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Graphs 

• Graphs are fundamental data structures 

• Graph are used in the calculation of shortest paths.  

• The computation of shortest paths is a fundamental 

application in computer science because many 

interesting situations can be modeled by a graph.  

• Finding the fastest routes for a mass transportation 

system, and routing electronic mail through a network 

of computers are but a few examples.  
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Definitions  
• A graph consists of a set of vertices and a set of edges that 

connect the vertices.  

• That is, G = (V, E), where V is the set of vertices and E is the 

set of edges.  

• Each edge is a pair (v, w), where v, w ε V.  

• Vertices are sometimes called nodes, and edges are sometimes 

called arcs.  

• If the edge pair is ordered, the graph is called a directed graph. 

Directed graphs are sometimes called digraphs.  

• In a digraph, vertex w is adjacent to vertex v if and only if (v, w) 

ε E.  

• Sometimes  an edge has a third component, called the edge cost 

(or weight) that measures the cost of traversing the edge.  

• In this class, all graphs are directed.  
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Directed Graphs 

V = {V0, V1, V2, V3, V4, V5, V6}  

The following vertices are adjacent to V3: V2, V4, V5, and V6. Note that V0 

and V1 are not adjacent to V3.  

For this graph, |V| = 7 and |E| = 12. 
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Paths 

• A path in a graph is a sequence of vertices connected by 

edges.  

• In other words, w1, w2, ..., wN the sequence of vertices is 

such that (wi, wi+1) ε E for 1<i<N.  

• The path length is the number of edges on the path — 

namely, N - 1 — also called the unweighted path length.  

• The weighted path length is  the sum of the costs of the 

edges on the path.  

• For example, V0, V3, V5 is a path from vertex V0 to V5. 

• The path length is two edges — the shortest path between 

V0 and V5, and the weighted path length is 9.   
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Cost of path 

• If cost is important, the weighted shortest path 

between these vertices has cost 6 and is V0, V3, V6, 

V5.  

• A path may exist from a vertex to itself.  

• If this path contains no edges, the path length is 0, 

which is a convenient way to define an otherwise 

special case.  

• A simple path is a path in which all vertices are 

distinct, except that the first and last vertices can be 

the same.  
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Cycles 

• A cycle in a directed graph is a path that begins and ends at 

the same vertex and contains at least one edge.  

 

• That is, it has a length of at least 1 such that w1 = wN.  

 

• This cycle is simple if the path is simple.  

 

• A directed acyclic graph (DAG) is a type of directed graph 

having no cycles.  
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Real life application 
• An example of a real-life situation that can be modeled by a graph is 

the airport system.  

• Each airport is a vertex.  

• If there is a nonstop flight between two airports, two  vertices are 

connected by an edge.  

• The edge could have a weight representing time,  distance, or the cost 

of the flight.  

• In an undirected graph, an edge (v, w) would imply an edge (w, v).  

• However, the costs of the edges might be different because flying in 

different directions might take longer (depending on prevailing winds) 

or cost more  (depending on local taxes).  

• Thus we use a directed graph with both edges listed, possibly with 

different weights. Naturally, we want to determine quickly the best 

flight between any two airports; best could mean the path with the 

fewest edges or one, or all, of the weight measures (distance, cost, and 

so on).  
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Real life application 

• A second example of a real-life situation that can be 

modeled by a graph is the routing of electronic mail 

through computer networks.  

• Vertices represent computers, the edges represent links 

between pairs of computers, and the edge costs represent 

communication costs (phone bill per megabyte), delay 

costs (seconds per megabyte), or combinations of these 

and other factors.  
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Dense graph 

• For most graphs, there is likely at most one edge from 

any vertex v to any other vertex w (allowing one edge in 

each direction between v and w).   

• Consequently, |E| < |V|2.  

• When most edges are present, we have |E| = Θ(|V|2).  

• Such a graph is considered to be a dense graph — that 

is, it has a large number of edges, generally quadratic.  

• In most applications, however, a sparse graph is the 

norm.  
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Sparse graphs 

• In the airport model, we do not expect direct flights between 

every pair of airports.  

• Instead,  a few airports are very well connected and most others 

have relatively few flights.  

• In a complex mass transportation system involving buses and 

trains, for any one station we have only a few other stations that 

are directly reachable and thus represented by an edge.  

• Moreover, in a computer network most computers are attached 

to a few other local computers.  

• So, in most cases, the graph is relatively sparse, where |E| = 

Θ(|V|) or perhaps slightly more (there is no standard definition 

of sparse).  

• The algorithms that we should develop, then, must be efficient 

for sparse graphs.  
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Representation 

• The first thing to consider is how to represent a graph internally. 

Assume that the vertices are sequentially numbered starting 

from 0, as the graph shown in  Figure 14.1 suggests.  

• One simple way to represent a graph is to use a two-dimensional 

array called an adjacency matrix.  

• For each edge (v, w), we set a[v][w] equal to the edge cost; 

nonexistent edges can be initialized with a logical INFINITY.  

• The initialization of the graph seems to require that the entire 

adjacency matrix be initialized to INFINITY.  

• Then, as an edge is encountered, an appropriate entry is set.  

• In this scenario, the initialization takes O(|V|2) time.  

• Although the quadratic initialization cost can be avoided, the 

space cost is still O(|V|2), which is fine for dense graphs but  

completely unacceptable for sparse graphs.  
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Adjacency lists 

• For sparse graphs, a better solution is an adjacency list, which 

represents a graph by using linear space.  

 

• For each vertex, we keep a list of all adjacent vertices.  

 

• Because each edge appears in a list node, the number of list 

nodes equals the number of edges.  

 

• Consequently, O(|E|) space is used to store the list nodes.  

 

• Consequently, we say that the space requirement is O(|E|), or 

linear in the size of the graph.  
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Adjacency lists 
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Linear time construction 

• The adjacency list can be constructed in linear time from 

a list of edges.  

• We begin by making all the lists empty.  

• When we encounter an edge (v, w, cv,w), we add an entry 

consisting of w and the cost cv,w to v's adjacency list.  

• The insertion can be anywhere; inserting it at the front 

can be done in constant time.  

• Each edge can be inserted in constant time, so the entire 

adjacency list structure can be constructed in linear time.  
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Linear time construction 

• When inserting an edge, we do not check whether it is already 

present.  

• That cannot be done in constant time (using a simple linked 

list), and doing the check would destroy the linear-time bound 

for construction.  

• In most cases, ignoring this check is unimportant.  

• If there are two or more edges of different cost connecting a pair 

of vertices, any shortest-path algorithm will choose the lower 

cost edge without resorting to any special processing.  

• Note also that ArrayLists can be used instead of linked lists, 

with the constant-time add operation replacing insertions at the 

front.  
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Mapping of vertex names to 

numbers 
• In most real-life applications the vertices have names, which are 

unknown at compile time, instead of numbers.  

• Consequently, we must provide a way to transform names to 

numbers.  

• The easiest way to do so is to provide a map by which we map a 

vertex name to an internal number ranging from 0 to |V| - 1 (the 

number of vertices is determined as the program runs).  

• The internal numbers are assigned as the graph is read. The first 

number assigned is 0.  

• As each edge is input, we check whether each of the two vertices 

has been assigned a number, by looking in the map.  

• If it has been assigned an internal number, we use it.   

• Otherwise, we assign to the vertex the next available number and 

insert the vertex name and number in the map.  
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Mapping of vertex names to 

numbers 

• With this transformation, all the graph algorithms use only the 

internal numbers.  

• Eventually, we have to output the real vertex names, not the 

internal numbers, so for each internal number we must also 

record the corresponding vertex name.  

• One way to do so is to keep a string for each vertex.  

• We use this technique to implement a Graph class.  

• The class and the shortest-path algorithms require several data 

structures — namely, a list, a queue, a map, and a priority 

queue.  

• The import directives are shown in Figure 14.3. => next slide 
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Implementation 

The queue (implemented with a linked list) and priority 

queue are used in various shortest-path calculations.  

The adjacency list is represented with LinkedList.  

A HashMap is also used to represent the graph. 
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Internal numbers 

• When we write an actual Java implementation, we do not 

need internal vertex numbers.  

• Instead, each vertex is stored in a Vertex object, and 

instead of using a number, we can use a reference to the 

Vertex object as its (uniquely identifying) number.  

• However, when describing the algorithms, assuming that 

vertices are numbered is often convenient, and we 

occasionally do so.  
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The Vertex object  

• The Vertex object stores information about all the vertices.  

• Of particular interest is how it interacts with other Vertex 

objects.  

– name: The name corresponding to this vertex is 

established when the vertex is placed in the map and 

never changes.  

• None of the shortest-path algorithms examines this 

member.  

• It is used only to print a final path.  
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The Vertex object 

• adj: This list of adjacent vertices is established 

when the graph is read.  

– None of the shortest-path algorithms changes the list.  

– It is a list of Edge objects that each contain an internal 

vertex number and edge cost.  

– In reality, Figure 14.5 shows that each Edge object 

contains a reference to a Vertex and an edge cost and 

that the list is actually stored by using an ArrayList or 

LinkedList. 
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The Vertex object 

• dist: The length of the shortest path (either weighted or 

unweighted, depending on the algorithm) from the starting 

vertex to this vertex as computed by the shortest-path 

algorithm.  

 

• prev: The previous vertex on the shortest path to this 

vertex, which in the abstract (Figure 14.4) is an int but in 

reality (the code and Figure 14.5) is a reference to a 

Vertex.  
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Single-source algorithms 

• The shortest-path algorithms are all single-source 

algorithms, which begin at some starting point and 

compute the shortest paths from it to all vertices.  

 

• In this example the starting point is A, and by consulting 

the map we can find its Vertex object.  

 

• Note that the shortest-path algorithm declares that the 

shortest path to A is 0.  
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Edge class 
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Vertex class 

Cost of shortest path 

Will explain this later, during algorithm 

illustration. 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-30 

All vertices in a hash 
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Recursively reconstructs in reverse-order 

the path to the starting vertex 
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Checks whether a path exists or not 
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Constructing the 

graph 

Find shortest path 
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Shortest path 

algorithms 
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Unweighted shortest path problem 

• Unweighted single-source, shortest-path 

problem  

 

• Find the shortest path (measured by number 

of edges) from a designated vertex S to 

every vertex.  
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V2 is the starting vertex S. The shortest path from S to V2 is a path 

of length 0. 

Now we can start looking for all vertices that are distance 1 from 

S.  

We can find them by looking at the vertices adjacent to S. If we do 

so, we see that V0 and V5 are one edge away from S => next slide   
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Next, we find each vertex whose shortest path from S is exactly 2.  

We do so by finding all the vertices adjacent to V0 or V5 (the 

vertices at distance 1) whose shortest paths are not already known.  

This search tells us that the shortest path to V1 and V3 is 2. => next 

slide 
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Finally, by examining the vertices adjacent to the recently 

evaluated V1 and V3, we find that V4 and V6 have a 

shortest path of 3 edges.  

All vertices have now been calculated.  

Figure 14.19 shows the final result of the algorithm. => next 

slide 
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This strategy for searching a graph is called breadth-first search, 

which operates by processing vertices in layers:  

Those closest to the start are evaluated first, and those most 

distant are evaluated last.  
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Fundamental principle 

If a path to vertex v has cost Dv and w is adjacent to v, then there 

exists a path to w of cost Dw = Dv + 1.  

All the shortest-path algorithms work by starting with Dw = ∞ and 

reducing its value when an appropriate v is scanned.  

To do this task efficiently, we must scan vertices v systematically.  

When a given v is scanned, we update the vertices w  

adjacent to v by scanning through v's adjacency list.  
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Completed 

vertex 

Current 

vertex 

Not 

explored yet 
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Algorithm 

• An algorithm for solving the unweighted shortest-path 

problem is as follows.  

• Let D, be the length of the shortest path from S to i. We 

know that Ds = 0 and that D = ∞ initially for all i ≠ S.  

• We maintain a moving eyeball that hops from vertex to 

vertex and is initially at S.  

• If v is the vertex that the eyeball is currently on, then, for 

all w that are adjacent to v, we set Dw = Dv + 1 if Dw = ∞.  

• This reflects the fact that we can get to w by following a 

path to v and extending the path by the edge (v, w). 
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Algorithm 

• So we update vertices w as they are seen from the eyeball.  

 

• Because the eyeball processes each vertex in order of its 

distance from the starting vertex and the edge adds exactly 

1 to the length of the path to w, we are guaranteed that the 

first time Dw is lowered from ∞, it is lowered to the value 

of the length of the shortest path to w.  
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Algorithm 

• After we have processed all of v's adjacent vertices, 

we move the eyeball to another vertex u (that has 

not been visited by the eyeball) such that Du = Dv.  

 

• If that is not possible, we move to a vertex u that 

satisfies Du = Dv + 1. If that is not possible, we are 

done.  
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Data structures: queue 
• When a vertex w has its Dw lowered from ∞, it becomes a 

candidate for an eyeball visitation at some point in the 

future.  

• That is, after the eyeball visits vertices in the current 

distance group Dv, it visits the next distance group Dv + 1, 

which is the group containing w.  

• To select a vertex v for the eyeball, we merely choose the 

front vertex from the queue.  

• We start with an empty queue and then we enqueue the 

starting vertex S.  

• A vertex is enqueued and dequeued at most once per 

shortest-path calculation, and queue operations are 

constant time.  
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Add candidates in 

the queue 

5(1) 0(1) 

Queue 

3(2) 1(2) 5(1) 

2(0) 

3(2) 1(2) 

4(3) 3(2) 

6(3) 4(3) 

6(3) 
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Other algorithms 

• Djikstra Algorithm is used to solve the 

positive-weighted, shortest-path problem, 

– Algorithms course next year  
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Readings 

• Chapter 14 


