Data Structures
esson 3

BSc in Computer Science
University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-1

Hash Tables

 The implementation of hash tables is frequently called
hashing, and 1t performs insertions, deletions, and finds in
constant average time.

« Unlike with the binary search tree, the average-case
running time of hash table operations is based on statistical
properties rather than the expectation of random-looking
input.

« This improvement 1s obtained at the expense of a loss of
ordering information among the elements: Operations such
as findMin and findMax and the printing of an entire table
in sorted order in linear time are not supported.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-2

Hash Tables

* The hash table supports the retrieval or deletion of
any named item.

 We want to be able to support the basic operations
in constant time, as for the stack and queue.

 When the size of the set increases, searches 1n the
set should take longer.

— However, that is not necessarily the case.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-3

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Hash Table

Suppose that all the items we are dealing with are small
nonnegative integers, ranging from 0 to 65,535.

We can use a simple array to implement each operation as follows.

First, we 1nitialize an array a that 1s indexed from 0 to 65,535 with
all Os.

To perform insert(1), we execute a[1]++. Note that a[1] represents
the number of times that 1 has been inserted.

To perform find(1), we verify that a[i] 1s not 0.

To perform remove(1), we make sure that a[1] 1s positive and then
execute a[i]--.

The time for each operation is clearly constant; even the overhead
of the array initialization 1s a constant amount of work (65,536
assignments).

1-4

Hash Tables

* There are two problems with this solution.

» First, suppose that we have 32-bit integers instead of 16-bit
integers.

— Then the array a must hold 4 billion items, which 1s
impractical.

« Second, if the items are not integers but instead are strings
(or something even more generic), they cannot be used to
index an array.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-5

Strings

The second problem 1s not really a problem at all.
Just as a number 1234 1s a collection of digits 1, 2, 3, and 4, the

1510 ¢ !

string "junk" 1s a collection of characters'}', ‘u', 'n', and 'k'.

Note that the number 1234 isjust 1 * 103 +2 * 102+ 3 * 10! +4 *
10°,

Recall that an ASCII character can typically be represented in 7
bits as a number between 0 and 127.

Because a character 1s basically a small integer, we can interpret a
string as an integer.

One possible representation is ' j' * 1283 +'u' * 1282 +'u' * 128! +
'k' * 1289,

This approach allows the simple array implementation discussed
previously.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-6

Representation

* The problem with this strategy 1s that the integer
representation described generates huge integers:

— The representation for "junk" yields 224,229,227,
and longer strings generate much larger
representations.

 This result brings us back to the first problem: How do
we avold using an absurdly large array?

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved -7

Avoiding large arrays: Mapping

 How to avoid using a large array?

* We do so by using a function that maps large numbers (or
strings interpreted as numbers) into smaller, more manageable
numbers.

* A function that maps an item into a small index is known as a
hash function.

e If x 1s an arbitrary (nonnegative) integer, then x % tableSize
generates a number between 0 and tableSize-1 suitable for
indexing into an array of size tableSize.

« Ifsisa string, we can convert s to a large integer x by using the
method suggested previously and then apply the mod operator
(%) to get a suitable index.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-8

Collisions

e The use of the hash function introduces a complication: Two or
more different items can hash out to the same position, causing a
collision.

» This situation can never be avoided because there are many
more items than positions.

« However, many methods are available for quickly resolving a
collision.

« We investigate three of the simplest: linear probing, quadratic
probing, and separate chaining.

« Each method is simple to implement, but each yields a different

performance, depending on how full the array is.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-9

Hash function

« Computing the hash function for strings has a subtle
complication:

— The conversion of the String s to X generates an integer
that 1s almost certainly larger than the machine can
store conveniently — because 128+ = 228,

« This integer size 1s a factor of 8 from the largest int.

* Consequently, we cannot expect to compute the hash
function by directly computing powers of 128.

» Instead, we use the following observation.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-10

Hash function

* A general polynomial

AX + A,X2+ 4 X + A X (20.1)

can be evaluated as
(((A3)X+A) X+ A)X+ A4, (20.2)
1-11

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Hash function

« Note that in Equation 20.2, we avoid computation of the
polynomial directly, which is good for three reasons.

 First, it avoids a large intermediate result, which, as we
have shown, overflows.

« Second, the calculation in the equation involves only three
multiplications and three additions:

— an N-degree polynomial 1s computed in N multiplications and
additions.

» These operations compare favorably with the computation
in Equation 20.1.

e Third, the calculation proceeds left to right (A3
corresponds to 'J', A2 to'u', and so on, and X 1s 128).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-12

Hash function

 However, an overflow problem persists:

e The result of the calculation 1s still the same and is likely
to be too large.

« But, we need only the result taken mod tableSize.

« By applying the % operator after each multiplication (or
addition), we can ensure that the intermediate results
remain small.

* The resulting function is as follows: => next slide

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-13

Hash function: a first attempt

figure 20.1 1 // Acceptable hash function
A first attempt at a 2 public static int hash(String key, int tableSize)
hash function 3 {
implementation 4 int hashVal = 0;
5
6 for(int 1 = 0; 1 < key.length(); i++)
7 hashVal = (hashval * 128 + key.charAt(i))
8 % tableSize;
9 return hashVal;
10 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-14

Hash function: a first attempt

* An annoying feature of this hash function 1s that the mod
computation 1s expensive.

« Because overflow is allowed (and 1ts results are consistent
on a given platform), we can make the hash function
somewhat faster by performing a single mod operation
immediately prior to the return.

« Unfortunately, the repeated multiplication by 128 would
tend to shift the early characters to the left — out of the
answer.

« To alleviate this situation, we multiply by 37 instead of

128, which slows the shifting of early characters. => next
slide

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-15

A faster hash function

figure 20.2 1 JE*
A faster hash function 2 * A hash routine for String objects.
that takes advantage 3 * @param key the String to hash.
of overflow 4 * @param tableSize the size of the hash table.
5 * @return the hash value.
6 */
7 public static int hash(String key, int tableSize)
8 {
g int hashVal = 0;
10
11 for(int 1 = 0; 1 < key.length(); i++)
12 hashVal = 37 * hashVal + key.charAt(1);
13
14 hashVal %= tableSize;
15 if(hashvVal < 0)
16 hashVal += tableSize;
17
18 return hashVal;
19 }

Note that overflow could introduce negative numbers.

Thus 1f the mod generates a negative value, we make it positive (lines 15 and 16).

Also note that the result obtained by allowing overflow and doing a final mod is not the
same as performing the mod after every step. Thus we have slightly altered the hash

function — which is not a problem.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-16

Distribution of keys

« Although speed is an important consideration in designing a

hash function, we also want to be sure that 1t distributes the keys
equitably.

« Consequently, we must not take our optimizations too far.
« An example 1s the hash function shown in Figure 20.3.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-17

A poor hash function

// A poor hash function when tableSize is large figure 20.3
public static int hash(String key, int tableSize) A bad hash function if
{ tableSize is large

int hashVal = 0;

for(int i = 0; i < key.length(); i++)
hashVal += key.charAt(1);

return hashVal % tableSize;

S W 0~ b Wk =

.

It simply adds the characters in the keys and returns the result mod

tableSize.
The function 1s easy to implement and computes a hash value very

quickly.
But does not distribute the keys well.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-18

Equitable distribution

« Suppose that tableSize 1s 10,000.
« Also suppose that all keys are 8 or fewer characters long.

« Because an ASCII char is an integer between 0 and 127,
the hash function can assume values only between 0 and

1,016 (127 x 8).

* This restriction certainly does not permit an equitable
distribution.

* Any speed gained by the quickness of the hash function
calculation 1s more than offset by the effort taken to
resolve a larger than expected number of collisions.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-19

Linear probing

 Now that we have a hash function, we need to decide what to
do when a collision occurs.

« Specifically, if X hashes out to a position that 1s already
occupied, where do we place it?

« The simplest possible strategy is linear probing, or searching
sequentially in the array until we find an empty cell.

e The search wraps around from the last position to the first, if
necessary.

* Figure 20.4 shows the result of inserting the keys 89, 18, 49,
58, and 9 1n a hash table when linear probing is used.

 We assume a hash function that returns the key X mod the
size of the table.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-20

Linear probing

figure 20.4 hash (89, 10) = 9
Lineargrobing hash hash (18, 10) = 8
table after each hash (49, 10) = 9
insertion hash (58, 10) = 8
hash (9, 10) = 9
After insert 89 After insert 18 After insert 49 After insert 58 After insert 9
0] 49 49 49
1 58 58
2 9
3
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

1-21

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Linear probing

* So long as the table is large enough, a free cell can always be
found.

« However, the time needed to find a free cell can get to be quite
long.

« For example, if there is only one free cell left in the table, we
may have to search the entire table to find it.

 On average we would expect to have to search half the table to
find 1t, which is far from the constant time per access that we are
hoping for.

« But, if the table is kept relatively empty, insertions should not be
so costly. We discuss this approach shortly.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-22

Find

e The find algorithm merely follows the same path as the insert
algorithm.

« If it reaches an empty slot, the item we are searching for 1s not
found; otherwise, it finds the match eventually.

« For example, to find 58, we start at slot 8 (as indicated by the
hash function).

« We see an item, but it 1s the wrong one, so we try slot 9.

e Again, we have an item, but it 1s the wrong one, so we try slot 0
and then slot 1 until we find a match.

e A find for 19 would involve trying slots 9, 0, 1, and 2 before
finding the empty cell in slot 3. Thus 19 1s not found.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-23

Deletion

« Standard deletion cannot be performed because, as with a
binary search tree, an item in the hash table not only
represents itself, but 1t also connects other items by serving
as a placeholder during collision resolution.

e Thus, if we removed 89 from the hash table, virtually all
the remaining find operations would fail.

« Consequently, we implement lazy deletion, or marking
items as deleted rather than physically removing them
from the table.

 This information is recorded in an extra data member.
Each item 1s either active or deleted.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-24

Naive analysis of linear probing

To estimate the performance of linear probing, we make two
assumptions:

1. The hash table 1s large

2. Each probe 1n the hash table 1s independent of the previous
probe.

(Probe: to search into or examine thoroughly)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-25

Naive analysis of linear probing

e Assumption 1 is reasonable; otherwise, we would not be
bothering with a hash table.

« Assumption 2 says that, if the fraction of the table that 1s full is
A, each time we examine a cell the probability that it 1s occupied
is also A, independent of any previous probes.

« Independence is an important statistical property that greatly
simplifies the analysis of random events.

« Unfortunately, as we have discussed, the assumption of
independence 1s not only unjustified, but it also 1s erroneous.

* Thus the naive analysis that we perform 1s incorrect.

« Even so, it 1s helpful because it tells us what we can hope to
achieve if we are more careful about how collisions are
resolved.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-26

Naive analysis of linear probing

« As mentioned earlier, the performance of the hash table
depends on how full the table 1s. Its fullness is given by the
load factor.

definition: The /oad factor, A,0f a probing hash table is the fraction of the table
that is full. The load factor ranges from O (empty) to 1 (completely full).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-27

Naive analysis of linear probing

We can now give a simple but incorrect analysis of linear
probing in:

e Theorem 20.1:

 If independence of probes 1s assumed, the average number

of cells examined in an insertion using linear probing is
1/(1 - Q).

« For a table with a load factor of A, the probability of any
cell's being empty i1s 1 - A.

» Consequently, the expected number of independent trials
required to find an empty cell is 1/(1 - X).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-28

Independence does not hold

« Unfortunately, independence of probes does
not hold.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-29

Primary clustering

e In primary clustering, large blocks of occupied cells are formed.

* Any key that hashes into this cluster requires excessive attempts
to resolve the collision, and then it adds to the size of the cluster.

« Not only do items that collide because of identical hash
functions cause degenerate performance, but also an item that
collides with an alternative location for another item causes poor
performance.

« The mathematical analysis required to take this phenomenon
into account is complex but has been solved, yielding:

Theorem 20.2.

e The average number of cells examined in an insertion using
linear probing is roughly (1 + 1/(1-1)?)/2.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-30

Find operation

Theorem 20.3.

« The average number of cells examined 1n an unsuccessful
search using linear probing is roughly (1 + 1/(1- X)?)/2.
« The average number of cells examined in a successful

search 1s approximately (1 + 1/(1 - X))/2.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-31

Primary clustering

« Primary clustering not only makes the average probe sequence
longer, but it also makes a long probe sequence more likely.

e The main problem with primary clustering therefore 1s that
performance degrades severely for insertion at high load factors.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-32

Reducing the number of probes

e To reduce the number of probes, we need a collision resolution
scheme that avoids primary clustering.

* Note, however, that, if the table is half empty, removing the
effects of primary clustering would save only half a probe on
average for an insertion or unsuccessful search and one-tenth a
probe on average for a successful search.

* Even though we might expect to reduce the probability of
getting a somewhat lengthier probe sequence, linear probing is
not a terrible strategy.

* Because it 1s so easy to implement, any method we use to
remove primary clustering must be of comparable complexity.
Otherwise, we expend too much time in saving only a fraction
of a probe. One such method is quadratic probing.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-33

QQuadratic probing

e (Quadratic probing is a collision resolution method that
eliminates the primary clustering problem of linear probing
by examining certain cells away from the original probe
point.

 Its name is derived from the use of the formula F(i) = i’ to
resolve collisions.

* Specifically, if the hash function evaluates to H and a
search in cell H is inconclusive, we try cells H + 12, H +
22, H + 32,..., H+ i? (employing wraparound) in sequence.

« This strategy differs from the linear probing strategy of
searching H+1, H+2, H+3, ..., H+ 1.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-34

QQuadratic Probing

hash (89, 10) = 9 figure 20.6
hash (18, 10) = 8 A quadratic probing
hash (49, 10) = 9 hash table after each
hash (58, 10) = 8 insertion (note that
hash ! the table size was
ash (9, 10) =9 oorly chosen

After insert 89 After insert 18 After insert 49 Afterinsert 58 After insert 9 ecause it is not a

prime number).

0 49 49 49
]
2 58 58
3 9
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

58 collides at position 8. The cell at position 9 (which 1s one away) 1s tried, but
another collision occurs.

A vacant cell is found at the next cell tried, which is 22 = 4 positions away from
the original hash position. Thus 58 1s placed in cell 2.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-35

Quadratic Probing: Issue 1

 In linear probing, each probe tries a different cell.

— Does quadratic probing guarantee that, when a cell 1s
tried, we have not already tried 1t during the course of
the current access?

— Does quadratic probing guarantee that, when we are
inserting X and the table is not full, X will be inserted?

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-36

QQuadratic Probing: Issue 2 and 3

e Linear probing is easily implemented. Quadratic probing
appears to require multiplication and mod operations.

— Does this apparent added complexity make quadratic
probing impractical?

« What happens (in both linear probing and quadratic
probing) if the load factor gets too high?

— Can we dynamically expand the table, as 1s typically
done with other array-based data structures?

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-37

Table size

» Fortunately, the news is relatively good on all cases.

 If the table size is prime and the load factor never exceeds 0.5,
we can always place a new item X and no cell is probed twice
during an access.

« However, for these guarantees to hold, we need to ensure that
the table size 1s a prime number.

Theorem 20.4.

 If quadratic probing is used and the table size is prime, then a
new element can always be inserted if the table is at least half
empty. Furthermore, in the course of the insertion, no cell 1s
probed twice.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-38

Finding prime numbers

1 J¥

2 * Method to find a prime number at least as large as n.
3 * @param n the starting number (must be positive).
4 * @return a prime number larger than or equal to n.
5 ®/

6 private static int nextPrime(int n)

7 {

8 if(n%2==0)

9 N++;
10
11 for(; lisPrime(n); n += 2)
12 :
13
14 return n;
15 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

figure 20.7

A routine used in
quadratic probing to
find a prime greater
than or equal to N

1-39

Efficiency

* The second important consideration 1s efficiency.

» Recall that, for a load factor of 0.5, removing primary
clustering saves only 0.5 probe for an average insertion
and 0.1 probe for an average successful search.

 We do get some additional benefits: Encountering a long
probe sequence 1s significantly less likely.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-40

Efficiency

e The formula for quadratic probing suggests that this
calculation appears to be much too expensive to be
practical.

 However, we can use the following trick, as explained in

e Theorem 20.5.

* (Quadratic probing can be implemented without expensive
multiplications and divisions.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-41

Dynamic expansion

» The final detail to consider is dynamic expansion.

« Ifthe load factor exceeds 0.5, we want to double the size of the
hash table. This approach raises a few issues.

 First, how hard will it be to find another prime number?

« The answer 1s that prime numbers are easy to find. We expect to
have to test only O(logN) numbers until we find a number that
1s prime.

» Consequently, the routine shown in Figure 20.7 1s very fast.

« The primality test takes at most O(N'?) time, so the search for a
prime number takes at most O(N log N) time.

* This cost is much less than the O(N) cost of transferring the
contents of the old table to the new.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-42

Rehashing

e Once we have allocated a larger array, do we just copy
everything over?

» The answer 1s most definitely no.

* The new array implies a new hash function, so we cannot
use the old array positions.

* Thus we have to examine each element in the old table,
compute 1ts new hash value, and insert 1t in the new hash
table.

* This process 1s called rehashing.

« Rehashing 1s easily implemented in Java.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-43

figure 20.8

The class skeleton for
a quadratic probing
hash table

1
2
3
4
5 {
6
7
8

package weiss.util;

public class HashSet<AnyType> extends AbstractCollection<AnyType>
implements Set<AnyType>

private class HashSetIterator implements Iterator<AnyType>

{ /* Figure 20.17 */ }

private static class HashEntry implements java.io.Serializahle

{ /* Figure 20.9 */ }

pubTic HashSet()
{ /* Figure 20.10 */ }

public HashSet(Collection<? extends AnyType> other)

{ /* Figure 20.10 */ }

public int size()
{ return currentSize; }
public Iterator iterator()
{ return new HashSetIterator(); }

pubTlic boolean contains(Object x)
{ /* Figure 20.11 */ }

private static boolean isActive(HashEntry [] arr, int pos)

{ /* Figure 20.12 */ }
pubTic AnyType getMatch(AnyType x)
{ /¥ Figure 20.11 */ }

public boolean remove(Object x)
{ /* Figure 20.13 */ }
public void clear()
{ /* Figure 20.13 */ }
pubTic boolean add(AnyType x)
{ /% Figure 20.14 */ }
private void rehash()
{ /* Figure 20.15 */ }
private int findPos(Object x)
{ /* Figure 20.16 */ }

private void allocateArray(int arraySize)
{ array = new HashEntry[arraySize]; }
private static int nextPrime(int n)
{ /* Figure 20.7 */ }
private static boolean isPrime(int n)
{ See online code */ }

private int currentSize = 0;
private int occupied = 0
private int modCount = 0
private HashEntry [] array;

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-44

W~ 0wk =

11
12
13
14
15
16

private static class HashEntry implements java.io.Serializable

{

public Object element; // the element
public boolean isActive; // false if marked deleted

public HashEntry(Object e)

{
this(e, true);
}
public HashEntry(Object e, boolean i)
{
element = e;
isActive = 1;
}

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

figure 20.9

The HashEntry nested
class

1-45

0~ bWk =

— =k —h =k =i =k
g s Wk =0 W

16
17
18
19
20
21
22

private static final int DEFAULT_TABLE_SIZE = 101; figure 20.10

£ Hash table
/ initialization
* Construct an empty HashSet.
*/
public HashSet()
{

allocateArray(DEFAULT_TABLE_SIZE);

clear();

}
/:":hi'

* Construct a HashSet from any collection.
*/
public HashSet(Collection<? extends AnyType> other)

{

allocateArray(nextPrime(other.size() * 2));
clear();

for(AnyType val : other)
add(val);

1-46

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

figure 20.11 1 JE*
The searching 2 * This methoq is not part nf staqdard Java.
routines for a 3 * Like contains, it checks if x is in the set.
quadratic probing 4 * If it is, it returns the reference to the matching
hash table 5 * object; otherwise it returns null.
6 * @param x the object to search for.
7 * @return if contains(x) is false, the return value is null;
8 * otherwise, the return value is the object that causes
9 * contains(x) to return true.
10 */
11 public AnyType getMatch(AnyType x)
12 {
13 int currentPos = findPos(x);
14
15 if(isActive(array, currentPos))
16 return (AnyType) array[currentPos].element;
17 return null;
18 }
19
20 S
21 * Tests if some item is in this collection.
22 * @param x any object.
23 * @return true if this collection contains an item equal to X.
24 */
25 public boolean contains(Object x)
26 {
27 return isActive(array, findPos(x));
28 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-47

1 /**

2 * Tests 1f item in pos 1s active.

3 * @param pos a position in the hash table.

4 * @param arr the HashEntry array (can be oldArray during rehash).
5 * @return true if this position is active.

6 ¥/

7 private static boolean isActive(HashEntry [] arr, int pos)

8 {

9 return arr[pos] != null && arr[pos].isActive;

10 }

figure 20.12
The isActive method for a quadratic probing hash table

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-48

O~ s wh =

NN N = = b =b bk ek o=k b =k =k
N = 0w o<~ Uh bt h == O W

23
24
25
26
27
28
29
30
31

f‘k*
* Removes an item from this collection.
@param x any object.
@return true if this item was removed from the collection.

%

EH

®/
public boolean remove(Object x)
{
int currentPos = findPos(x);
if(!isActive(array, currentPos))
return false;

array[currentPos].isActive = false;
currentSize--;
modCount++;

if(currentSize < array.length / 8)

rehash();
return true;
}
/‘.!.".‘;
* Change the size of this collection to zero.
*/
public void clear()
{
currentSize = occupied = 0;
modCount++;
for(int i = 0; i < array.length; i++)
array[1] = null;
}

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

figure 20.13

The remove and clear
routines for a
quadratic probing
hash table

Small number of
elements: rehash

1-49

figure 20.14 1 JEE
The add routine for a 2 * Adds an item to this collection.
quadratic probing 3 * @param x any object.
hash table 4 * @return true if this item was added to the collection.
5 *f
6 public boolean add(AnyType x)
7 {
8 int currentPos = findPos(x);
9 1f(1sActive(array, currentPos))
10 return false;
11
12 array[currentPos] = new HashEntry(x, true);
13 currentSize++;
14 occupied++;
15 modCount++;
16
17 if(occupied > array.length / 2)
18 rehash();
19
20 return true;
21 }

Load factor > 0.5: rehash

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-50

figure 20.15 1 JE*

2 * Private routine to perform rehashing.
fTohrearflﬂ;’;ﬂar{}fthc’d 3 * Can be called by both add and remove.
probing hash table 4 */

5 private void rehash()

6 {

7 HashEntry [] oldArray = array;

8

9 // Create a new, empty table

10 allocateArray(nextPrime(4 * size()));

11 currentSize = 0;

12 occupied = 0;

13

14 // Copy table over

15 for(int i = 0; i < oldArray.length; N++)

16 if(isActive(oldArray, i))

17 add((AnyType) oldArray[i].elekent);

18 }

A new, empty hash table that will
have a 0.25 load factor when
rehash terminates.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-51

1 f'!n‘.'

2 * Method that performs quadratic probing resolution.

3 * @param X the item to search for.

4 * @return the position where the search terminates.

5 %/

6 private int findPos(Object x)

7 {

8 int offset = 1;

9 int currentPos = (x == null) ? Implement the

10 0 : Math.abs(x.hashCode() % array.length);

> methodology

12 while(array[currentPos] != null) dCS ribed in

13 {

14 if(x == null) Theorem 20.5, using
16 if(array[currentPos].element == null) tworadditions

17 break; :

18

19 else if(x.equals(array[currentPos].elem

o break; Cycle currentPos offset
22 currentPos += offset; // Compute ith probe 0 1 3
23 offset += 2; 1 4 5
24 if(currentPos >= array.length) // Implement the mod

25 currentPos -= array.length; 2 9 7
2) N 16 9
28 return currentPos; 4 25 11
S 5 36 13
. 49 15
figure 20.16 7 64 17
The routine that finally deals with quadratic probing

1-52

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Separate chaining hashing

« A popular and space-efficient alternative to quadratic
probing is separate chaining hashing in which an array of
linked lists 1s maintained.

* For an array of linked lists, L, L,, ..., Ly, ;, the hash
function tells us in which list to insert an 1item X and then,
during a find, which list contains X.

» The 1dea 1s that, although searching a linked list 1s a linear
operation, if the lists are sufficiently short, the search time
will be very fast.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-53

Separate chaining hashing

keys buckets entries
000 | x
001 l""'”"' * Lisa Smith 521-8976
John Smith
002 | x
: : ohn Smith | 521-1234
Lisa Smith Pl
151 | x ¢
Sam Doe g % | Sandra Dee | 521-9655
=
Sandra Dee 154
: : x| Ted Baker | 418-4165
253 | x
Ted Baker —re
i % Sam Doe 521-5030
255 | x

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-54

Separate chaining hashing

» The appeal of separate chaining hashing is that
performance is not affected by a moderately increasing
load factor; thus rehashing can be avoided.

* For languages that do not allow dynamic array expansion,
this consideration 1s significant.

« Furthermore, the expected number of probes for a search 1s
less than 1n quadratic probing, particularly for

unsuccessful searches.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-85

Implementation of separate chaining
hashing

 We can implement separate chaining hashing by using our
existing linked list classes.

 However, because the header node adds space overhead
and 1s not really needed, we could elect not to reuse

components and instead implement a simple stacklike list.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-56

Hash tables versus binary search
trees

* We can also use binary search trees to implement insert and find
operations.

« Although the resulting average time bounds are O(logN), binary
search trees also support routines that require order and thus are
more powerful.

« Using a hash table, we cannot efficiently find the minimum
element or extend the table to allow computation of an order
statistic.

* We cannot search efficiently for a string unless the exact string 1s
known. A binary search tree could quickly find all items in a
certain range, but this capability is not supported by a hash table.

« Furthermore, the O(log N) bound is not necessarily that much more
than O(1), especially since no multiplications or divisions are
required by search trees.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-57

Hash tables versus binary search
trees

« The worst case for hashing generally results from an
implementation error, whereas sorted input can make
binary search trees perform poorly.

« Balanced search trees are quite expensive to implement.

* Hence, if no ordering information is required and there is
any suspicion that the input might be sorted, hashing is the
data structure of choice.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-58

Hashing applications

« Hashing applications are abundant.

« Compilers use hash tables to keep track of declared
variables 1n source code.

« The data structure is called a symbol table.

« Hash tables are the 1deal application for this problem
because only insert and find operations are performed.
Identifiers are typically short, so the hash function can be
computed quickly.

 In this application, most searches are successful.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-59

Hashing applications

* Another common use of hash tables 1s in game programes.

e As the program searches through different lines of play, it
keeps track of positions that it has encountered by
computing a hash function based on the position (and
storing 1ts move for that position).

 If the same position recurs, usually by a simple
transposition of moves, the program can avoid expensive
recomputation.

» This general feature of all game-playing programs is called
the transposition table.

e Chess games can greatly benefit from this

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-60

Hashing applications

« Another use of hashing 1s in online spelling checkers.

« If misspelling detection (as opposed to correction) 1s
important, an entire dictionary can be prehashed and words
can be checked in constant time.

« Hash tables are well suited for this purpose because the
words do not have to be alphabetized.

 Printing out misspellings in the order they occurred in the
document is acceptable.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-61

Readings

* Chapter 20

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-62

