
Assoc. Prof. Dr. Marenglen Biba

 for repetition statement

 do…while repetition statement

 switch multiple-selection statement

 break statement

 continue statement

 Logical operators

 Control statements summary.

 Counter-controlled repetition requires

 a control variable (or loop counter)

 the initial value of the control variable

 the increment (or decrement) by which the control variable is

modified each time through the loop (also known as each

iteration of the loop)

 the loop-continuation condition that determines if looping

should continue.

 for repetition statement

 Specifies the counter-controlled-repetition details in a single

line of code.

 Figure 5.2 reimplements the application of Fig. 5.1 using for.

 The general format of the for statement is

for (initialization;
loopContinuationCondition; increment)

statement

 the initialization expression names the loop’s control variable

and optionally provides its initial value

 loopContinuationCondition determines whether the loop

should continue executing

 increment modifies the control variable’s value (possibly an

increment or decrement), so that the loop-continuation

condition eventually becomes false.

 The two semicolons in the for header are required.

 In most cases, the for statement can be represented with an
equivalent while statement as follows:

initialization;
while (loopContinuationCondition)
{

statement
increment;

}

 Typically, for statements are used for counter-controlled
repetition and while statements for sentinel-controlled
repetition.

 If the initialization expression in the for header declares the
control variable, the control variable can be used only in that
for statement.

 A variable’s scope defines where it can be used in a program.
 A local variable can be used only in the method that declares it and only

from the point of declaration through the end of the method.

 All three expressions in a for header are optional.
 If the loopContinuationCondition is omitted, the condition is always

true, thus creating an infinite loop.

 You might omit the initialization expression if the program initializes
the control variable before the loop.

 You might omit the increment if the program calculates it with
statements in the loop’s body or if no increment is needed.

 The increment expression in a for acts as if it were a
standalone statement at the end of the for’s body, so

counter = counter + 1
counter += 1
++counter
counter++

are equivalent increment expressions in a for statement.

 The initialization, loop-continuation condition and

increment can contain arithmetic expressions.

 For example, assume that x = 2 and y = 10. If x and y
are not modified in the body of the loop, the statement

for (int j = x; j <= 4 * x * y; j += y / x)

 is equivalent to the statement
for (int j = 2; j <= 80; j += 5)

 The increment of a for statement may be negative, in

which case it’s a decrement, and the loop counts

downward.

 a)Vary the control variable from 1 to

100 in increments of 1.
for (int i = 1; i <= 100; i++)

 b)Vary the control variable from 100
to 1 in decrements of 1.

for (int i = 100; i >= 1; i--)

 c)Vary the control variable from 7 to

77 in increments of 7.
for (int i = 7; i <= 77; i += 7)

 d)Vary the control variable from 20
to 2 in decrements of 2.

for (int i = 20; i >= 2; i -= 2)

 e)Vary the control variable over the

values 2, 5, 8, 11, 14, 17, 20.
for (int i = 2; i <= 20; i += 3)

 f)Vary the control variable over the

values 99, 88, 77, 66, 55, 44, 33,
22, 11, 0.

for (int i = 99; i >= 0; i -= 11)

 Compound interest application

 A person invests $1000 in a savings account
yielding 5% interest. Assuming that all the
interest is left on deposit, calculate and print
the amount of money in the account at the end of
each year for 10 years. Use the following formula
to determine the amounts:

a = p (1 + r)n

where

p is the original amount invested (i.e., the
principal)
r is the annual interest rate (e.g., use 0.05
for 5%)

n is the number of years
a is the amount on deposit at the end of
the nth year.

 The solution to this problem (Fig. 5.6) involves a loop

that performs the indicated calculation for each of the

10 years the money remains on deposit.

 Java treats floating-point constants like 1000.0 and

0.05 as type double.

 Java treats whole-number constants like 7 and -22 as

type int.

 In the format specifier %20s, the integer 20 between the %
and the conversion character s indicates that the value
output should be displayed with a field width of 20—that
is, printf displays the value with at least 20 character
positions.

 If the value to be output is less than 20 character positions
wide, the value is right justified in the field by default.

 If the year value to be output has more characters than the
field width, the field width would be extended to the right
to accommodate the entire value.

 To indicate that values should be output left justified,
precede the field width with the minus sign (–) formatting
flag (e.g., %-20s).

 Java does not include an exponentiation operator—

Math class static method pow can be used for

raising a value to a power.

 You can call a static method by specifying the

class name followed by a dot (.) and the method

name, as in
 ClassName.methodName(arguments)

 Math.pow(x, y) calculates the value of x raised to

the yth power. The method receives two double
arguments and returns a double value.

 In the format specifier %,20.2f, the comma (,)
formatting flag indicates that the floating-point value
should be output with a grouping separator.

 Separator is specific to the user’s locale (i.e., country).
 In the United States, the number will be output using

commas to separate every three digits and a decimal point
to separate the fractional part of the number, as in 1,234.45.

 The number 20 in the format specification indicates that the
value should be output right justified in a field width of 20
characters.

 The .2 specifies the formatted number’s precision—in this
case, the number is rounded to the nearest hundredth and
output with two digits to the right of the decimal point.

 The do…while repetition statement is similar to the
while statement.

 In the while, the program tests the loop-continuation
condition at the beginning of the loop, before executing
the loop’s body; if the condition is false, the body never
executes.

 The do…while statement tests the loop-continuation
condition after executing the loop’s body; therefore, the
body always executes at least once.

 When a do…while statement terminates, execution
continues with the next statement in sequence.

 Braces are not required in the do…while repetition

statement if there’s only one statement in the body.

 Most programmers include the braces, to avoid

confusion between the while and do…while
statements.

 Thus, the do…while statement with one body

statement is usually written as follows:
 do
{

statement

} while (condition);

 switch multiple-selection statement performs

different actions based on the possible values of a

constant integral expression of type byte, short,

int or char.

 Scanner method hasNext determine whether there

is more data to input. This method returns the

boolean value true if there is more data; otherwise,

it returns false.

 As long as the end-of-file indicator has not been typed,

method hasNext will return true.

 The switch statement consists of a block that contains a

sequence of case labels and an optional default case.

 The program evaluates the controlling expression in the

parentheses following keyword switch.

 The program compares the controlling expression’s value

(which must evaluate to an integral value of type byte,

char, short or int) with each case label.

 If a match occurs, the program executes that case’s

statements.

 The break statement causes program control to proceed

with the first statement after the switch.

 switch does not provide a mechanism for testing ranges of
values—every value must be listed in a separate case label.

 Note that each case can have multiple statements.

 switch differs from other control statements in that it does not
require braces around multiple statements in a case.

 Without break, the statements for a matching case and
subsequent cases execute until a break or the end of the
switch is encountered. This is called “falling through.”

 If no match occurs between the controlling expression’s value
and a case label, the default case executes.

 If no match occurs and there is no default case, program
control simply continues with the first statement after the
switch.

 The break statement, when executed in a while,

for, do…while or switch, causes immediate exit

from that statement.

 Execution continues with the first statement after the

control statement.

 Common uses of the break statement are to escape

early from a loop or to skip the remainder of a

switch.

 The continue statement, when executed in a

while, for or do…while, skips the remaining

statements in the loop body and proceeds with the next

iteration of the loop.

 In while and do…while statements, the program

evaluates the loop-continuation test immediately after

the continue statement executes.

 In a for statement, the increment expression executes,

then the program evaluates the loop-continuation test.

 Java’s logical operators enable you to form more
complex conditions by combining simple conditions.

 The logical operators are
 && (conditional AND)

 || (conditional OR)

 & (boolean logical AND)

 | (boolean logical inclusive OR)

 ^ (boolean logical exclusive OR)

 ! (logical NOT).

 [Note: The &, | and ^ operators are also bitwise
operators when they are applied to integral operands.]

 The && (conditional AND) operator ensures that two

conditions are both true before choosing a certain path

of execution.

 The table in Fig. 5.14 summarizes the && operator. The

table shows all four possible combinations of false
and true values for expression1 and expression2.

 Such tables are called truth tables. Java evaluates to

false or true all expressions that include relational

operators, equality operators or logical operators.

 The || (conditional OR) operator ensures that either

or both of two conditions are true before choosing a

certain path of execution.

 Figure 5.15 is a truth table for operator conditional OR

(||).

 Operator && has a higher precedence than operator ||.

 Both operators associate from left to right.

 The ! (logical NOT, also called logical negation or logical
complement) operator “reverses” the meaning of a
condition.

 The logical negation operator is a unary operator that has
only a single condition as an operand.

 The logical negation operator is placed before a condition to
choose a path of execution if the original condition (without
the logical negation operator) is false.

 In most cases, you can avoid using logical negation by
expressing the condition differently with an appropriate
relational or equality operator.

 Figure 5.17 is a truth table for the logical negation operator.

 Figure 5.18 produces the truth tables discussed in this

section.

 The %b format specifier displays the word “true” or

the word “false” based on a boolean expression’s

value.

 Figure 5.20 uses UML activity diagrams to summarize
Java’s control statements.

 Java includes only single-entry/single-exit control
statements—there is only one way to enter and only one
way to exit each control statement.

 Connecting control statements in sequence to form
structured programs is simple. The final state of one control
statement is connected to the initial state of the next—that
is, the control statements are placed one after another in a
program in sequence. We call this control-statement
stacking.

 The rules for forming structured programs also allow for
control statements to be nested.

 Structured programming promotes simplicity.

 Bohm and Jacopini: Only three forms of control are

needed to implement an algorithm:

 Sequence

 Selection

 Repetition

 Program that prints the product of the odd
integers from 1 to 15.

 Program that prints the even numbers from 1
to 1000.

 Program that prints the multiples of 3 from 1
to 1000.

 Program that calculates Pythagorean triples
(until 500).

 Program that prints 5 groups of 3 lines, each
containing 4 asterisks.

 Chapter 5.

