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Priority Queue 

• The priority queue is a fundamental data structure that 

allows access only to the minimum (or maximum) item.  

• We could implement it by using a simple linked list, 

performing insertions at the front in constant time, but then 

finding and/or deleting the minimum would require a 

linear scan of the list.  

• Alternatively, we could insist that the list always be kept 

sorted.  

– This condition makes the access and deletion of the 

minimum cheap, but then insertions would be linear.  
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Implementation choices 

• Another way of implementing priority queues is to use a 

binary search tree, which gives an O(log N) average 

running time for both operations.   

• However, a binary search tree is a poor choice because the 

input is typically not sufficiently random.  

• We could use a balanced search tree, but these structures 

are cumbersome to implement and lead to slow 

performance in practice.  
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Implementation choices 

• On the one hand, because the priority queue supports only 

some of the search tree operations, it should not be more 

expensive to implement than a search tree.  

• On the other hand, the priority queue is more powerful 

than a simple queue because we can use a priority queue to 

implement a queue as  follows.  

– First, we insert each item with an indication of its 

insertion time.  

– Then, a deleteMin on the basis of minimum insertion 

time implements a dequeue.  
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Binary Heap 

• We can expect to obtain an implementation with properties 

that are a compromise between a queue and a search tree. 

This compromise is realized by the binary heap, which:  

– Can be implemented by using a simple array (like the 

queue)  

– Supports insert and deleteMin in O(log N) worst-case 

time (a  compromise between the binary search tree and 

the queue)  

– Supports insert in constant average time and findMin in 

constant worst-case time (like the queue)  
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Binary Heap 

• The binary heap is the classic method used to implement 

priority queues and — like the balanced search tree 

structures — has two properties:  

– a structure property and an ordering property.  

• As with balanced search trees, an operation on a binary 

heap can destroy one of the properties, so a binary heap 

operation must not terminate until both properties are in 

order.  

• This outcome is simple to achieve.  
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Complete binary trees 

• The only structure that gives dynamic logarithmic time 

bounds is the tree, so it seems natural to organize the 

heap's data as a tree.  

 

• Because we want the logarithmic bound to be a worst-case 

guarantee, the tree should be balanced.  

 

• A complete binary tree is a tree that is completely filled, 

with the possible exception of the bottom level, which is 

filled from left to right and has no missing nodes.  
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Had the node J been a right child of E, the tree would not 

be complete because a node would be missing.  
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Properties 

• The complete tree has a number of useful properties.  

• First, the height (longest path length) of a complete binary 

tree of N nodes is at most [log N].  

• The reason is that a complete tree of height H has between 

2H and 2H + 1 - 1 nodes.  

• This characteristic implies that we can expect logarithmic 

worst-case behavior if we restrict changes in the structure 

to one path from the root to a leaf.  
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Properties 

• Second and equally important, in a complete binary tree, left 

and right links are not needed.  

 

• As shown in Figure 21.1, we can represent a complete binary 

tree by storing its level-order traversal in an array.  

 

• We place the root in position 1 (position 0 is often left 

vacant, for a reason discussed shortly).  

 

• We also need to maintain an integer that tells us the number 

of nodes currently in the tree.  
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• Then for any element in array position i, its left child can 

be found in position 2i.  

 

• If this position extends past the number of nodes in the 

tree, we know that the left child does not exist.  

 

• Similarly, the right child is located immediately after the 

left child; thus it resides in position 2i + 1.  

 

• We again test against the actual tree size to be sure that the 

child exists. Finally, the parent is in position [i/2].  

1-12 
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Position 0 

• Note that every node except the root has a parent.  

• If the root were to have a parent, the calculation would 

place it in position 0.  

• Thus we reserve position 0 for a dummy item that can 

serve as the root's parent.  

• Doing so can simplify one of the operations (add).  

– If instead we choose to place the root in position 0, the locations of 

the children and parent of the node in position i change slightly  
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Implicit Representation 

• Using an array to store a tree is called implicit 

representation.  

• As a result of this representation, not only are child links 

not required, but also the operations required to traverse 

the tree are extremely simple and likely to be very fast on 

most computers.  

• The heap entity consists of an array of objects and an 

integer representing the current heap size.  
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The heap-order property  

• We want to be able to find the minimum quickly, so it 

makes sense that the smallest element should be at the root.  

• If we consider that any subtree should also (recursively) be 

a heap, any node should be smaller than all of its 

descendants. Applying this logic, we arrive at the heap-

order property.  

 

• Heap-order property  

 In a heap, for every node X with parent P the key in P is 

smaller than or equal to the key in X.  
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The dashed line shows the violation of the heap order.  
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Min (or Max) heap 

• Note that the root does not have a parent.  

• In the implicit representation, we could place the value -∞ 

in position 0 to remove this special case when we 

implement the heap.  

• By the heap-order property, we see that the minimum 

element can always be found at the root.  

• Thus findMin is a constant time operation.  

• A max heap supports access of the maximum instead of the 

minimum. Minor changes can be used to implement max 

heaps.  
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Constructor 3 

takes in input a 

collection! 

Why? Next 

slide => 

We need a 

Comparator to 

compare the 

elements 
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Constructor from collection 

• In numerous applications we can add many items before the 

next deleteMin occurs.  

• In those cases, we do not need to have heap order in effect until 

the deleteMin occurs.  

• The buildHeap operation, declared at line 32, reinstates the heap 

order — no matter how messed up the heap is — and we will 

see that it works in linear time.  

 

• Thus, if we need to place N items in the heap before the first 

deleteMin, placing them in the array with no order and then 

doing one buildHeap is more efficient than doing N insertions.  
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Better 

than N 

insertions 
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Insertion 

• To insert an element X in the heap, we must first add a 

node to the tree.  

• The only option is to create a hole in the next available 

location; otherwise, the tree is not complete and we would 

violate the structure property.  

– If X can be placed in the hole without violating heap 

order, we do so and are done.   

– Otherwise, we slide the element that is in the hole's 

parent node into the node, bubbling the hole up toward 

the root.  

• We continue this process until X can be placed in the hole.  
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Figure 21.7 shows that to insert 14, we create a hole in the  

next available heap location. Inserting 14 into the hole would 

violate the heap-order property, so 31 is slid down into the 

hole.  

This strategy is continued in Figure 21.8 until the correct 

location for 14 is found. => next slide 
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This general strategy is called percolate up, in which insertion 

is implemented by creating a hole at the next available 

location and bubbling it up the heap until the correct location 

is found.  

Percolate Up 
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Increments the current 

size and sets the hole to 

the newly added node.  

Iterate the loop at line 15 as 

long as the item in the parent 

node is larger than x.  

 

Then the third  expression in the for 

loop moves the hole up to the parent.  

Line 16 moves the item in the 

parent down into the hole, 

When the loop terminates, line 17 places x in the 

hole.  
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Insertion: Running time 

• The time required to do the insertion could be as much as 

O(log N) if the element to be inserted is the new minimum.  

 

• The reason is that it will be percolated up all the way to the 

root.  

 

• On average the percolation terminates early.  
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The deleteMin operation  

• The deleteMin operation is handled in a similar manner to 

the insertion operation.  

 

• As shown already, finding the minimum is easy; the hard 

part is removing it.  

 

• When the minimum is removed, a hole is created at the 

root.  

 

• The heap now becomes one size smaller, and the structure 

property tells us that the last node must be eliminated.  
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The minimum item is 13, the root has a hole, and 

the former last item needs to be placed in the heap 

somewhere.  
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Percolate down 

• We must play the same game as for insertion: We put some 

item in the hole and then move the hole.  

 

• The only difference is that for the deleteMin we move 

down the tree.  

 

• To do so, we find the smaller child of the hole, and if that 

child is smaller than the item that we are trying to place, 

we move the child into the hole, pushing the hole down 

one level and repeating these actions until the item can be 

correctly placed — a process called percolate down.  
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We place the smaller child 

(14) in the hole, sliding the 

hole down one level.  

We repeat this action, 

placing 19 in the hole  

and creating a new hole one 

level deeper. 
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We then place 26 in the  

hole and create a new 

hole on the bottom 

level.   

Finally, we are able to 

place 31 in the hole.  
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Running time of deleteMin 

• Because the tree has logarithmic depth, deleteMin is a 

logarithmic operation in the worst case.  

 

• Not surprisingly, percolation rarely terminates more than 

one or two levels early, so deleteMin is logarithmic on 

average, too.  
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Remove 

Put the bubble at the root 
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The smaller child is found at lines 13-15. We have to be careful because the last node in an 

even-sized heap is an only child; we cannot always assume that there are two children, which 

is why we have the first test at line 13.  

The percolateDown method 

takes a single parameter that 

indicates where the hole is 

placed. The item in the hole is 

then moved out, and the 

percolation begins. 

The for loop at line 10  

terminates when there is 

no left child.  

The third expression 

moves the hole to the 

child.  

Line 17: Move the smaller child up 
Line 15: right child is smaller than 

left child 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

The buildHeap operation  

 

1-36 
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The buildHeap operation  

• The buildHeap operation takes a complete tree that does 

not have heap order and reinstates it.  

 

• We want it to be a linear-time operation, since N insertions 

could be done in O(N log N) time. 

 

• The N successive insertions do more work than we require 

because they maintain heap order after every insertion and 

we need heap order only at one instant.  
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We recursively call bui1dHeap on the left and right subheaps.  

At that point, we are guaranteed that heap order has been 

established everywhere except at the root.  

We can establish heap order everywhere by calling 

percolateDown for the root.  
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buildHeap 

• The recursive routine works by guaranteeing that when we 

apply percolateDown(i), all descendants of i have been 

processed recursively by their own calls to percolateDown.  

• The recursion, however, is not necessary, for the following 

reason:  

– If we call percolateDown on nodes in reverse level order, 

then at the point percolateDown(i) is processed, all 

descendants of node i will have been processed by a prior 

call to percolateDown.  

• This process leads to an incredibly simple algorithm for 

buildHeap. 

• Note that percolateDown need not be performed on a leaf. Thus 

we start at the highest numbered nonleaf node.   
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Start at the highest numbered 

non-leaf node. 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 
1-41 

Figures 21.17(b) through 21.20 show the result of 

each of the seven percolateDown operations.  

Each dashed line corresponds to two comparisons:  

one to find the smaller child and one to compare the 

smaller child with the node.  
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percolateDown(6) 
percolateDown(5) 
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Heapsort 

The priority queue can be used to sort N items by the following:  

1. Inserting every item into a binary heap  

2. Extracting every item by calling deleteMin N times, thus sorting 

the result  

 

Using the observations on buildHeap, we can more efficiently 

implement this procedure by  

1. Tossing each item into a binary heap  

2. Applying buildHeap  

3. Calling deleteMin N times, with the items exiting the heap in 

sorted order  
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HeapSort 

• Step 1 takes linear time total, and step 2 takes linear time.  

 

• In step 3, each call to deleteMin takes logarithmic time, so 

N calls take O(N log N) time.   

 

• Consequently, we have an O(N log N) worst-case sorting 

algorithm, called heapsort.  
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Space problem 

• Even though we do not use the heap class directly, we still seem 

to need a second array.  

• The reason is that we have to record the order in which items 

exit the heap equivalent in a second array and then copy that 

ordering back into the original array.  

• The memory requirement is doubled, which could be crucial in 

some applications.  

• Note that the extra time spent copying the  second array back to 

the first is only O(N).  

• The problem is space.  
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Space problem 

• A clever way to avoid using a second array makes use of 

the fact that, after each deleteMin, the heap shrinks by 1.  

• Thus the cell that was last in the heap can be used to store 

the element just deleted.  

• As an example, suppose that we have a heap with six 

elements.  

– The first deleteMin produces A1. Now the heap has 

only five elements, so we can place A1 in position 6.   

– The next deleteMin produces A2. As the heap now has 

only four elements, we can place A2 in position 5.  
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Max Heap 

• After the last deleteMin the array will contain the 

elements in decreasing sorted order.  

• If we want the array to be in the more typical 

increasing sorted order, we can change the 

ordering property so that the parent has a larger 

key than the child does.  

• Thus we have a max heap.  
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Swap the maximum 

from 0 with cell i 
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Readings 

• Chapter 21 


