
1-1

Data Structures

BSc in Computer Science

University of New York, Tirana

Assoc. Prof. Marenglen Biba

1-2

General info

• Course : Data Structures (3 credit hours)

• Instructor : Assoc. Prof. Marenglen Biba

• Office : Faculty building 2nd floor

• Office Hours : Wednesday 12-14 or by appointment

• Phone : 42273056 / ext. 112

• E-mail : marenglenbiba@unyt.edu.al

• Course page : http://www.marenglenbiba.net/ds/

• Course Location and Time

• Laboratory Room LAB3, Monday 14-17.

mailto:marenglenbiba@unyt.edu.al
http://www.marenglenbiba.net/ds/

1-3

Course description

• This course couples work on program design, analysis, and verification

with an introduction to the study of data structures.

• Data structures capture common ways to store and manipulate data,

and they are important in the construction of sophisticated computer

programs.

• Upon completion of this course, students should be able to: work on

almost all widely used data structures.

1-4

Course Outcomes
• Upon course completion, students will have demonstrated the

ability to do the following:

• understand the advantages of data structures as useful
abstractions in programming

• understand the concept of a linked list structure, recite different
implementations of linked lists.

• understand the concept of a LIFO structure; implement and use
stacks

• understand the concept of a FIFO structure; implement and use
queues

• understand the concept of the tree data structure; implement and
use trees in applications

• understand the concept of hash tables; implement and use them
effectively

• understand the concept of graphs; implement and use effectively

• understand algorithm analysis and evaluate performance

1-5

Required Readings

• Data Structures and Problem Solving Using Java,

4/E. Mark A. Weiss. Addison-Wesley, 2010.

ISBN-10: 0321541405.

1-6

Content of the Course

• Introduction to Data Structures

• Algorithm analysis

• Linked Lists

• Stacks

• Queues

• Trees

• Hash tables

• Graphs

• Priority Queues

1-7

Assumptions for this Class

• Programming in Java

1-8

Grading Policy

Project 40%

Midterm 30%

Final 30%

1-9

Recommendations
• Start studying now

• Do not be shy! Ask any questions that you might have. Every

questions makes you a good candidate.

• The professor is a container of knowledge and the goal is to get most

of him, thus come and talk.

• Respect the deadlines

• Respect the appointments

• Try to study from more than one source, Internet is great!

• If you have any problems come and talk with me in advance so that we

can find an appropriate solution

GOOD LUCK!

1-10

Outline

• Stacks

• Stack: Implementation with Array

• Stack: Implementation with Linked List

Chapter 16

Stacks

1-12

ADT and Classes

• Abstract data type

– A type whose implementation is hidden from
the rest of the system

• Class:

– An abstraction in the context of object-oriented
languages

– A class encapsulates state and behavior

1-13

ADTs

• An ADT represents an abstract way to store

data.

• This is different from normal data types,

such as int or char.

• ADTs offer interesting ways to store data,

depending on what the use of the data is for.

1-14

Linear Data Structures

• The defining property of a list is that the

elements are organized linearly, that is,

every element has one element immediately

before it and another immediately after it

(except, of course, the elements at the

beginning and end of the list).

1-15

Stack

• The stack is an example of a constrained linear data
structure.

• In a stack, the elements are ordered from most
recently added (the top) to the least recently added
(the bottom).

• All insertions and deletions are performed at the top of
the stack.

• You use the push operation to insert an element onto
the stack and the pop operation to remove the topmost
stack element.

1-16

Stack: LIFO mode of operation

• The constraints on insertion and deletion produce

the last in, first out (LIFO) behavior that

characterizes a stack.

• Although the stack data structure is narrowly

defined, it is used so extensively by systems

software that support for a primitive stack is one

of the basic elements of most computer

architectures.

1-17

The first ADT: The Stack

1-18

Stack

• Two implementations:

– Based on Array

– Based on Linked List

1-19

Constructor

Stack ()

Precondition:

• None.

Postcondition:

• creates an empty stack and allocates enough

memory for a stack of default capacity.

1-20

Methods in the Interface

void push (Object newElement)

Precondition:

• newElement is not null.

Postcondition:

• Inserts newElement onto the top of a stack.

1-21

Methods in the Interface

pop ()

Precondition:

• Stack is not empty.

Postcondition:

• Removes the most recently added (top)

element from a stack.

1-22

Methods in the Interface

void makeEmpty ()

Precondition:

• None.

Postcondition:

• Removes all the elements in a stack.

1-23

Methods in the Interface

boolean isEmpty ()

• Precondition:

None.

• Postcondition:

Returns true if a stack is empty. Otherwise,

returns false.

1-24

Methods in the Interface

Object top ()

Precondition:

• Stack is not empty.

Postcondition:

• Get the most recently inserted item in the

stack.

1-25

Methods in the Interface

Object topAndPop ()

Precondition:

• Stack is not empty.

Postcondition:

• Removes the most recently added (top)

element from a stack and returns it.

1-26

Method: doubleArray

• Internal method to extend the stack in case

it is full.

1-27

Array Implementation of Stack

Before we start implementation:

generic programming in Java

• Generics enable types (classes and

interfaces) to be parameters when defining

classes, interfaces and methods.

1-28

Non generic class: Box

public class Box {

private Object object;

public void set(Object object)

{ this.object = object; }

public Object get() { return object; }

}

1-29

Generic class: Box

public class Box<T> {

// T stands for "Type"

private T t;

public void set(T t) { this.t = t; }

public T get() { return t; }

}

1-30

Invoking and Instantiating a

Generic Type

• To reference the generic Box class from

within your code, you must perform a

generic type invocation, which replaces T

with some concrete value, such as Integer:

Box<Integer> integerBox;

1-31

1-32

Array that contains the elements

Index of top of stack

AnyType: Generic

programming

1-33

Constructor

1-34

isEmpty() and makeEmpty()

1-35

Push()

1-36

Top() and Pop()

1-37

topAndPop()

doubleArray()

 private void doubleArray()

 {

 AnyType [] newArray;

 newArray = (AnyType []) new Object[theArray.length * 2];

 for(int i = 0; i < theArray.length; i++)

 newArray[i] = theArray[i];

 theArray = newArray;

 }

1-38

1-39

Linked List Implementation of Stack

1-40

Linked List concept

This is the node containing two elements: the

pointer/reference to next node and the object

1-41

Element of the node

Reference to next node

Reference to

top of stack

1-42

Push() and Pop()

1-43

Top() and topAndPop()

1-44

Stack: An Implementation with

ArrayList

1-45

1-46

Running times of the two

implementations

• Both the array and linked list versions run in
constant time per operation.

• The array version is likely to be faster if an
accurate estimation of capacity is performed.

• If an additional constructor is provided to specify
the initial capacity and the estimate is correct, no
doubling is performed.

1-47

Readings

• Book

– Chapter 16

1-48

Lab Exercises
• Add to the ADT for both implementations that we have

defined the following methods:

– ShowElements: shows all the elements in the stack

– ShowInverse: show the elements in inverse order.

– New constructor which specifies size of stack (for the

array implementation) as parameter.

– Clone: replicate a stack in another stack.

– Swap: exchange the two topmost items on the stack.

• Test all these in a testing class

