
Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-1 1-1 1-1

Data Structures

Lesson 10

BSc in Computer Science

University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Chapter 14

Graphs and Paths

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-3

Graphs

• Graphs are fundamental data structures

• Graph are used in the calculation of shortest paths.

• The computation of shortest paths is a fundamental

application in computer science because many

interesting situations can be modeled by a graph.

• Finding the fastest routes for a mass transportation

system, and routing electronic mail through a network

of computers are but a few examples.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-4

Definitions
• A graph consists of a set of vertices and a set of edges that

connect the vertices.

• That is, G = (V, E), where V is the set of vertices and E is the

set of edges.

• Each edge is a pair (v, w), where v, w ε V.

• Vertices are sometimes called nodes, and edges are sometimes

called arcs.

• If the edge pair is ordered, the graph is called a directed graph.

Directed graphs are sometimes called digraphs.

• In a digraph, vertex w is adjacent to vertex v if and only if (v, w)

ε E.

• Sometimes an edge has a third component, called the edge cost

(or weight) that measures the cost of traversing the edge.

• In this class, all graphs are directed.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-5

Directed Graphs

V = {V0, V1, V2, V3, V4, V5, V6}

The following vertices are adjacent to V3: V2, V4, V5, and V6. Note that V0

and V1 are not adjacent to V3.

For this graph, |V| = 7 and |E| = 12.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-6

Paths

• A path in a graph is a sequence of vertices connected by

edges.

• In other words, w1, w2, ..., wN the sequence of vertices is

such that (wi, wi+1) ε E for 1<i<N.

• The path length is the number of edges on the path —

namely, N - 1 — also called the unweighted path length.

• The weighted path length is the sum of the costs of the

edges on the path.

• For example, V0, V3, V5 is a path from vertex V0 to V5.

• The path length is two edges — the shortest path between

V0 and V5, and the weighted path length is 9.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-7

Cost of path

• If cost is important, the weighted shortest path

between these vertices has cost 6 and is V0, V3, V6,

V5.

• A path may exist from a vertex to itself.

• If this path contains no edges, the path length is 0,

which is a convenient way to define an otherwise

special case.

• A simple path is a path in which all vertices are

distinct, except that the first and last vertices can be

the same.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-8

Cycles

• A cycle in a directed graph is a path that begins and ends at

the same vertex and contains at least one edge.

• That is, it has a length of at least 1 such that w1 = wN.

• This cycle is simple if the path is simple.

• A directed acyclic graph (DAG) is a type of directed graph

having no cycles.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-9

Real life application
• An example of a real-life situation that can be modeled by a graph is

the airport system.

• Each airport is a vertex.

• If there is a nonstop flight between two airports, two vertices are

connected by an edge.

• The edge could have a weight representing time, distance, or the cost

of the flight.

• In an undirected graph, an edge (v, w) would imply an edge (w, v).

• However, the costs of the edges might be different because flying in

different directions might take longer (depending on prevailing winds)

or cost more (depending on local taxes).

• Thus we use a directed graph with both edges listed, possibly with

different weights. Naturally, we want to determine quickly the best

flight between any two airports; best could mean the path with the

fewest edges or one, or all, of the weight measures (distance, cost, and

so on).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-10

Real life application

• A second example of a real-life situation that can be

modeled by a graph is the routing of electronic mail

through computer networks.

• Vertices represent computers, the edges represent links

between pairs of computers, and the edge costs represent

communication costs (phone bill per megabyte), delay

costs (seconds per megabyte), or combinations of these

and other factors.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-11

Dense graph

• For most graphs, there is likely at most one edge from

any vertex v to any other vertex w (allowing one edge in

each direction between v and w).

• Consequently, |E| < |V|2.

• When most edges are present, we have |E| = Θ(|V|2).

• Such a graph is considered to be a dense graph — that

is, it has a large number of edges, generally quadratic.

• In most applications, however, a sparse graph is the

norm.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-12

Sparse graphs

• In the airport model, we do not expect direct flights between

every pair of airports.

• Instead, a few airports are very well connected and most others

have relatively few flights.

• In a complex mass transportation system involving buses and

trains, for any one station we have only a few other stations that

are directly reachable and thus represented by an edge.

• Moreover, in a computer network most computers are attached

to a few other local computers.

• So, in most cases, the graph is relatively sparse, where |E| =

Θ(|V|) or perhaps slightly more (there is no standard definition

of sparse).

• The algorithms that we should develop, then, must be efficient

for sparse graphs.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-13

Representation

• The first thing to consider is how to represent a graph internally.

Assume that the vertices are sequentially numbered starting

from 0, as the graph shown in Figure 14.1 suggests.

• One simple way to represent a graph is to use a two-dimensional

array called an adjacency matrix.

• For each edge (v, w), we set a[v][w] equal to the edge cost;

nonexistent edges can be initialized with a logical INFINITY.

• The initialization of the graph seems to require that the entire

adjacency matrix be initialized to INFINITY.

• Then, as an edge is encountered, an appropriate entry is set.

• In this scenario, the initialization takes O(|V|2) time.

• Although the quadratic initialization cost can be avoided, the

space cost is still O(|V|2), which is fine for dense graphs but

completely unacceptable for sparse graphs.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-14

Adjacency lists

• For sparse graphs, a better solution is an adjacency list, which

represents a graph by using linear space.

• For each vertex, we keep a list of all adjacent vertices.

• Because each edge appears in a list node, the number of list

nodes equals the number of edges.

• Consequently, O(|E|) space is used to store the list nodes.

• Consequently, we say that the space requirement is O(|E|), or

linear in the size of the graph.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-15

Adjacency lists

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-16

Linear time construction

• The adjacency list can be constructed in linear time from

a list of edges.

• We begin by making all the lists empty.

• When we encounter an edge (v, w, cv,w), we add an entry

consisting of w and the cost cv,w to v's adjacency list.

• The insertion can be anywhere; inserting it at the front

can be done in constant time.

• Each edge can be inserted in constant time, so the entire

adjacency list structure can be constructed in linear time.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-17

Linear time construction

• When inserting an edge, we do not check whether it is already

present.

• That cannot be done in constant time (using a simple linked

list), and doing the check would destroy the linear-time bound

for construction.

• In most cases, ignoring this check is unimportant.

• If there are two or more edges of different cost connecting a pair

of vertices, any shortest-path algorithm will choose the lower

cost edge without resorting to any special processing.

• Note also that ArrayLists can be used instead of linked lists,

with the constant-time add operation replacing insertions at the

front.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-18

Mapping of vertex names to

numbers
• In most real-life applications the vertices have names, which are

unknown at compile time, instead of numbers.

• Consequently, we must provide a way to transform names to

numbers.

• The easiest way to do so is to provide a map by which we map a

vertex name to an internal number ranging from 0 to |V| - 1 (the

number of vertices is determined as the program runs).

• The internal numbers are assigned as the graph is read. The first

number assigned is 0.

• As each edge is input, we check whether each of the two vertices

has been assigned a number, by looking in the map.

• If it has been assigned an internal number, we use it.

• Otherwise, we assign to the vertex the next available number and

insert the vertex name and number in the map.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-19

Mapping of vertex names to

numbers

• With this transformation, all the graph algorithms use only the

internal numbers.

• Eventually, we have to output the real vertex names, not the

internal numbers, so for each internal number we must also

record the corresponding vertex name.

• One way to do so is to keep a string for each vertex.

• We use this technique to implement a Graph class.

• The class and the shortest-path algorithms require several data

structures — namely, a list, a queue, a map, and a priority

queue.

• The import directives are shown in Figure 14.3. => next slide

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-20

Implementation

The queue (implemented with a linked list) and priority

queue are used in various shortest-path calculations.

The adjacency list is represented with LinkedList.

A HashMap is also used to represent the graph.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-21

Internal numbers

• When we write an actual Java implementation, we do not

need internal vertex numbers.

• Instead, each vertex is stored in a Vertex object, and

instead of using a number, we can use a reference to the

Vertex object as its (uniquely identifying) number.

• However, when describing the algorithms, assuming that

vertices are numbered is often convenient, and we

occasionally do so.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-22

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-23

The Vertex object

• The Vertex object stores information about all the vertices.

• Of particular interest is how it interacts with other Vertex

objects.

– name: The name corresponding to this vertex is

established when the vertex is placed in the map and

never changes.

• None of the shortest-path algorithms examines this

member.

• It is used only to print a final path.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-24

The Vertex object

• adj: This list of adjacent vertices is established

when the graph is read.

– None of the shortest-path algorithms changes the list.

– It is a list of Edge objects that each contain an internal

vertex number and edge cost.

– In reality, Figure 14.5 shows that each Edge object

contains a reference to a Vertex and an edge cost and

that the list is actually stored by using an ArrayList or

LinkedList.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-25

The Vertex object

• dist: The length of the shortest path (either weighted or

unweighted, depending on the algorithm) from the starting

vertex to this vertex as computed by the shortest-path

algorithm.

• prev: The previous vertex on the shortest path to this

vertex, which in the abstract (Figure 14.4) is an int but in

reality (the code and Figure 14.5) is a reference to a

Vertex.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-26

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-27

Single-source algorithms

• The shortest-path algorithms are all single-source

algorithms, which begin at some starting point and

compute the shortest paths from it to all vertices.

• In this example the starting point is A, and by consulting

the map we can find its Vertex object.

• Note that the shortest-path algorithm declares that the

shortest path to A is 0.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-28

Edge class

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-29

Vertex class

Cost of shortest path

Will explain this later, during algorithm

illustration.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-30

All vertices in a hash

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-31

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-32

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-33

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-34

Recursively reconstructs in reverse-order

the path to the starting vertex

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-35

Checks whether a path exists or not

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-36

Constructing the

graph

Find shortest path

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-37

Shortest path

algorithms

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-38

Unweighted shortest path problem

• Unweighted single-source, shortest-path

problem

• Find the shortest path (measured by number

of edges) from a designated vertex S to

every vertex.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-39

V2 is the starting vertex S. The shortest path from S to V2 is a path

of length 0.

Now we can start looking for all vertices that are distance 1 from

S.

We can find them by looking at the vertices adjacent to S. If we do

so, we see that V0 and V5 are one edge away from S => next slide

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-40

Next, we find each vertex whose shortest path from S is exactly 2.

We do so by finding all the vertices adjacent to V0 or V5 (the

vertices at distance 1) whose shortest paths are not already known.

This search tells us that the shortest path to V1 and V3 is 2. => next

slide

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-41

Finally, by examining the vertices adjacent to the recently

evaluated V1 and V3, we find that V4 and V6 have a

shortest path of 3 edges.

All vertices have now been calculated.

Figure 14.19 shows the final result of the algorithm. => next

slide

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-42

This strategy for searching a graph is called breadth-first search,

which operates by processing vertices in layers:

Those closest to the start are evaluated first, and those most

distant are evaluated last.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-43

Fundamental principle

If a path to vertex v has cost Dv and w is adjacent to v, then there

exists a path to w of cost Dw = Dv + 1.

All the shortest-path algorithms work by starting with Dw = ∞ and

reducing its value when an appropriate v is scanned.

To do this task efficiently, we must scan vertices v systematically.

When a given v is scanned, we update the vertices w

adjacent to v by scanning through v's adjacency list.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-44

Completed

vertex

Current

vertex

Not

explored yet

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-45

Algorithm

• An algorithm for solving the unweighted shortest-path

problem is as follows.

• Let D, be the length of the shortest path from S to i. We

know that Ds = 0 and that D = ∞ initially for all i ≠ S.

• We maintain a moving eyeball that hops from vertex to

vertex and is initially at S.

• If v is the vertex that the eyeball is currently on, then, for

all w that are adjacent to v, we set Dw = Dv + 1 if Dw = ∞.

• This reflects the fact that we can get to w by following a

path to v and extending the path by the edge (v, w).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-46

Algorithm

• So we update vertices w as they are seen from the eyeball.

• Because the eyeball processes each vertex in order of its

distance from the starting vertex and the edge adds exactly

1 to the length of the path to w, we are guaranteed that the

first time Dw is lowered from ∞, it is lowered to the value

of the length of the shortest path to w.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-47

Algorithm

• After we have processed all of v's adjacent vertices,

we move the eyeball to another vertex u (that has

not been visited by the eyeball) such that Du = Dv.

• If that is not possible, we move to a vertex u that

satisfies Du = Dv + 1. If that is not possible, we are

done.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-48

Data structures: queue
• When a vertex w has its Dw lowered from ∞, it becomes a

candidate for an eyeball visitation at some point in the

future.

• That is, after the eyeball visits vertices in the current

distance group Dv, it visits the next distance group Dv + 1,

which is the group containing w.

• To select a vertex v for the eyeball, we merely choose the

front vertex from the queue.

• We start with an empty queue and then we enqueue the

starting vertex S.

• A vertex is enqueued and dequeued at most once per

shortest-path calculation, and queue operations are

constant time.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-49

Add candidates in

the queue

5(1) 0(1)

Queue

3(2) 1(2) 5(1)

2(0)

3(2) 1(2)

4(3) 3(2)

6(3) 4(3)

6(3)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-50

Other algorithms

• Djikstra Algorithm is used to solve the

positive-weighted, shortest-path problem,

– Algorithms course next year

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-51

Readings

• Chapter 14

