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Hash Tables 

• The implementation of hash tables is frequently called 

hashing, and it  performs insertions, deletions, and finds in 

constant average time.  

• Unlike with the binary search tree, the average-case 

running time of hash table operations is based on statistical 

properties rather than the expectation of random-looking 

input.  

• This improvement is obtained at the expense of a loss of 

ordering information among the elements: Operations such 

as findMin and findMax and the printing of an entire table 

in sorted order in linear time are not supported.  
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Hash Tables 

• The hash table supports the retrieval or deletion of 
any named item. 

• We want to be able to support the basic operations 
in constant time, as for the stack and queue.  

 

• When the size of the set increases, searches in the 
set should take longer.  

– However, that is not necessarily the case. 
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Hash Table 

• Suppose that all the items we are dealing with are small 

nonnegative integers, ranging from 0 to 65,535.  

• We can use a simple array to implement each operation as follows.  

• First, we initialize an array a that is indexed from 0 to 65,535 with 

all 0s.  

• To perform insert(i), we execute a[i]++. Note that a[i] represents 

the number of times that i has been inserted.  

• To perform find(i), we verify that a[i] is not 0.  

• To perform remove(i), we make sure that a[i] is positive and then 

execute a[i]--.  

• The time for each operation is clearly constant; even the overhead 

of the array initialization is a constant amount of work (65,536 

assignments).  
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Hash Tables 

• There are two problems with this solution.  

• First, suppose that we have 32-bit integers instead of 16-bit 

integers.  

– Then the array a must hold 4 billion items, which is 

impractical.  

• Second, if the items are not integers but instead are strings 

(or something even more generic), they cannot be used to 

index an array.  
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Strings 

• The second problem is not really a problem at all.  

• Just as a number 1234 is a collection of digits 1, 2, 3, and 4, the 

string "junk" is a collection of  characters 'j', ‘u' , 'n', and 'k'.  

• Note that the number 1234 is just 1 * 103 + 2 * 102 + 3 * 101 + 4 * 

100.  

• Recall that an ASCII character can typically be represented in 7 

bits as a number between 0 and 127.  

• Because a character is basically a small integer, we can interpret a 

string as an integer.  

• One possible representation is ' j' * 1283 + 'u' * 1282 + 'u' * 1281 + 

'k' * 1280.  

• This approach allows the simple array implementation discussed 

previously.  
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Representation 

• The problem with this strategy is that the integer 

representation described generates huge integers:  

– The representation for "junk" yields 224,229,227, 

and longer strings generate much larger 

representations.  

• This result brings us back to the first problem: How do 

we avoid using an absurdly large array?  
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Avoiding large arrays: Mapping 

• How to avoid using a large array? 

• We do so by using a function that maps large numbers (or 

strings interpreted as numbers) into smaller, more manageable 

numbers.  

• A function that maps an item into a small index is known as a 

hash function.  

• If x is an arbitrary (nonnegative) integer, then x % tableSize 

generates a number between 0 and tableSize-1 suitable for 

indexing into an array of size tableSize.  

• If s is a string, we can convert s to a large integer x by using the 

method suggested previously and then apply the mod operator 

(%) to get a suitable index.   
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Collisions 

• The use of the hash function introduces a complication: Two or 

more different items can hash out to the same position, causing a 

collision.  

• This situation can never be avoided because there are many 

more items than positions.  

• However, many methods are available for quickly resolving a 

collision.  

• We investigate three of the simplest: linear probing, quadratic 

probing, and separate chaining.  

• Each method is simple to implement, but each yields a different 

performance, depending on how full the array is.  
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Hash function 

• Computing the hash function for strings has a subtle 

complication:  

– The conversion of the String s to x generates an integer 

that is almost certainly larger than the machine can 

store conveniently — because 1284 = 228.  

• This integer size is a factor of 8 from the largest int.  

• Consequently, we cannot expect to compute the hash 

function by directly computing powers of 128.  

• Instead, we use the following observation.  
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Hash function 

• A general polynomial  
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Hash function 

• Note that in Equation 20.2, we avoid computation of the 

polynomial directly, which is good for three reasons.  

• First, it avoids a large intermediate result, which, as we 

have shown, overflows.  

• Second, the calculation in the equation involves only three 

multiplications and three additions:  

– an N-degree polynomial is computed in N multiplications and 

additions.  

• These operations compare favorably with the computation 

in Equation 20.1.  

• Third, the  calculation proceeds left to right (A3 

corresponds to  'j', A2 to ' u', and so on, and X is 128).  
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Hash function 

• However, an overflow problem persists:  

• The result of the calculation is still the same and is likely 

to be too large.  

• But, we need only the result taken mod tableSize.  

• By applying the % operator after each multiplication (or 

addition), we can ensure that the intermediate results 

remain small.  

• The resulting function is as follows: => next slide 
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Hash function: a first attempt 
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Hash function: a first attempt 

• An annoying feature of this hash function is that the mod 

computation is expensive.  

• Because overflow is allowed (and its results are consistent 

on a given platform), we can make the hash function 

somewhat faster by performing a single mod operation 

immediately prior to the return.  

• Unfortunately, the repeated multiplication by 128 would 

tend to shift the early characters to the left — out of the 

answer.  

• To alleviate this situation, we multiply by 37 instead of 

128, which slows the shifting of early characters. => next 

slide 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-16 

A faster hash function 

Note that overflow could introduce negative numbers.  

Thus if the mod generates a negative value, we make it positive (lines 15 and 16).  

Also note that the result obtained by allowing overflow and doing a final mod is not the 

same as performing the mod after every step. Thus we have slightly altered the hash 

function — which is not a problem.  
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Distribution of keys 

• Although speed is an important consideration in designing a 

hash function, we also want to be sure that it distributes the keys 

equitably.  

• Consequently, we must not take our optimizations too far.  

• An example is the hash function shown in Figure 20.3.  
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It simply adds the characters in the keys and returns the result mod 

tableSize.  

The function is easy to implement and computes a hash value very 

quickly.  

But does not distribute the keys well. 

A poor hash function 
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Equitable distribution 

• Suppose that tableSize is 10,000.  

• Also suppose that all keys are 8 or fewer characters long.  

• Because an ASCII char is an integer between 0 and 127, 

the hash function can assume values only between 0 and 

1,016 (127 x 8).  

• This restriction certainly does not permit an equitable 

distribution.  

• Any speed gained by the quickness of the hash function 

calculation is more than offset by the effort taken to 

resolve a larger than expected number of collisions.  
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Linear probing 

• Now that we have a hash function, we need to decide what to 

do when a collision occurs.  

• Specifically, if X hashes out to a position that is already 

occupied, where do we place it?  

• The simplest possible strategy is linear probing, or searching 

sequentially in the array until we find an empty cell.  

• The search wraps around from the last position to the first, if 

necessary.  

• Figure 20.4 shows the result of inserting the keys 89, 18, 49, 

58, and 9 in a hash table when linear probing is used.  

• We assume a hash function that returns the key X mod the 

size of the table.  
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Linear probing 
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Linear probing 

• So long as the table is large enough, a free cell can always be 

found.  

• However, the time needed to find a free cell can get to be quite 

long.  

• For example, if there is only one free cell left in the table, we 

may have to search the entire table to find it.  

• On average we would expect to have to search half the table to 

find it, which is far from the constant time per access that we are 

hoping for.  

• But, if the table is kept relatively empty, insertions should not be 

so costly. We discuss this approach shortly.  
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Find 

• The find algorithm merely follows the same path as the insert 

algorithm.  

• If it reaches an empty slot, the item we are searching for is not 

found; otherwise, it finds the match eventually.  

• For example, to find 58, we start at slot 8 (as indicated by the 

hash function).  

• We see an item, but it is the wrong one, so we try slot 9.  

• Again, we have an item, but it is the wrong one, so we try slot 0 

and then slot 1 until we find a match.  

• A find for 19 would involve trying slots 9, 0, 1, and 2 before 

finding the empty cell in slot 3. Thus 19 is not found.  
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Deletion 

• Standard deletion cannot be performed because, as with a 

binary search tree, an item in the hash table not only 

represents itself, but it also connects other items by serving 

as a placeholder during collision resolution.  

• Thus, if we removed 89 from the hash table, virtually all 

the remaining find operations would fail.  

• Consequently, we implement lazy deletion, or marking 

items as deleted rather than physically removing them 

from the table.  

• This information is recorded in an extra data member. 

Each item is either active or deleted.  
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Naive analysis of linear probing 

To estimate the performance of linear probing, we make two 

assumptions:  

1. The hash table is large  

2. Each probe in the hash table is independent of the previous 

probe.  

 

(Probe: to search into or examine thoroughly) 
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Naive analysis of linear probing 

• Assumption 1 is reasonable; otherwise, we would not be 

bothering with a hash table.  

• Assumption 2 says that, if the fraction of the table that is full is 

λ, each time we examine a cell the probability that it is occupied 

is also λ, independent of any previous probes.  

• Independence is an important statistical property that greatly 

simplifies the analysis of random events.  

• Unfortunately, as we have discussed, the assumption of 

independence is not only unjustified, but it also is erroneous.  

• Thus the naive analysis that we perform is incorrect.  

• Even so, it is helpful because it tells us what we can hope to 

achieve if we are more careful about how collisions are 

resolved.  
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Naive analysis of linear probing 

• As mentioned earlier, the performance of the hash table 

depends on how full the table is. Its fullness is given by the 

load factor.  
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Naive analysis of linear probing 

We can now give a simple but incorrect analysis of linear 
probing in: 

• Theorem 20.1:  

• If independence of probes is assumed, the average number 
of cells examined in an insertion using linear probing is 
1/(1 - λ).  

 

• For a table with a load factor of λ, the probability of any 
cell's being empty is 1 - λ.  

• Consequently, the expected number of independent trials 
required to find an empty cell is 1/(1 - λ). 
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Independence does not hold 

• Unfortunately, independence of probes does 

not hold. 
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Primary clustering 

• In primary clustering, large blocks of occupied cells are formed.  

• Any key that hashes into this cluster requires excessive attempts 

to resolve the collision, and then it adds to the size of the cluster.  

• Not only do items that collide because of identical hash 

functions cause degenerate performance, but also an item that 

collides with an alternative location for another item causes poor 

performance.  

• The mathematical analysis required to take this phenomenon 

into account is complex but has been solved, yielding:  

Theorem 20.2.  

• The average number of cells examined in an insertion using 

linear probing is roughly (l + l/(l-λ)2)/2.  
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Find operation  

Theorem 20.3.  

 

• The average number of cells examined in an unsuccessful 

search using linear probing is roughly (1 + 1/(1- λ)2)/2.  

• The average number of cells examined in a successful 

search is approximately (1 + 1/(1 - λ))/2.  
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Primary clustering 

• Primary clustering not only makes the average probe sequence 

longer, but it also makes a long probe sequence more likely.  

 

• The main problem with primary clustering therefore is that 

performance degrades severely for insertion at high load factors.  

 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-33 

Reducing the number of probes  

• To reduce the number of probes, we need a collision resolution 

scheme that avoids primary clustering.  

• Note, however, that, if the table is half empty, removing the 

effects of primary clustering would save only half a probe on 

average for an insertion or unsuccessful search and one-tenth a 

probe on average for a successful search.  

• Even though we might expect to reduce the probability of 

getting a somewhat lengthier probe sequence, linear probing is 

not a terrible strategy.  

• Because it is so easy to implement, any method we use to 

remove primary clustering must be of comparable complexity. 

Otherwise, we expend too much time in saving only a fraction 

of a probe. One such method is quadratic probing.  
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Quadratic probing  

• Quadratic probing is a collision resolution method that 

eliminates the primary clustering problem of linear probing 

by examining certain cells away from the original probe 

point.  

• Its name is derived from the use of the formula F(i) = i2 to 

resolve collisions.  

• Specifically, if the hash function evaluates to H and a 

search in cell H is inconclusive, we try cells H + 12, H + 

22, H + 32,..., H+ i2 (employing wraparound) in sequence.  

• This strategy differs from the linear probing strategy of 

searching H+1, H+2, H+3, ..., H+ i.  
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Quadratic Probing 

58 collides at position 8. The cell at position 9 (which is one away) is tried, but 

another collision occurs.  

A vacant cell is found at the next cell tried, which is 22 = 4 positions away from 

the original hash position. Thus 58 is placed in cell 2.  
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Quadratic Probing: Issue 1 

• In linear probing, each probe tries a different cell.  

– Does quadratic probing guarantee that, when a cell is 

tried, we have not already tried it during the course of 

the current access?  

– Does quadratic probing guarantee that, when we are 

inserting X and the table is not full, X will be inserted?  
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Quadratic Probing: Issue 2 and 3 

• Linear probing is easily implemented. Quadratic probing 

appears to require multiplication and mod operations.  

– Does this apparent added complexity make quadratic 

probing impractical?  

 

• What happens (in both linear probing and quadratic 

probing) if the load factor gets too high?  

– Can we dynamically expand the table, as is typically 

done with other array-based data structures?  
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Table size 

• Fortunately, the news is relatively good on all cases.  

• If the table size is prime and the load factor never exceeds 0.5, 

we can always place a new item X and no cell is probed twice 

during an access.  

• However, for these guarantees to hold, we need to ensure that 

the table size is a prime number. 

 

Theorem 20.4.  

• If quadratic probing is used and the table size is prime, then a 

new element can always be inserted if the table is at least half 

empty. Furthermore, in the course of the insertion, no cell is 

probed twice.  
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Finding prime numbers 
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Efficiency 

• The second important consideration is efficiency.  

• Recall that, for a load factor of 0.5, removing primary 

clustering saves only 0.5 probe for an average insertion 

and 0.1 probe for an average successful search.  

• We do get some additional benefits: Encountering a long 

probe sequence is significantly less likely. 
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Efficiency 

• The formula for quadratic probing suggests that this 

calculation appears to be much too expensive to be 

practical.  

• However, we can use the following trick, as explained in 

• Theorem 20.5.  

• Quadratic probing can be implemented without expensive 

multiplications and divisions.  
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Dynamic expansion  

• The final detail to consider is dynamic expansion.  

• If the load factor exceeds 0.5, we want to double the size of the 

hash table. This approach raises a few issues.  

• First, how hard will it be to find another prime number?  

• The answer is that prime numbers are easy to find. We expect to 

have to test only O(logN) numbers until we find a number that 

is prime.  

• Consequently, the routine shown in Figure 20.7 is very fast.  

• The primality test takes at most O(N1/2) time, so the search for a 

prime number takes at most O(N log N) time.  

• This cost is much less than the O(N) cost of transferring the 

contents of the old table to the new.  
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Rehashing 

• Once we have allocated a larger array, do we just copy 

everything over?  

• The answer is most definitely no.  

• The new array implies a new hash function, so we cannot 

use the old array positions.  

• Thus we have to examine each element in the old table, 

compute its new hash value, and insert it in the new hash 

table.  

• This process is called rehashing.  

• Rehashing is easily implemented in Java.  
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Small number of 

elements: rehash 
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Load factor > 0.5: rehash 
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A new, empty hash table that will 

have a 0.25 load factor when 

rehash terminates.  
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Implement the 

methodology 

described in   

Theorem 20.5, using 

two additions.  

Cycle currentPos   offset 

0 1   3 

1   4   5 

2  9   7 

3   16   9 

4   25   11 

5   36   13 

6   49   15 

7   64   17 
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Separate chaining hashing  

• A popular and space-efficient alternative to quadratic 

probing is separate chaining hashing in which an array of 

linked lists is maintained.  

• For an array of linked lists, L0, L1, ..., LM-1, the hash 

function tells us in which list to insert an item X and then, 

during a find, which list contains X.  

• The idea is that, although searching a linked list is a linear 

operation, if the lists are sufficiently short, the search time 

will be very fast.  
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Separate chaining hashing 
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Separate chaining hashing 

• The appeal of separate chaining hashing is that 
performance is not affected by a moderately increasing 
load factor; thus rehashing can be avoided.  

 

• For languages that do not allow dynamic array expansion, 
this consideration is significant.  

 

• Furthermore, the expected number of probes for a search is 
less than in quadratic probing,  particularly for 

unsuccessful searches.  
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Implementation of separate chaining 

hashing 

• We can implement separate chaining hashing by using our 

existing linked list classes.  

 

• However, because the header node adds space overhead 

and is not really needed, we could elect not to reuse 

components and instead implement a simple stacklike list.  
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Hash tables versus binary search 

trees 
• We can also use binary search trees to implement insert and find 

operations.  

• Although the resulting average time bounds are O(logN), binary 

search trees also support routines that require order and thus are 

more powerful.  

• Using a hash table, we cannot efficiently find the minimum 

element or extend the table to allow computation of an order 

statistic.  

• We cannot search efficiently for a string unless the exact string is 

known. A binary search tree could quickly find all items in a 

certain range, but this capability is not supported by a hash table.  

• Furthermore, the O(log N) bound is not necessarily that much more 

than O(1), especially since no multiplications or divisions are 

required by search trees.  
 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-58 

Hash tables versus binary search 

trees 

• The worst case for hashing generally results from an 

implementation error, whereas sorted input can make 

binary search trees perform poorly.   

• Balanced search trees are quite expensive to implement.  

 

• Hence, if no ordering information is required and there is 

any suspicion that the input might be sorted, hashing is the 

data structure of choice.  
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Hashing applications  

• Hashing applications are abundant.  

• Compilers use hash tables to keep track of declared 

variables in source code.  

• The data structure is called a symbol table.  

• Hash tables are the ideal application for this problem 

because only insert and find operations are performed. 

Identifiers are typically short, so the hash function can be 

computed quickly.  

• In this application, most searches are successful.  
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Hashing applications 

• Another common use of hash tables is in game programs.  

• As the program searches through different lines of play, it 

keeps track of positions that it has encountered by 

computing a hash function based on the position (and 

storing its move for that position).  

• If the same position recurs, usually by a simple  

transposition of moves, the program can avoid expensive 

recomputation.  

• This general feature of all game-playing programs is called 

the transposition table.  

• Chess games can greatly benefit from this 
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Hashing applications 

• Another use of hashing is in online spelling checkers.  

• If misspelling detection (as opposed to correction) is 

important, an entire dictionary can be prehashed and words 

can be checked in constant time.  

• Hash tables are well suited for this purpose because the 

words do not have to be alphabetized.  

• Printing out misspellings in the order they occurred in the 

document is acceptable.  
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Readings 

• Chapter 20 


