
Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-1 1-1 1-1 

 

Data Structures 

Lesson 13 

 
BSc in Computer Science 

University of New York, Tirana 

 

Assoc. Prof. Marenglen Biba 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-2 

Sample exam 

 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Question 1 

• Consider the binary search tree below:  

 

 

 

 

 

• Sketch the tree after the node 2 is deleted. 

 
1-3 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 1 

• Replace the item in node 2 with the smallest 

item in the right subtree and then remove 

that node 

1-4 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Question 2 

• Sketch in pseudo-code an algorithm for 

finding the minimum element in a binary 

search tree. 

1-5 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 2 

 

1-6 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Question 3 

• Sketch in pseudo-code an algorithm for 

inserting an element in a binary search tree. 

1-7 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 3 

 

1-8 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Question 4 

• Sketch in pseudo-code an algorithm for 

removing the minimum element in a binary 

search tree. 

1-9 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-10 

Solution 4 

Recursive 

call to left 

Delete the minimum. We go left until finding a node that that has a 

null left link and then replace the link to that node by its right link. 

The symmetric method works for delete the maximum.  

5 

3 

4 null 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Question 5 

• Give the definition of an AVL tree. Sketch 

an AVL tree. Sketch the same tree with a 

change such that it is not any more an AVL 

tree. 

1-11 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 5 

• Definition: An AVL tree is a binary search tree 

with the additional balance property that, for any 

node in the tree, the height of the left and right 

subtrees can differ by at most 1. As usual, the 

height of an empty subtree is -1.  

1-12 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 5 

 

1-13 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-14 

Question 6 

• Why a binary search tree can degenerate to 

a linked list? What is the average time 

required to search in this case? 

 

 

 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-15 

Solution 6 

• Why a binary search tree can degenerate to 

a linked list? What is the average time 

required to search in this case? 

 

• Due to an unbalanced tree.  

• O(N). 

 

 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Question 7 

• Suppose we have the following tree: 

 

 

 

 

 

• We want to keep the tree as an AVL tree. Sketch 

the tree after the insertion of the element 1. 

 
1-16 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 7: rotation 

 

1-17 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Question 8 

• Consider the following tree: 

 

 

 

 

 

• We want to keep the tree as an AVL tree. Sketch 

the tree after the insertion of the element 5. 

 

 

 

1-18 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 8 

• Left-right double rotation 

1-19 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-20 

Question 9 

Primary clustering occurs in 

a. linear probing 

b. quadratic probing 

c. separate chaining 

d. all of the above 

e. none of (a), (b), and (c) 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-21 

Solution 9 

Primary clustering occurs in 

a. linear probing 

b. quadratic probing 

c. separate chaining 

d. all of the above 

e. none of (a), (b), and (c) 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Question 10 

• Given the input {4371, 1323, 6173, 4199, 4344, 9679, 1989}, a fixed  

table size of 10, and a hash function H(X) = X mod 10, show the 

resulting  

a. Linear probing hash table  

b. Quadratic probing hash table  

c. Separate chaining hash table 

 

1-22 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 10  

 

1-23 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-24 

Question 11 

• Which of the following algorithms solves the unweighted 
single‐source shortest path problem? 

– a. breadth first search 

– b. Dijkstra’s algorithm 

– c. Kruskal’s algorithm 

– d. all of the above 

– e. none of (a), (b), and (c) 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-25 

Question 11 

• Which of the following algorithms solves the unweighted 
single‐source shortest path problem? 

– a. breadth first search 

– b. Dijkstra’s algorithm 

– c. Kruskal’s algorithm 

– d. all of the above 

– e. none of (a), (b), and (c) 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-26 

Question 12 

• If the shortest path algorithm is run and a vertex is not reachable from 
the starting point, what happens? 

a. a distance of infinity is reported 

b. a distance of –1 is reported 

c. a distance of zero is reported 

d. the algorithm enters an infinite loop 

e. the algorithm’s results are undefined 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-27 

Solution 12 

• If the shortest path algorithm is run and a vertex is not reachable from 
the starting point, what happens? 

a. a distance of infinity is reported 

b. a distance of –1 is reported 

c. a distance of zero is reported 

d. the algorithm enters an infinite loop 

e. the algorithm’s results are undefined 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-28 

Question 13 

Correct the following code: 

 

BinaryNode<AnyType> insert( AnyType x, BinaryNode<AnyType> t ) 

    { 

        if( t == null ) 

            t = new BinaryNode<AnyType>( x ); 

        else if( x.compareTo( t.element ) > 0 ) 

            t.left = insert( x, t.left ); 

        else if( x.compareTo( t.element ) < 0 ) 

            t.right = insert( x, t.right ); 

        else 

            throw new DuplicateItemException( x.toString( ) );  // Duplicate 

        return t; 

    } 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-29 

Solution 13 

Correct the following code: 

 

BinaryNode<AnyType> insert( AnyType x, BinaryNode<AnyType> t ) 

    { 

        if( t == null ) 

            t = new BinaryNode<AnyType>( x ); 

        else if( x.compareTo( t.element ) < 0 ) 

            t.left = insert( x, t.left ); 

        else if( x.compareTo( t.element ) > 0 ) 

            t.right = insert( x, t.right ); 

        else 

            throw new DuplicateItemException( x.toString( ) );  // Duplicate 

        return t; 

    } 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-30 

Question 14 

Correct the following code: 

 

BinaryNode<AnyType> findMin( BinaryNode<AnyType> t ) 

    { 

        if( t != null ) 

            while( t.right != null ) 

                t = t.right; 

 

        return t; 

    } 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-31 

Solution 14 

Correct the following code: 

 

BinaryNode<AnyType> findMin( BinaryNode<AnyType> t ) 

    { 

        if( t != null ) 

            while( t.left != null ) 

                t = t.left; 

 

        return t; 

    } 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-32 

Question 15 

Correct the following code: 

 

BinaryNode<AnyType> find( AnyType x, BinaryNode<AnyType> t ) 

    { 

        while( t != null ) 

        { 

            if( x.compareTo( t.element ) < 0 ) 

                t = t.right; 

            else if( x.compareTo( t.element ) > 0 ) 

                t = t.left; 

            else 

                return t;    // Match 

        } 

         

        return null;         // Not found 

    } 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-33 

Solution 15 

Correct the following code: 

 

BinaryNode<AnyType> find( AnyType x, BinaryNode<AnyType> t ) 

    { 

        while( t != null ) 

        { 

            if( x.compareTo( t.element ) < 0 ) 

                t = t.left; 

            else if( x.compareTo( t.element ) > 0 ) 

                t = t.right; 

            else 

                return t;    // Match 

        } 

         

        return null;         // Not found 

    } 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-34 

Question 16 
public void unweighted( String startName ) { 

        clearAll( );  

        Vertex start = vertexMap.get( startName ); 

        if( start == null ) 

            throw new NoSuchElementException( "Start vertex not found" ); 

 

        Queue<Vertex> q = new LinkedList<Vertex>( ); 

         

 

        while( !q.isEmpty( ) ) 

        { 

            Vertex v = q.remove( ); 

 

            for( Edge e : v.adj ) 

            { 

                Vertex w = e.dest; 

                if( w.dist == INFINITY ) 

                { 

                    w.dist = v.dist + 1; 

                    w.prev = v; 

                    q.add( w ); 

                } 

            } 

        } 

    } 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-35 

Question 16 
public void unweighted( String startName ) { 

        clearAll( );  

        Vertex start = vertexMap.get( startName ); 

        if( start == null ) 

            throw new NoSuchElementException( "Start vertex not found" ); 

 

        Queue<Vertex> q = new LinkedList<Vertex>( ); 

        q.add( start ); start.dist = 0; 

 

        while( !q.isEmpty( ) ) 

        { 

            Vertex v = q.remove( ); 

 

            for( Edge e : v.adj ) 

            { 

                Vertex w = e.dest; 

                if( w.dist == INFINITY ) 

                { 

                    w.dist = v.dist + 1; 

                    w.prev = v; 

                    q.add( w ); 

                } 

            } 

        } 

    } 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-36 

Question 17 

 public void addEdge( String sourceName, String destName, 

double cost ) 

    { 

        Vertex w = getVertex( sourceName ); 

        Vertex v = getVertex( destName ); 

        v.adj.add( new Edge( w, cost ) ); 

    } 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-37 

Question 17 

 public void addEdge( String sourceName, String destName, 

double cost ) 

    { 

        Vertex v = getVertex( sourceName ); 

        Vertex w = getVertex( destName ); 

        v.adj.add( new Edge( w, cost ) ); 

    } 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-38 

Question 18 

public void printPath( String destName ) 

    { 

        Vertex w = vertexMap.get( destName ); 

        if( w == null ) 

            throw new NoSuchElementException( "Destination vertex not found" ); 

        else if( w.dist == -1 ) 

            System.out.println( destName + " is unreachable" ); 

        else 

        { 

            System.out.print( "(Cost is: " + w.dist + ") " ); 

            printPath( w ); 

            System.out.println( ); 

        } 

    } 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-39 

Solution 18 

public void printPath( String destName ) 

    { 

        Vertex w = vertexMap.get( destName ); 

        if( w == null ) 

            throw new NoSuchElementException( "Destination vertex not found" ); 

        else if( w.dist == INFINITY ) 

            System.out.println( destName + " is unreachable" ); 

        else 

        { 

            System.out.print( "(Cost is: " + w.dist + ") " ); 

            printPath( w ); 

            System.out.println( ); 

        } 

    } 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Question 19 

• Sketch an algorithm for printing the shortest 

path after the unweighted shortest-path 

finding algorithm has been ran. 

 

 

1-40 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 19 

 

1-41 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 20 

• Sketch a liner-time construction algorithm 

of a graph. 

1-42 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 20 

1-43 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Question 21 

• State the heap order property. 

1-44 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 21 

• Heap-order property  

 In a heap, for every node X with parent P 

the key in P is smaller than or equal to the 

key in X.  

1-45 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 22 

• Given the following heap: 

 

 

 

 

• Sketch the operations to insert 14. 

 

1-46 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 22: Percolate up 

 

1-47 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 23 

• What is the time complexity of inserting 

one element in the heap? 

• Why? 

 

1-48 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 23 

• The time required to do the insertion could 

be as much as O(log N) if the element to be 

inserted is the new minimum.  

 

• The reason is that it will be percolated up all 

the way to the root.  

 

• On average the percolation terminates early.  

1-49 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 24 

• Given the following heap: 

 

 

 

 

• Sketch the operations for deleting the minimum. 

 

1-50 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 24: percolate down 

 

1-51 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 25 

• What is the time complexity of deleting the 

minimum in a heap? 

• Why? 

1-52 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 25 

• Because the tree has logarithmic depth, deleteMin is a 

logarithmic operation in the worst case.  

 

• Not surprisingly, percolation rarely terminates more than 

one or two levels early, so deleteMin is logarithmic on 

average, too.  

 

1-53 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 26 

• Given the initial heap: 

 

 

 

 

• Sketch the steps of buildHeap operation. 

 

1-54 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 26 

 

1-55 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 26 

 

1-56 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 27 

• Sketch an algorithm for the buildHeap 

operation? 

• What is the time complexity of this 

algorithm? 

1-57 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 27 

 

 

 

 

• Time complexity: linear. 

 

1-58 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 28 

• Explain the HeapSort algorithm? 

 

 

1-59 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 28 

Algorithm steps 

1. Toss each item into the binary heap  

2. Apply buildHeap  

3. Calling deleteMin N times, with the items exiting the heap in sorted order  

 

Time Complexity 

• Step 1 takes linear time total, and step 2 takes linear time.  

• In step 3, each call to deleteMin takes logarithmic time, so N calls take O(N 

log N) time.   

• Consequently, we have an O(N log N) worst-case sorting algorithm, called 

heapsort.  

 

 
1-60 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 29 and 30 

• Modify the HeapSort algorithm to save the 

double space needed. 

• Sketch the algorithm for the following heap. 

1-61 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 29 and 30 

 

1-62 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 31 

• Which of these algorithms has quadratic 

time complexity? 

a) BubbleSort 

b) SelectionSort 

c) InsertionSort 

d) HeapSort 

e) MergeSort 

1-63 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 31 

• Which of these algorithms has quadratic 

time complexity? 

a) BubbleSort 

b) SelectionSort 

c) InsertionSort 

d) HeapSort 

e) MergeSort 

 

1-64 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 32 

• Given the following sequence: 

 

 

• apply the increment sequence {1,3,5} for 

Shellsort. 

 

1-65 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 32 

 

1-66 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 33 

• Given the following sequence of numbers: 

 

 

• sketch the steps of Mergesort to sort this 

sequence. 

1-67 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 33 

• Steps 

– Merge-sort.gif 

 

1-68 

Merge-sort.gif
Merge-sort.gif
Merge-sort.gif


Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 34 
• A software house is developing a simple software for a telephone 

company that wants to run the software on its mobile phones. The 

software has to solve the following problem (5 points): 

a) The user inserts the contacts in the phone and these are saved 

with name, surname and number. Choose a data structure to 

load the contacts from the memory of the phone once the 

phone is on. 

b) Design a solution so that contacts can be found in the smallest 

possible time according to their surname. What is the time 

complexity of your solution? 

c) Suppose the user wants to load all contacts from the SIM card 

and some of the contacts are repeated (i.e., these are both in 

the phone and in the SIM card). Design a solution such that 

the phone has no repeated numbers. What is the time 

complexity of your solution?  

1-69 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 34 
• Using the list 

a) Order the list by surname, for every name read from the memory, put it in the 

list and  

– Either keep it sorted with the insertion (if we have N names: time complexity NxN). 

– Or just insert all the contacts and then sort with MergeSort: time complexity NlogN  

b) If sorted, use binary search: time complexity logN. 

c) First check if it exists with binary search, if not insert it: logN. 

 

• Using the hashtable 

a) Insert all contacts, using the hash of: name+surname: time complexity 

constant. 

b) Find in constant time. 

c) Insert in constant time. 

 

– Solution: No one asked for sorted!!! Therefore hash is preferred. 

– If sorted was needed then use the Binary Search Tree 

• Insertion: NlogN 

• Search: logN 

 

 

1-70 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Exercise 35 
• A marketing company wants to build software that automatically sends e-mails 

to customers whose contacts come through banks or other institutions usually 

in sorted order. The software should work in the following scenario: 

– Initially, the software reads the e-mail addresses from a database provided 

by an external company, and sends to these addresses the first presentation 

email. 

– After the first email has been sent successfully, the software listens for 

replies from the addresses. If a reply comes from a certain address, the 

software first checks if the address is among those that were sent the first 

email. If yes, then it sends them the second email with a special offer. 

– Again, if the second email produces a reply, then other emails presenting 

other products are sent. The software always checks the address is among 

those got from the external company. All the emails promoting different 

products can then be customized by the user who wants also to keep track 

of all the messages sent to an address. 

  

• Design a solution choosing the appropriate data structure that makes the whole 

process as fast as possible. What is the time complexity of your program? 

1-71 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 35 

We do no need a sorted list: 

• Solution using hash tables 

– Every email address is computed the hash (the 

Key) and saved into the hash table. 

– For every element of the hash table (the 

Object), we keep a list of messages sent. 

• Time complexity:  
– constant time to insert contacts into hash 

– constant time to check first email sent 

– If collisions happen, put messages to different e-mail 

addresses in the same list. 

 

 

1-72 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Solution 35 

• If sorted list is needed as a sorted list of 

emails, use Binary Search Tree. 

– The key of the node is the email address 

– Insertion: NlogN 

– Search: logN 

– Every element of the tree has a list of emails 

sent 

 

1-73 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-74 

Good Luck! 

 


