
Assoc. Prof. Dr. Marenglen Biba

 Before writing a program to solve a problem, have a

thorough understanding of the problem and a carefully

planned approach to solving it.

 Understand the types of building blocks that are

available and employ proven program-construction

techniques.

 This chapter introduces

 The if, if…else and while statements

 Compound assignment, increment and decrement operators

 Portability of Java’s primitive types

 Any computing problem can be solved by executing a series of
actions in a specific order.

 An algorithm is a procedure for solving a problem in terms of
 the actions to execute and
 the order in which these actions execute

 The “rise-and-shine algorithm” followed by one executive for
getting out of bed and going to work:
 (1) Get out of bed; (2) take off pajamas; (3) take a shower; (4) get

dressed; (5) eat breakfast; (6) carpool to work.

 Suppose that the same steps are performed in a slightly different
order:
 (1) Get out of bed; (2) take off pajamas; (3) get dressed; (4) take a

shower; (5) eat breakfast; (6) carpool to work.

 Specifying the order in which statements (actions) execute in a
program is called program control.

 Pseudocode is an informal language that helps you develop
algorithms without having to worry about the strict details of Java
language syntax.

 Particularly useful for developing algorithms that will be converted
to structured portions of Java programs.

 Similar to everyday English.

 Helps you “think out” a program before attempting to write it in a
programming language, such as Java.

 You can type pseudocode conveniently, using any text-editor
program.

 Carefully prepared pseudocode can easily be converted to a
corresponding Java program.

 Pseudocode normally describes only statements representing the
actions that occur after you convert a program from pseudocode to
Java and the program is run on a computer.

 e.g., input, output or calculations.

 Sequential execution: Statements in a program execute one after the

other in the order in which they are written.

 Transfer of control: Various Java statements, enable you to specify that

the next statement to execute is not necessarily the next one in

sequence.

 Bohm and Jacopini

 Demonstrated that programs could be written without any goto statements.

 All programs can be written in terms of only three control structures—the sequence

structure, the selection structure and the repetition structure.

 When we introduce Java’s control structure implementations, we’ll

refer to them in the terminology of the Java Language Specification as

“control statements.”

 Sequence structure

 Built into Java.

 Unless directed otherwise, the computer executes Java

statements one after the other in the order in which they’re

written.

 The activity diagram in Fig. 4.1 illustrates a typical sequence

structure in which two calculations are performed in order.

 Java lets you have as many actions as you want in a sequence

structure.

 Anywhere a single action may be placed, we may place several

actions in sequence.

 Three types of selection statements.
 if statement:

 Performs an action, if a condition is true; skips it, if false.
 Single-selection statement—selects or ignores a single action (or

group of actions).

 if…else statement:
 Performs an action if a condition is true and performs a different

action if the condition is false.
 Double-selection statement—selects between two different actions

(or groups of actions).

 switch statement
 Performs one of several actions, based on the value of an expression.
 Multiple-selection statement—selects among many different actions

(or groups of actions).

 Three repetition statements (also called looping statements)

 Perform statements repeatedly while a loop-continuation condition

remains true.

 while and for statements perform the action(s) in their

bodies zero or more times

 if the loop-continuation condition is initially false, the body will not

execute.

 The do…while statement performs the action(s) in its

body one or more times.

 if, else, switch, while, do and for are keywords.

 Appendix C: Complete list of Java keywords.

 Pseudocode
If student’s grade is greater than or equal to 60
Print “Passed”

 If the condition is false, the Print statement is ignored, and
the next pseudocode statement in order is performed.

 Indentation
 Optional, but recommended

 Emphasizes the inherent structure of structured programs

 The preceding pseudocode If in Java:
if (studentGrade >= 60)

System.out.println("Passed");

 Corresponds closely to the pseudocode.

 if…else double-selection statement—specify an action
to perform when the condition is true and a different action
when the condition is false.

 Pseudocode
If student’s grade is greater than or equal to 60
Print “Passed”
Else
Print “Failed”

 The preceding If…Else pseudocode statement in Java:
if (grade >= 60)

System.out.println("Passed");
else

System.out.println("Failed");

 Note that the body of the else is also indented.

 Conditional operator (?:)—shorthand if…else.

 Ternary operator (takes three operands)

 Operands and ?: form a conditional expression

 Operand to the left of the ? is a boolean expression—evaluates to a
boolean value (true or false)

 Second operand (between the ? and :) is the value if the boolean
expression is true

 Third operand (to the right of the :) is the value if the boolean
expression evaluates to false.

 Example:
System.out.println(

studentGrade >= 60 ? "Passed" : "Failed");

 Evaluates to the string "Passed" if the boolean expression
studentGrade >= 60 is true and to the string "Failed" if it is
false.

 Can test multiple cases by placing if…else statements inside
other if…else statements to create nested if…else
statements.

 Pseudocode:
If student’s grade is greater than or equal to 90
Print “A”
else
If student’s grade is greater than or equal to 80

Print “B”
else

If student’s grade is greater than or equal to 70
Print “C”

else
If student’s grade is greater than or equal to 60

Print “D”
else

Print “F”

 This pseudocode may be written in Java as
if (studentGrade >= 90)

System.out.println("A");
else

if (studentGrade >= 80)
System.out.println("B");

else
if (studentGrade >= 70)

System.out.println("C");
else

if (studentGrade >= 60)
System.out.println("D");

else
System.out.println("F");

 If studentGrade >= 90, the first four conditions will be true, but
only the statement in the if part of the first if…else statement will
execute. After that, the else part of the “outermost” if…else
statement is skipped.

 Most Java programmers prefer to write the preceding nested
if…else statement as

if (studentGrade >= 90)
System.out.println("A");

else if (studentGrade >= 80)
System.out.println("B");

else if (studentGrade >= 70)
System.out.println("C");

else if (studentGrade >= 60)
System.out.println("D");

else
System.out.println("F");

 The two forms are identical except for the spacing and
indentation, which the compiler ignores.

 The Java compiler always associates an else with the

immediately preceding if unless told to do otherwise by the

placement of braces ({ and }).

 Referred to as the dangling-else problem.

 The following code is not what it appears:

if (x > 5)
if (y > 5)

System.out.println("x and y are > 5");
else

System.out.println("x is <= 5");

 Beware! This nested if…else statement does not execute as it

appears: x maybe > than 5!

 To force the nested if…else statement to execute as it
was originally intended, we must write it as follows:

if (x > 5)
{

if (y > 5)
System.out.println("x and y are > 5");

}
else

System.out.println("x is <= 5");

 The braces indicate that the second if is in the body of the
first and that the else is associated with the first if.

 The if statement normally expects only one statement in its body.

 To include several statements in the body of an if (or the body of an
else for an if…else statement), enclose the statements in braces.

 Statements contained in a pair of braces form a block.

 A block can be placed anywhere that a single statement can be placed.

 Example: A block in the else part of an if…else statement:
if (grade >= 60)

System.out.println("Passed");
else
{

System.out.println("Failed");
System.out.println("You must take this course again.");

}

 Repetition statement—repeats an action while a

condition remains true.

 Pseudocode
While there are more items on my shopping list

Purchase next item and cross it off my list

 The repetition statement’s body may be a single

statement or a block.

 Eventually, the condition will become false. At this

point, the repetition terminates, and the first statement

after the repetition statement executes.

 Example of Java’s while repetition statement: find the
first power of 3 larger than 100. Assume int variable
product is initialized to 3.

while (product <= 100)
product = 3 * product;

 Each iteration multiplies product by 3, so product
takes on the values 9, 27, 81 and 243 successively.

 When variable product becomes 243, the while-
statement condition—product <= 100—becomes false.

 Repetition terminates. The final value of product is 243.

 Program execution continues with the next statement after
the while statement.

 A class of ten students took a quiz. The grades (integers in the

range 0 to 100) for this quiz are available to you. Determine the

class average on the quiz.

 The class average is equal to the sum of the grades divided by the number

of students.

 The algorithm for solving this problem on a computer must input each

grade, keep track of the total of all grades input, perform the averaging

calculation and print the result.

 Use counter-controlled repetition to input the grades one at a time.

 A variable called a counter (or control variable) controls the number of

times a set of statements will execute.

 Counter-controlled repetition is often called definite repetition, because the

number of repetitions is known before the loop begins executing.

 A total is a variable used to accumulate the sum of

several values.

 A counter is a variable used to count.

 Variables used to store totals are normally initialized to

zero before being used in a program.

 Develop a class-averaging program

that processes grades for an

arbitrary number of students each

time it is run.

 Sentinel-controlled repetition is often called indefinite

repetition because the number of repetitions is not

known before the loop begins executing.

 A special value called a sentinel value (also called a

signal value, a dummy value or a flag value) can be

used to indicate “end of data entry.”

 A sentinel value must be chosen that cannot be

confused with an acceptable input value.

 Top-down, stepwise refinement
 Begin with a pseudocode representation of the top—a single

statement that conveys the overall function of the program:
 Determine the class average for the quiz

 The top is a complete representation of a program. Rarely
conveys sufficient detail from which to write a Java program.

 Divide the top into a series of smaller tasks and list these in the
order in which they’ll be performed.

 First refinement:
 Initialize variables

Input, sum and count the quiz grades
Calculate and print the class average

 This refinement uses only the sequence structure—the steps
listed should execute in order, one after the other.

 Second refinement: commit to specific variables.

 The pseudocode statement
Initialize variables

 can be refined as follows:
Initialize total to zero

Initialize counter to zero

 The pseudocode statement
Input, sum and count the quiz grades

 requires a repetition structure that successively inputs each
grade.

 We do not know in advance how many grades are to be
processed, so we’ll use sentinel-controlled repetition.

 The second refinement of the preceding pseudocode
statement is then

Prompt the user to enter the first grade
Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Prompt the user to enter the next grade
Input the next grade (possibly the sentinel)

 The pseudocode statement
Calculate and print the class average

 can be refined as follows:
If the counter is not equal to zero

Set the average to the total divided by the counter

Print the average

else

Print “No grades were entered”

 Test for the possibility of division by zero—a logic

error that, if undetected, would cause the program to

fail or produce invalid output.

 Integer division yields an integer result.

 To perform a floating-point calculation with integers, temporarily treat

these values as floating-point numbers for use in the calculation.

 The unary cast operator (double) creates a temporary floating-point

copy of its operand.

 Cast operator performs explicit conversion (or type cast).

 The value stored in the operand is unchanged.

 Promotion (or implicit conversion) performed on operands.

 In an expression containing values of the types int and double, the

int values are promoted to double values for use in the expression.

 Cast operators are available for any type.

 Cast operator formed by placing parentheses around the

name of a type.

 The operator is a unary operator (i.e., an operator that takes

only one operand).

 This case study examines nesting one control statement

within another.

 A college offers a course that prepares students for the

state licensing exam for real estate brokers. Last year,

ten of the students who completed this course took the

exam. The college wants to know how well its students

did on the exam. You’ve been asked to write a program

to summarize the results. You’ve been given a list of

these 10 students. Next to each name is written a 1 if

the student passed the exam or a 2 if the student failed.

 This case study examines nesting one control statement
within another.

 Your program should analyze the results of the

exam as follows:

 Input each test result (i.e., a 1 or a 2).

Display the message “Enter result” on the screen

each time the program requests another test

result.

 Count the number of test results of each type.

 Display a summary of the test results,

indicating the number of students who passed and

the number who failed.

 If more than eight students passed the exam,

print the message “Bonus to instructor!”

 Compound assignment operators abbreviate assignment expressions.

 Statements like
variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or % can be
written in the form

variable operator= expression;

 Example:
c = c + 3;

can be written with the addition compound assignment operator, +=, as
c += 3;

 The += operator adds the value of the expression on its right to the
value of the variable on its left and stores the result in the variable on
the left of the operator.

 Unary increment operator, ++, adds one to its operand

 Unary decrement operator, --, subtracts one from its

operand

 An increment or decrement operator that is prefixed to

(placed before) a variable is referred to as the prefix

increment or prefix decrement operator, respectively.

 An increment or decrement operator that is postfixed to

(placed after) a variable is referred to as the postfix

increment or postfix decrement operator, respectively.

 Appendix D lists the eight primitive types in Java.

 Java requires all variables to have a type.

 Java is a strongly typed language.

 Primitive types in Java are portable across all platforms
that support Java.

 Instance variables of types char, byte, short, int,
long, float and double are all given the value 0
by default. Instance variables of type boolean are
given the value false by default.

 Reference-type instance variables are initialized by
default to the value null.

