
Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-1 1-1

Data Structures

Lesson 8

BSc in Computer Science

University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-2

Hash Tables

• The implementation of hash tables is frequently called

hashing, and it performs insertions, deletions, and finds in

constant average time.

• Unlike with the binary search tree, the average-case

running time of hash table operations is based on statistical

properties rather than the expectation of random-looking

input.

• This improvement is obtained at the expense of a loss of

ordering information among the elements: Operations such

as findMin and findMax and the printing of an entire table

in sorted order in linear time are not supported.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-3

Hash Tables

• The hash table supports the retrieval or deletion of
any named item.

• We want to be able to support the basic operations
in constant time, as for the stack and queue.

• When the size of the set increases, searches in the
set should take longer.

– However, that is not necessarily the case.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-4

Hash Table

• Suppose that all the items we are dealing with are small

nonnegative integers, ranging from 0 to 65,535.

• We can use a simple array to implement each operation as follows.

• First, we initialize an array a that is indexed from 0 to 65,535 with

all 0s.

• To perform insert(i), we execute a[i]++. Note that a[i] represents

the number of times that i has been inserted.

• To perform find(i), we verify that a[i] is not 0.

• To perform remove(i), we make sure that a[i] is positive and then

execute a[i]--.

• The time for each operation is clearly constant; even the overhead

of the array initialization is a constant amount of work (65,536

assignments).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-5

Hash Tables

• There are two problems with this solution.

• First, suppose that we have 32-bit integers instead of 16-bit

integers.

– Then the array a must hold 4 billion items, which is

impractical.

• Second, if the items are not integers but instead are strings

(or something even more generic), they cannot be used to

index an array.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-6

Strings

• The second problem is not really a problem at all.

• Just as a number 1234 is a collection of digits 1, 2, 3, and 4, the

string "junk" is a collection of characters 'j', ‘u' , 'n', and 'k'.

• Note that the number 1234 is just 1 * 103 + 2 * 102 + 3 * 101 + 4 *

100.

• Recall that an ASCII character can typically be represented in 7

bits as a number between 0 and 127.

• Because a character is basically a small integer, we can interpret a

string as an integer.

• One possible representation is ' j' * 1283 + 'u' * 1282 + 'u' * 1281 +

'k' * 1280.

• This approach allows the simple array implementation discussed

previously.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-7

Representation

• The problem with this strategy is that the integer

representation described generates huge integers:

– The representation for "junk" yields 224,229,227,

and longer strings generate much larger

representations.

• This result brings us back to the first problem: How do

we avoid using an absurdly large array?

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-8

Avoiding large arrays: Mapping

• How to avoid using a large array?

• We do so by using a function that maps large numbers (or

strings interpreted as numbers) into smaller, more manageable

numbers.

• A function that maps an item into a small index is known as a

hash function.

• If x is an arbitrary (nonnegative) integer, then x % tableSize

generates a number between 0 and tableSize-1 suitable for

indexing into an array of size tableSize.

• If s is a string, we can convert s to a large integer x by using the

method suggested previously and then apply the mod operator

(%) to get a suitable index.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-9

Collisions

• The use of the hash function introduces a complication: Two or

more different items can hash out to the same position, causing a

collision.

• This situation can never be avoided because there are many

more items than positions.

• However, many methods are available for quickly resolving a

collision.

• We investigate three of the simplest: linear probing, quadratic

probing, and separate chaining.

• Each method is simple to implement, but each yields a different

performance, depending on how full the array is.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-10

Hash function

• Computing the hash function for strings has a subtle

complication:

– The conversion of the String s to x generates an integer

that is almost certainly larger than the machine can

store conveniently — because 1284 = 228.

• This integer size is a factor of 8 from the largest int.

• Consequently, we cannot expect to compute the hash

function by directly computing powers of 128.

• Instead, we use the following observation.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-11

Hash function

• A general polynomial

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-12

Hash function

• Note that in Equation 20.2, we avoid computation of the

polynomial directly, which is good for three reasons.

• First, it avoids a large intermediate result, which, as we

have shown, overflows.

• Second, the calculation in the equation involves only three

multiplications and three additions:

– an N-degree polynomial is computed in N multiplications and

additions.

• These operations compare favorably with the computation

in Equation 20.1.

• Third, the calculation proceeds left to right (A3

corresponds to 'j', A2 to ' u', and so on, and X is 128).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-13

Hash function

• However, an overflow problem persists:

• The result of the calculation is still the same and is likely

to be too large.

• But, we need only the result taken mod tableSize.

• By applying the % operator after each multiplication (or

addition), we can ensure that the intermediate results

remain small.

• The resulting function is as follows: => next slide

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-14

Hash function: a first attempt

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-15

Hash function: a first attempt

• An annoying feature of this hash function is that the mod

computation is expensive.

• Because overflow is allowed (and its results are consistent

on a given platform), we can make the hash function

somewhat faster by performing a single mod operation

immediately prior to the return.

• Unfortunately, the repeated multiplication by 128 would

tend to shift the early characters to the left — out of the

answer.

• To alleviate this situation, we multiply by 37 instead of

128, which slows the shifting of early characters. => next

slide

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-16

A faster hash function

Note that overflow could introduce negative numbers.

Thus if the mod generates a negative value, we make it positive (lines 15 and 16).

Also note that the result obtained by allowing overflow and doing a final mod is not the

same as performing the mod after every step. Thus we have slightly altered the hash

function — which is not a problem.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-17

Distribution of keys

• Although speed is an important consideration in designing a

hash function, we also want to be sure that it distributes the keys

equitably.

• Consequently, we must not take our optimizations too far.

• An example is the hash function shown in Figure 20.3.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-18

It simply adds the characters in the keys and returns the result mod

tableSize.

The function is easy to implement and computes a hash value very

quickly.

But does not distribute the keys well.

A poor hash function

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-19

Equitable distribution

• Suppose that tableSize is 10,000.

• Also suppose that all keys are 8 or fewer characters long.

• Because an ASCII char is an integer between 0 and 127,

the hash function can assume values only between 0 and

1,016 (127 x 8).

• This restriction certainly does not permit an equitable

distribution.

• Any speed gained by the quickness of the hash function

calculation is more than offset by the effort taken to

resolve a larger than expected number of collisions.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-20

Linear probing

• Now that we have a hash function, we need to decide what to

do when a collision occurs.

• Specifically, if X hashes out to a position that is already

occupied, where do we place it?

• The simplest possible strategy is linear probing, or searching

sequentially in the array until we find an empty cell.

• The search wraps around from the last position to the first, if

necessary.

• Figure 20.4 shows the result of inserting the keys 89, 18, 49,

58, and 9 in a hash table when linear probing is used.

• We assume a hash function that returns the key X mod the

size of the table.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-21

Linear probing

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-22

Linear probing

• So long as the table is large enough, a free cell can always be

found.

• However, the time needed to find a free cell can get to be quite

long.

• For example, if there is only one free cell left in the table, we

may have to search the entire table to find it.

• On average we would expect to have to search half the table to

find it, which is far from the constant time per access that we are

hoping for.

• But, if the table is kept relatively empty, insertions should not be

so costly. We discuss this approach shortly.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-23

Find

• The find algorithm merely follows the same path as the insert

algorithm.

• If it reaches an empty slot, the item we are searching for is not

found; otherwise, it finds the match eventually.

• For example, to find 58, we start at slot 8 (as indicated by the

hash function).

• We see an item, but it is the wrong one, so we try slot 9.

• Again, we have an item, but it is the wrong one, so we try slot 0

and then slot 1 until we find a match.

• A find for 19 would involve trying slots 9, 0, 1, and 2 before

finding the empty cell in slot 3. Thus 19 is not found.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-24

Deletion

• Standard deletion cannot be performed because, as with a

binary search tree, an item in the hash table not only

represents itself, but it also connects other items by serving

as a placeholder during collision resolution.

• Thus, if we removed 89 from the hash table, virtually all

the remaining find operations would fail.

• Consequently, we implement lazy deletion, or marking

items as deleted rather than physically removing them

from the table.

• This information is recorded in an extra data member.

Each item is either active or deleted.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-25

Naive analysis of linear probing

To estimate the performance of linear probing, we make two

assumptions:

1. The hash table is large

2. Each probe in the hash table is independent of the previous

probe.

(Probe: to search into or examine thoroughly)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-26

Naive analysis of linear probing

• Assumption 1 is reasonable; otherwise, we would not be

bothering with a hash table.

• Assumption 2 says that, if the fraction of the table that is full is

λ, each time we examine a cell the probability that it is occupied

is also λ, independent of any previous probes.

• Independence is an important statistical property that greatly

simplifies the analysis of random events.

• Unfortunately, as we have discussed, the assumption of

independence is not only unjustified, but it also is erroneous.

• Thus the naive analysis that we perform is incorrect.

• Even so, it is helpful because it tells us what we can hope to

achieve if we are more careful about how collisions are

resolved.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-27

Naive analysis of linear probing

• As mentioned earlier, the performance of the hash table

depends on how full the table is. Its fullness is given by the

load factor.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-28

Naive analysis of linear probing

We can now give a simple but incorrect analysis of linear
probing in:

• Theorem 20.1:

• If independence of probes is assumed, the average number
of cells examined in an insertion using linear probing is
1/(1 - λ).

• For a table with a load factor of λ, the probability of any
cell's being empty is 1 - λ.

• Consequently, the expected number of independent trials
required to find an empty cell is 1/(1 - λ).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-29

Independence does not hold

• Unfortunately, independence of probes does

not hold.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-30

Primary clustering

• In primary clustering, large blocks of occupied cells are formed.

• Any key that hashes into this cluster requires excessive attempts

to resolve the collision, and then it adds to the size of the cluster.

• Not only do items that collide because of identical hash

functions cause degenerate performance, but also an item that

collides with an alternative location for another item causes poor

performance.

• The mathematical analysis required to take this phenomenon

into account is complex but has been solved, yielding:

Theorem 20.2.

• The average number of cells examined in an insertion using

linear probing is roughly (l + l/(l-λ)2)/2.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-31

Find operation

Theorem 20.3.

• The average number of cells examined in an unsuccessful

search using linear probing is roughly (1 + 1/(1- λ)2)/2.

• The average number of cells examined in a successful

search is approximately (1 + 1/(1 - λ))/2.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-32

Primary clustering

• Primary clustering not only makes the average probe sequence

longer, but it also makes a long probe sequence more likely.

• The main problem with primary clustering therefore is that

performance degrades severely for insertion at high load factors.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-33

Reducing the number of probes

• To reduce the number of probes, we need a collision resolution

scheme that avoids primary clustering.

• Note, however, that, if the table is half empty, removing the

effects of primary clustering would save only half a probe on

average for an insertion or unsuccessful search and one-tenth a

probe on average for a successful search.

• Even though we might expect to reduce the probability of

getting a somewhat lengthier probe sequence, linear probing is

not a terrible strategy.

• Because it is so easy to implement, any method we use to

remove primary clustering must be of comparable complexity.

Otherwise, we expend too much time in saving only a fraction

of a probe. One such method is quadratic probing.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-34

Quadratic probing

• Quadratic probing is a collision resolution method that

eliminates the primary clustering problem of linear probing

by examining certain cells away from the original probe

point.

• Its name is derived from the use of the formula F(i) = i2 to

resolve collisions.

• Specifically, if the hash function evaluates to H and a

search in cell H is inconclusive, we try cells H + 12, H +

22, H + 32,..., H+ i2 (employing wraparound) in sequence.

• This strategy differs from the linear probing strategy of

searching H+1, H+2, H+3, ..., H+ i.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-35

Quadratic Probing

58 collides at position 8. The cell at position 9 (which is one away) is tried, but

another collision occurs.

A vacant cell is found at the next cell tried, which is 22 = 4 positions away from

the original hash position. Thus 58 is placed in cell 2.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-36

Quadratic Probing: Issue 1

• In linear probing, each probe tries a different cell.

– Does quadratic probing guarantee that, when a cell is

tried, we have not already tried it during the course of

the current access?

– Does quadratic probing guarantee that, when we are

inserting X and the table is not full, X will be inserted?

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-37

Quadratic Probing: Issue 2 and 3

• Linear probing is easily implemented. Quadratic probing

appears to require multiplication and mod operations.

– Does this apparent added complexity make quadratic

probing impractical?

• What happens (in both linear probing and quadratic

probing) if the load factor gets too high?

– Can we dynamically expand the table, as is typically

done with other array-based data structures?

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-38

Table size

• Fortunately, the news is relatively good on all cases.

• If the table size is prime and the load factor never exceeds 0.5,

we can always place a new item X and no cell is probed twice

during an access.

• However, for these guarantees to hold, we need to ensure that

the table size is a prime number.

Theorem 20.4.

• If quadratic probing is used and the table size is prime, then a

new element can always be inserted if the table is at least half

empty. Furthermore, in the course of the insertion, no cell is

probed twice.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-39

Finding prime numbers

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-40

Efficiency

• The second important consideration is efficiency.

• Recall that, for a load factor of 0.5, removing primary

clustering saves only 0.5 probe for an average insertion

and 0.1 probe for an average successful search.

• We do get some additional benefits: Encountering a long

probe sequence is significantly less likely.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-41

Efficiency

• The formula for quadratic probing suggests that this

calculation appears to be much too expensive to be

practical.

• However, we can use the following trick, as explained in

• Theorem 20.5.

• Quadratic probing can be implemented without expensive

multiplications and divisions.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-42

Dynamic expansion

• The final detail to consider is dynamic expansion.

• If the load factor exceeds 0.5, we want to double the size of the

hash table. This approach raises a few issues.

• First, how hard will it be to find another prime number?

• The answer is that prime numbers are easy to find. We expect to

have to test only O(logN) numbers until we find a number that

is prime.

• Consequently, the routine shown in Figure 20.7 is very fast.

• The primality test takes at most O(N1/2) time, so the search for a

prime number takes at most O(N log N) time.

• This cost is much less than the O(N) cost of transferring the

contents of the old table to the new.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-43

Rehashing

• Once we have allocated a larger array, do we just copy

everything over?

• The answer is most definitely no.

• The new array implies a new hash function, so we cannot

use the old array positions.

• Thus we have to examine each element in the old table,

compute its new hash value, and insert it in the new hash

table.

• This process is called rehashing.

• Rehashing is easily implemented in Java.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-44

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-45

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-46

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-47

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-48

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-49

Small number of

elements: rehash

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-50

Load factor > 0.5: rehash

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-51

A new, empty hash table that will

have a 0.25 load factor when

rehash terminates.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-52

Implement the

methodology

described in

Theorem 20.5, using

two additions.

Cycle currentPos offset

0 1 3

1 4 5

2 9 7

3 16 9

4 25 11

5 36 13

6 49 15

7 64 17

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-53

Separate chaining hashing

• A popular and space-efficient alternative to quadratic

probing is separate chaining hashing in which an array of

linked lists is maintained.

• For an array of linked lists, L0, L1, ..., LM-1, the hash

function tells us in which list to insert an item X and then,

during a find, which list contains X.

• The idea is that, although searching a linked list is a linear

operation, if the lists are sufficiently short, the search time

will be very fast.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-54

Separate chaining hashing

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-55

Separate chaining hashing

• The appeal of separate chaining hashing is that
performance is not affected by a moderately increasing
load factor; thus rehashing can be avoided.

• For languages that do not allow dynamic array expansion,
this consideration is significant.

• Furthermore, the expected number of probes for a search is
less than in quadratic probing, particularly for

unsuccessful searches.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-56

Implementation of separate chaining

hashing

• We can implement separate chaining hashing by using our

existing linked list classes.

• However, because the header node adds space overhead

and is not really needed, we could elect not to reuse

components and instead implement a simple stacklike list.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-57

Hash tables versus binary search

trees
• We can also use binary search trees to implement insert and find

operations.

• Although the resulting average time bounds are O(logN), binary

search trees also support routines that require order and thus are

more powerful.

• Using a hash table, we cannot efficiently find the minimum

element or extend the table to allow computation of an order

statistic.

• We cannot search efficiently for a string unless the exact string is

known. A binary search tree could quickly find all items in a

certain range, but this capability is not supported by a hash table.

• Furthermore, the O(log N) bound is not necessarily that much more

than O(1), especially since no multiplications or divisions are

required by search trees.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-58

Hash tables versus binary search

trees

• The worst case for hashing generally results from an

implementation error, whereas sorted input can make

binary search trees perform poorly.

• Balanced search trees are quite expensive to implement.

• Hence, if no ordering information is required and there is

any suspicion that the input might be sorted, hashing is the

data structure of choice.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-59

Hashing applications

• Hashing applications are abundant.

• Compilers use hash tables to keep track of declared

variables in source code.

• The data structure is called a symbol table.

• Hash tables are the ideal application for this problem

because only insert and find operations are performed.

Identifiers are typically short, so the hash function can be

computed quickly.

• In this application, most searches are successful.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-60

Hashing applications

• Another common use of hash tables is in game programs.

• As the program searches through different lines of play, it

keeps track of positions that it has encountered by

computing a hash function based on the position (and

storing its move for that position).

• If the same position recurs, usually by a simple

transposition of moves, the program can avoid expensive

recomputation.

• This general feature of all game-playing programs is called

the transposition table.

• Chess games can greatly benefit from this

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-61

Hashing applications

• Another use of hashing is in online spelling checkers.

• If misspelling detection (as opposed to correction) is

important, an entire dictionary can be prehashed and words

can be checked in constant time.

• Hash tables are well suited for this purpose because the

words do not have to be alphabetized.

• Printing out misspellings in the order they occurred in the

document is acceptable.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-62

Readings

• Chapter 20

