expect that a somewhat faster program could 

result because we can place only the essentials on the 

stack rather than have the compiler place an entire 

activation record on the stack.  



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-60 

Abstract 

class 

Structure of 

iterator 
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Postorder traversal implementation 
• The postorder traversal is implemented by using a stack to 

store the current state.  

• The top of the stack will represent the node that we are 

visiting at some instant in the postorder traversal.  

• However, we may be at one of three places in the 

algorithm:  

1. About to make a recursive call to the left subtree  

2. About to make a recursive call to the right subtree  

3. About to process the current node  

• Consequently, each node is placed on the stack three times 

during the course of the traversal. If a node is popped from 

the stack a third time, we can mark it as the current node to 

be visited.  
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Postorder traversal implementation 

• If the node is being popped for either the first time or the second 

time, it is not yet ready to be visited, so we push it back onto the 

stack and simulate a recursive call.  

• If the node was popped for a first time, we need to push the left 

child (if it exists) onto the stack.  

• Otherwise, the node was popped for a second time, and we push 

the right child (if it exists) onto the stack.  

• In any event, we then pop the stack, applying the same test.  

• Note that, when we pop the stack, we are simulating the 

recursive call to the appropriate child.  

• If the child does not exist and thus was never pushed onto the 

stack, when we pop the stack we pop the original node again.  
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Tracing of the stack states 

Therefore the order of visit is d, b, e, c, a 
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The stack 

node 

The stack 
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Push left 

child 

Push right 

child 

Remove from 

stack 
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Inorder traversal implementation  

• The inorder traversal is the same as the postorder traversal, 
except that a node is declared visited after it is popped a 
second time.  

• Prior to returning, the iterator pushes the right child (if it 
exists) onto the stack so that the next call to advance can 
continue by traversing the right child.  

• Because this action is so similar to a postorder traversal, 
we derive the InOrder class from the PostOrder class (even 
though an IS-A relationship does not exist).  

• The only change is the minor alteration to advance.  
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Push right 

child 

Push left 

child 
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Preorder traversal implementation 
• The preorder traversal is the same as the inorder traversal, 

except that a node is declared visited after it has been popped 

the first time.  

• Prior to returning, the iterator pushes the right child onto the 

stack and then pushes the left child.  

• Note the order: We want the left child to be processed before the 

right child, so we must push the right child first and the left 

child second.  

• We could derive the PreOrder class from the InOrder or 

PostOrder class, but doing so would be wasteful because the 

stack no longer needs to maintain a count of the number of 

times an object has been popped.  

• Consequently, the PreOrder class is derived directly from 

Treelterator.  
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Level Order 

• The level-order traversal processes nodes starting at the root and 

going from top to bottom, left to right.  

• The name is derived from the fact that we output level 0 nodes 

(the root), level 1 nodes (root's children), level 2 nodes 

(grandchildren of the root), and so on.  

• A level-order traversal is implemented by using a queue instead 

of a stack.  

• The queue stores nodes that are yet to be visited.  

• When a node is visited, its children are placed at the end of the 

queue where they are visited after the nodes that are already in 

the queue have been visited.  

• This procedure guarantees that nodes are visited in level order.  
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Test the iterators 

 

for( itr.first( ); itr.isValid( ); itr.advance( ) ){ 

                System.out.print( " " + itr.retrieve( ) ); 

            System.out.println( ); 

} 
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End of Lesson 6 

• Readings 

– PART I – Chapter 7 

– PART II – Chapter 18 


