
Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-1 1-1

Data Structures

Lesson 9

BSc in Computer Science

University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Chapter 21

A Priority Queue:

The Binary Heap

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-3

Priority Queue

• The priority queue is a fundamental data structure that

allows access only to the minimum (or maximum) item.

• We could implement it by using a simple linked list,

performing insertions at the front in constant time, but then

finding and/or deleting the minimum would require a

linear scan of the list.

• Alternatively, we could insist that the list always be kept

sorted.

– This condition makes the access and deletion of the

minimum cheap, but then insertions would be linear.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-4

Implementation choices

• Another way of implementing priority queues is to use a

binary search tree, which gives an O(log N) average

running time for both operations.

• However, a binary search tree is a poor choice because the

input is typically not sufficiently random.

• We could use a balanced search tree, but these structures

are cumbersome to implement and lead to slow

performance in practice.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-5

Implementation choices

• On the one hand, because the priority queue supports only

some of the search tree operations, it should not be more

expensive to implement than a search tree.

• On the other hand, the priority queue is more powerful

than a simple queue because we can use a priority queue to

implement a queue as follows.

– First, we insert each item with an indication of its

insertion time.

– Then, a deleteMin on the basis of minimum insertion

time implements a dequeue.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-6

Binary Heap

• We can expect to obtain an implementation with properties

that are a compromise between a queue and a search tree.

This compromise is realized by the binary heap, which:

– Can be implemented by using a simple array (like the

queue)

– Supports insert and deleteMin in O(log N) worst-case

time (a compromise between the binary search tree and

the queue)

– Supports insert in constant average time and findMin in

constant worst-case time (like the queue)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-7

Binary Heap

• The binary heap is the classic method used to implement

priority queues and — like the balanced search tree

structures — has two properties:

– a structure property and an ordering property.

• As with balanced search trees, an operation on a binary

heap can destroy one of the properties, so a binary heap

operation must not terminate until both properties are in

order.

• This outcome is simple to achieve.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-8

Complete binary trees

• The only structure that gives dynamic logarithmic time

bounds is the tree, so it seems natural to organize the

heap's data as a tree.

• Because we want the logarithmic bound to be a worst-case

guarantee, the tree should be balanced.

• A complete binary tree is a tree that is completely filled,

with the possible exception of the bottom level, which is

filled from left to right and has no missing nodes.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-9

Had the node J been a right child of E, the tree would not

be complete because a node would be missing.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-10

Properties

• The complete tree has a number of useful properties.

• First, the height (longest path length) of a complete binary

tree of N nodes is at most [log N].

• The reason is that a complete tree of height H has between

2H and 2H + 1 - 1 nodes.

• This characteristic implies that we can expect logarithmic

worst-case behavior if we restrict changes in the structure

to one path from the root to a leaf.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-11

Properties

• Second and equally important, in a complete binary tree, left

and right links are not needed.

• As shown in Figure 21.1, we can represent a complete binary

tree by storing its level-order traversal in an array.

• We place the root in position 1 (position 0 is often left

vacant, for a reason discussed shortly).

• We also need to maintain an integer that tells us the number

of nodes currently in the tree.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Properties
• Then for any element in array position i, its left child can

be found in position 2i.

• If this position extends past the number of nodes in the

tree, we know that the left child does not exist.

• Similarly, the right child is located immediately after the

left child; thus it resides in position 2i + 1.

• We again test against the actual tree size to be sure that the

child exists. Finally, the parent is in position [i/2].

1-12

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-13

Position 0

• Note that every node except the root has a parent.

• If the root were to have a parent, the calculation would

place it in position 0.

• Thus we reserve position 0 for a dummy item that can

serve as the root's parent.

• Doing so can simplify one of the operations (add).

– If instead we choose to place the root in position 0, the locations of

the children and parent of the node in position i change slightly

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-14

Implicit Representation

• Using an array to store a tree is called implicit

representation.

• As a result of this representation, not only are child links

not required, but also the operations required to traverse

the tree are extremely simple and likely to be very fast on

most computers.

• The heap entity consists of an array of objects and an

integer representing the current heap size.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-15

The heap-order property

• We want to be able to find the minimum quickly, so it

makes sense that the smallest element should be at the root.

• If we consider that any subtree should also (recursively) be

a heap, any node should be smaller than all of its

descendants. Applying this logic, we arrive at the heap-

order property.

• Heap-order property

 In a heap, for every node X with parent P the key in P is

smaller than or equal to the key in X.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-16

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-17

The dashed line shows the violation of the heap order.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-18

Min (or Max) heap

• Note that the root does not have a parent.

• In the implicit representation, we could place the value -∞

in position 0 to remove this special case when we

implement the heap.

• By the heap-order property, we see that the minimum

element can always be found at the root.

• Thus findMin is a constant time operation.

• A max heap supports access of the maximum instead of the

minimum. Minor changes can be used to implement max

heaps.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-19

Constructor 3

takes in input a

collection!

Why? Next

slide =>

We need a

Comparator to

compare the

elements

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-20

Constructor from collection

• In numerous applications we can add many items before the

next deleteMin occurs.

• In those cases, we do not need to have heap order in effect until

the deleteMin occurs.

• The buildHeap operation, declared at line 32, reinstates the heap

order — no matter how messed up the heap is — and we will

see that it works in linear time.

• Thus, if we need to place N items in the heap before the first

deleteMin, placing them in the array with no order and then

doing one buildHeap is more efficient than doing N insertions.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-21

Better

than N

insertions

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-22

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-23

Insertion

• To insert an element X in the heap, we must first add a

node to the tree.

• The only option is to create a hole in the next available

location; otherwise, the tree is not complete and we would

violate the structure property.

– If X can be placed in the hole without violating heap

order, we do so and are done.

– Otherwise, we slide the element that is in the hole's

parent node into the node, bubbling the hole up toward

the root.

• We continue this process until X can be placed in the hole.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-24

Figure 21.7 shows that to insert 14, we create a hole in the

next available heap location. Inserting 14 into the hole would

violate the heap-order property, so 31 is slid down into the

hole.

This strategy is continued in Figure 21.8 until the correct

location for 14 is found. => next slide

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-25

This general strategy is called percolate up, in which insertion

is implemented by creating a hole at the next available

location and bubbling it up the heap until the correct location

is found.

Percolate Up

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-26

Increments the current

size and sets the hole to

the newly added node.

Iterate the loop at line 15 as

long as the item in the parent

node is larger than x.

Then the third expression in the for

loop moves the hole up to the parent.

Line 16 moves the item in the

parent down into the hole,

When the loop terminates, line 17 places x in the

hole.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-27

Insertion: Running time

• The time required to do the insertion could be as much as

O(log N) if the element to be inserted is the new minimum.

• The reason is that it will be percolated up all the way to the

root.

• On average the percolation terminates early.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-28

The deleteMin operation

• The deleteMin operation is handled in a similar manner to

the insertion operation.

• As shown already, finding the minimum is easy; the hard

part is removing it.

• When the minimum is removed, a hole is created at the

root.

• The heap now becomes one size smaller, and the structure

property tells us that the last node must be eliminated.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-29

The minimum item is 13, the root has a hole, and

the former last item needs to be placed in the heap

somewhere.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-30

Percolate down

• We must play the same game as for insertion: We put some

item in the hole and then move the hole.

• The only difference is that for the deleteMin we move

down the tree.

• To do so, we find the smaller child of the hole, and if that

child is smaller than the item that we are trying to place,

we move the child into the hole, pushing the hole down

one level and repeating these actions until the item can be

correctly placed — a process called percolate down.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-31

We place the smaller child

(14) in the hole, sliding the

hole down one level.

We repeat this action,

placing 19 in the hole

and creating a new hole one

level deeper.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-32

We then place 26 in the

hole and create a new

hole on the bottom

level.

Finally, we are able to

place 31 in the hole.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-33

Running time of deleteMin

• Because the tree has logarithmic depth, deleteMin is a

logarithmic operation in the worst case.

• Not surprisingly, percolation rarely terminates more than

one or two levels early, so deleteMin is logarithmic on

average, too.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-34

Remove

Put the bubble at the root

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-35

The smaller child is found at lines 13-15. We have to be careful because the last node in an

even-sized heap is an only child; we cannot always assume that there are two children, which

is why we have the first test at line 13.

The percolateDown method

takes a single parameter that

indicates where the hole is

placed. The item in the hole is

then moved out, and the

percolation begins.

The for loop at line 10

terminates when there is

no left child.

The third expression

moves the hole to the

child.

Line 17: Move the smaller child up
Line 15: right child is smaller than

left child

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

The buildHeap operation

1-36

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-37

The buildHeap operation

• The buildHeap operation takes a complete tree that does

not have heap order and reinstates it.

• We want it to be a linear-time operation, since N insertions

could be done in O(N log N) time.

• The N successive insertions do more work than we require

because they maintain heap order after every insertion and

we need heap order only at one instant.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-38

We recursively call bui1dHeap on the left and right subheaps.

At that point, we are guaranteed that heap order has been

established everywhere except at the root.

We can establish heap order everywhere by calling

percolateDown for the root.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-39

buildHeap

• The recursive routine works by guaranteeing that when we

apply percolateDown(i), all descendants of i have been

processed recursively by their own calls to percolateDown.

• The recursion, however, is not necessary, for the following

reason:

– If we call percolateDown on nodes in reverse level order,

then at the point percolateDown(i) is processed, all

descendants of node i will have been processed by a prior

call to percolateDown.

• This process leads to an incredibly simple algorithm for

buildHeap.

• Note that percolateDown need not be performed on a leaf. Thus

we start at the highest numbered nonleaf node.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-40

Start at the highest numbered

non-leaf node.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-41

Figures 21.17(b) through 21.20 show the result of

each of the seven percolateDown operations.

Each dashed line corresponds to two comparisons:

one to find the smaller child and one to compare the

smaller child with the node.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-42

percolateDown(6)
percolateDown(5)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-43

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-44

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-45

Heapsort

The priority queue can be used to sort N items by the following:

1. Inserting every item into a binary heap

2. Extracting every item by calling deleteMin N times, thus sorting

the result

Using the observations on buildHeap, we can more efficiently

implement this procedure by

1. Tossing each item into a binary heap

2. Applying buildHeap

3. Calling deleteMin N times, with the items exiting the heap in

sorted order

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-46

HeapSort

• Step 1 takes linear time total, and step 2 takes linear time.

• In step 3, each call to deleteMin takes logarithmic time, so

N calls take O(N log N) time.

• Consequently, we have an O(N log N) worst-case sorting

algorithm, called heapsort.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-47

Space problem

• Even though we do not use the heap class directly, we still seem

to need a second array.

• The reason is that we have to record the order in which items

exit the heap equivalent in a second array and then copy that

ordering back into the original array.

• The memory requirement is doubled, which could be crucial in

some applications.

• Note that the extra time spent copying the second array back to

the first is only O(N).

• The problem is space.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-48

Space problem

• A clever way to avoid using a second array makes use of

the fact that, after each deleteMin, the heap shrinks by 1.

• Thus the cell that was last in the heap can be used to store

the element just deleted.

• As an example, suppose that we have a heap with six

elements.

– The first deleteMin produces A1. Now the heap has

only five elements, so we can place A1 in position 6.

– The next deleteMin produces A2. As the heap now has

only four elements, we can place A2 in position 5.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-49

Max Heap

• After the last deleteMin the array will contain the

elements in decreasing sorted order.

• If we want the array to be in the more typical

increasing sorted order, we can change the

ordering property so that the parent has a larger

key than the child does.

• Thus we have a max heap.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-50

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-51

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-52

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-53

Swap the maximum

from 0 with cell i

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-54

Readings

• Chapter 21

