
Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-1

Data Structures

Lesson 7

BSc in Computer Science

University of New York, Tirana

Assoc. Prof. Dr. Marenglen Biba

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-2

Binary Search Trees

• For large amounts of input, the linear access time of linked

lists is prohibitive.

• We now look at an alternative to the linked list.

• The binary search tree, a simple data structure that can be

viewed as extending the binary search algorithm to allow

insertions and deletions.

• The running time for most operations is O(logN) on

average.

• Unfortunately, the worst-case time is O(N) per operation.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-3

Basic idea

• In the general case, we search for an item (or element) by

using its key.

• For instance, a student transcript could be searched on the

basis of a student ID number.

• In this case, the ID number is referred to as the item's key.

• The binary search tree satisfies the search order property;

that is, for every node X in the tree, the values of all the

keys in the left subtree are smaller than the key in X and

the values of all the keys in the right subtree are larger than

the key in X.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-4

Binary search trees

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-5

Insertion in binary search trees

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-6

Deletion in binary search trees

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-7

The general strategy is to replace the item in node 2 with the smallest

item in the right subtree and then remove that node

Deletion in binary search trees

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-8

Implementation in Java

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-9

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-10

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-11

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-12

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

findMin and findMax

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-14

Insert

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-15

removeMin

Recursive

call to left

Delete the minimum. We go left until finding a node that has a null

left link and then replace the link to that node by its right link.

The symmetric method works for delete the maximum.

5

3

4null

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-16

Element is

found here

Remove

The general strategy is to replace the item in node X with the smallest

item in the right subtree and then remove that node

One child

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-17

Analysis of binary search tree operations

• The cost of each binary search tree operation (insert, find,

and remove) is proportional to the number of nodes

accessed during the operation.

• We can thus charge the access of any node in the tree a

cost of 1 plus its depth.

– Recall that the depth measures the number of edges on

a path rather than the number of nodes, which gives the

cost of a successful search.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-18

Figure 19.19(a) shows a balanced tree of 15 nodes.

The cost to access any node is at most 4 units, and some nodes

require fewer accesses.

This situation is analogous to the one that occurs in the binary

search algorithm. If the tree is perfectly balanced, the access

cost is logarithmic.

Analysis of binary search tree operations

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-19

• Unfortunately, we have no guarantee that the tree is

perfectly balanced.

• The tree shown in Figure 19.19(b) is the classic example of

an unbalanced tree.

• Here, all N nodes are on the path to the deepest node, so

the worst-case search time is O(N).

• Because the search tree has degenerated to a linked list, the

average time required to search in this particular instance is

half the cost of the worst case and is also O(N).

Unbalanced Trees

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Average cost for most BSTs

• So we have two extremes: In the best case, we have

logarithmic access cost, and in the worst case we have

linear access cost.

• What is the average?

• Do most binary search trees tend toward the balanced or

unbalanced case, or is there some middle ground?

• The answer is: The average is 38 percent worse than the

best case.

1-20

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-21

There are six possible insertion orders: (1, 2, 3), (1, 3, 2), (2, 1,

3), (2, 3, 1), (3, 1, 2), and (3, 2, 1).

Note that the tree with root 2, shown in Figure 19.20(c), is

formed from either the insertion sequence (2, 3, 1) or the

sequence (2, 1, 3). Thus some trees are more likely to result than

others, and balanced trees are more likely to occur than

unbalanced trees

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-22

Average running time

• The average running time of all operations is O(logN).

• This implication is true in practice, but it has not been

established analytically because the assumption used to

prove this does not take into account the deletion

algorithm.

• In fact, close examination suggests that we might be in

trouble with our deletion algorithm because the remove

operation always replaces a two-child deleted node with a

node from the right subtree.

• This result would seem to have the effect of eventually

unbalancing the tree and tending to make it left-heavy.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-23

Logarithmic average time

• It has been shown that if we build a random binary search tree and

then perform roughly N2 pairs of random insert/remove

combinations, the binary search trees will have an expected depth

of O(√N).

• However, a reasonable number of random insert and remove

operations (in which the order of insert and remove is also random)

does not unbalance the tree in any observable way.

• In fact, for small search trees, the remove algorithm seems to

balance the tree.

• Consequently, we can reasonably assume that for random input

all operations behave in logarithmic average time, although this

result has not been proved mathematically.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-24

Balanced binary search trees

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-25

Putting Balance

• The most important problem is not the potential imbalance

caused by the remove algorithm.

• Rather, it is that, if the input sequence is sorted, the worst-

case tree occurs.

• When that happens, we are in deep trouble: We have linear

time per operation (for a series of N operations) rather than

logarithmic cost per operation.

• One solution to this problem is to insist on an extra

structural condition called balance: No node is allowed to

get too deep.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-26

Balanced binary search tree

• Any of several algorithms can be used to implement a balanced

binary search tree, which has an added structure property that

guarantees logarithmic depth in the worst case.

• Most of these algorithms are much more complicated than those

for the standard binary search trees, and all take longer on

average for insertion and deletion.

• They do, however, provide protection against the

embarrassingly simple cases that lead to poor performance for

(unbalanced) binary search trees.

• Also, because they are balanced, they tend to give faster access

time than those for the standard trees.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-27

AVL trees

• The first balanced binary search tree was the AVL tree

(named after its discoverers, Adelson-Velskii and Landis),

which illustrates the ideas that are thematic for a wide

class of balanced binary search trees.

• It is a binary search tree that has an additional balance

condition.

• Any balance condition must be easy to maintain and

ensures that the depth of the tree is O(log N).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-28

AVL trees

• The simplest idea is to require that the left and right

subtrees have the same height.

• Recursion dictates that this idea apply to all nodes in the

tree because each node is itself a root of some subtree.

• This balance condition ensures that the depth of the tree is

logarithmic.

• However, it is too restrictive because inserting new items

while maintaining balance is too difficult.

• Thus the definition of an AVL tree uses a notion of

balance that is somewhat weaker but still strong enough to

guarantee logarithmic depth.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-29

AVL Trees: Definition

• Definition: An AVL tree is a binary search tree

with the additional balance property that, for any

node in the tree, the height of the left and right

subtrees can differ by at most 1. As usual, the

height of an empty subtree is -1.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-30

b) is not an AVL tree because the darkened nodes have left

subtrees whose heights are 2 larger than their right subtrees.

If 13 were inserted, using the usual binary search tree insertion

algorithm, node 16 would also be in violation.

The reason is that the left subtree would have height 1, while the

right subtree would have height -1.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-31

Logarithmic worst-case bound

• The depth of an average node in a randomly constructed

AVL tree tends to be very close to logN.

• The exact answer has not yet been established analytically.

• All searching operations in an AVL tree have logarithmic

worst-case bounds.

• The difficulty is that operations that change the tree, such

as insert and remove, are not quite as simple as before.

• The reason is that an insertion (or deletion) can destroy the

balance of several nodes in the tree.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-32

Insertion

• A key observation is that after an insertion, only nodes that are

on the path from the insertion point to the root might have their

balances altered because only those nodes have their subtrees

altered.

• This result applies to almost all the balanced search tree

algorithms.

• As we follow the path up to the root and update the balancing

information, we may find a node whose new balance violates

the AVL condition.

• In this section we show how to rebalance the tree at the first

(i.e., the deepest) such node and see that this rebalancing

guarantees that the entire tree satisfies the AVL property.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-33

Rebalancing
• The node to be rebalanced is X.

• Because any node has at most two children and a height imbalance

requires that the heights of X's two subtrees differ by 2, a violation

might occur in any of four cases:

1. An insertion in the left subtree of the left child of X

2. An insertion in the right subtree of the left child of X

3. An insertion in the left subtree of the right child of X

4. An insertion in the right subtree of the right child of X

• Cases 1 and 4 are mirror-image symmetries with respect to X, as are

cases 2 and 3. Consequently, there are theoretically two basic cases.

• From a programming perspective, of course, there are still four cases.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-34

Tree Rotations

• The first case, in which the insertion occurs on the outside

(i.e., left-left or right-right), is fixed by a single rotation of

the tree.

• A single rotation switches the roles of the parent and child

while maintaining search order.

• The second case, in which the insertion occurs on the

inside (i.e., left-right or right-left), is handled by the

slightly more complex double rotation.

• These fundamental operations on the tree are used several

times in balanced tree algorithms.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-35

Node k2 violates the AVL balance property because its left subtree is two

levels deeper than its right subtree (the dashed lines mark the levels).

The situation depicted is the only possible case 1 scenario that allows k2 to

satisfy the AVL property before the insertion but violate it afterward.

Subtree A has grown to an extra level, causing it to be two levels deeper than

C.

Subtree B cannot be at the same level as the new A because then k2 would

have been out of balance before the insertion.

Subtree B cannot be at the same level as C because then k1 would have been

the first node on the path that was in violation of the AVL balancing

condition.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-36

Rebalancing the tree

• Ideally, to rebalance the tree, we want to move A up one level
and C down one level.

• Note that these actions are more than the AVL property
requires.

• Here is an abstract scenario:

– k1 will be the new root.

– The binary search tree property tells us that in the original
tree, k2 > k1, so k2 becomes the right child of k1 in the new
tree.

– Subtrees A and C remain as the left child of k1 and the right
child of k2, respectively.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-37

Single rotation: Case 1

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-38

Single rotation

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-39

Single rotation: Case 4 (Symmetric of case 1)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-40

Single rotation: Case 4

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-41

Case 2

Cases:

2. An insertion in the right subtree of the left child of X

3. An insertion in the left subtree of the right child of X

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-42

Left-right double rotation

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-43

Left-right double rotation

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-44

Double rotation operations

• Note that, although a double rotation

appears complex, it turns out to be

equivalent to the following sequence:

– A rotation between X's child and grandchild

• Ex. Rotation between 4 and 6

– A rotation between X and its new child

• Ex. Rotation between 6 and 8

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-45

Implementation of double rotation:

case 2

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-46

Right-Left double rotation for case 3

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-47

Implementation of double rotation:

case 3

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-48

Project: Part 2
• Implement a binary search tree to allow duplicates.

– Hint: Have each node store a data structure of items that are
considered duplicates (using the first item in this structure) to
control branching.

• In addition to the existing operators of the tree, implement also the
following:

– Return number of duplicates of an element

– Find and replace all duplicates of an element A with element B

– Show all the tree together with the duplicates (pre-order, in-order,
post-order, level-order)

– Remove all existing duplicates (leaving only one copy) of an
element

– Remove only one copy of the existing duplicates of an element

– Remove all existing duplicates (leaving only one copy) for all the
duplicated elements in tree

– Print all elements that have duplicates together with the number of
duplicates

– Print the number of all the duplicates in the tree

– Show only the nodes that have/do not have duplicates

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-49

Project Part 2 Deadline

– Zip the project into a .zip document

– Rename the file in “Name Surname Project Part2.zip”

– Submit the file by email to:
marenglenbiba@unyt.edu.al.

– Mail Subject: DSSPRING17 – Project Part 2 - Name
Surname

– Deadline 28/06/2017 23:59.

– 10% penalty if the above rules are not respected as
written.

– 10% penalty for each day of delay

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-50

End of Class

• Readings

– Chapter 19 – Sections 19.1 – 19.4

