
Assoc. Prof. Marenglen Biba

 Data structures

▪ Collections of related data items.

 Arrays

▪ Data structures consisting of related data items of the same type.

▪ Make it convenient to process related groups of values.

▪ Remain the same length once they are created.

 Enhanced for statement for iterating over an array or

collection of data items.

 Process command-line arguments in method main.

 Common array manipulations with static methods

of class Arrays from the java.util package.

 ArrayList collection

▪ Similar to arrays

▪ Dynamic resizing

 They automatically increase their size at execution time to

accommodate additional elements

 Array
▪ Group of variables (called elements) containing values of the same

type.

▪ Arrays are objects so they are reference types.

▪ Elements can be either primitive or reference types.

 Refer to a particular element in an array
▪ Use the element’s index.

▪ Array-access expression—the name of the array followed by the
index of the particular element in square brackets, [].

 The first element in every array has index zero.

 The highest index in an array is one less than the number of
elements in the array.

 An index must be a nonnegative integer.

▪ Can use an expression as an index.

 An indexed array name is an array-access expression.

▪ Can be used on the left side of an assignment to place a new

value into an array element.

 Every array object knows its own length and stores it in

a length instance variable.

▪ length cannot be changed because it’s a final variable.

 Array objects

▪ Created with keyword new.

▪ You specify the element type and the number of elements in an

array-creation expression, which returns a reference that can be

stored in an array variable.

 Declaration and array-creation expression for an array

of 12 int elements
int[] c = new int[12];

 Can be performed in two steps as follows:
int[] c; // declare the array variable
c = new int[12]; // creates the array

 When an array is created, each element of the array

receives a default value

▪ Zero for the numeric primitive-type elements, false for

boolean elements and null for references.

 Every element of a primitive-type array contains a

value of the array’s declared element type.

▪ Every element of an int array is an int value.

 Every element of a reference-type array is a reference

to an object of the array’s declared element type.

▪ Every element of a String array is a reference to a String
object.

 Fig. 7.2 uses keyword new to create an array of 10

int elements, which are initially zero (the default for

int variables).

 Array initializer

▪ A comma-separated list of expressions (called an initializer

list) enclosed in braces.

▪ Used to create an array and initialize its elements.

▪ Array length is determined by the number of elements in the

initializer list.

int[] n = { 10, 20, 30, 40, 50 };

 Creates a five-element array with index values 0–4.

 Compiler counts the number of initializers in the list to

determine the size of the array

▪ Sets up the appropriate new operation “behind the scenes.”

 The application in Fig. 7.4 creates a 10-element array

and assigns to each element one of the even integers

from 2 to 20 (2, 4, 6, …, 20).

 final variables must be initialized before they are

used and cannot be modified thereafter.

 An attempt to modify a final variable after it’s

initialized causes a compilation error
 cannot assign a value to final variable

variableName

 An attempt to access the value of a final variable

before it’s initialized causes a compilation error
 variable variableName might not have been
initialized

 Figure 7.5 sums the values contained in a 10-element

integer array.

 Often, the elements of an array represent a series of

values to be used in a calculation.

 Many programs present data to users in a graphical manner.

 Numeric values are often displayed as bars in a bar chart.

▪ Longer bars represent proportionally larger numeric values.

 A simple way to display numeric data is with a bar chart

that shows each numeric value as a bar of asterisks (*).

 Format specifier %02d indicates that an int value should

be formatted as a field of two digits.

▪ The 0 flag displays a leading 0 for values with fewer digits than the

field width (2).

 Sometimes, programs use counter variables to summarize
data, such as the results of a survey.

 Fig. 6.8 used separate counters in a die-rolling program to
track the number of occurrences of each side of a six-sided
die as the program rolled the die 6000 times.

 Fig. 7.7 shows an array version of this application.
▪ Line 14 of this program replaces lines 23–46 of Fig. 6.8.

 Array frequency must be large enough to store six
counters.
▪ We use a seven-element array in which we ignore frequency[0]
▪ More logical to have the face value 1 increment frequency[1]

than frequency[0].

 Figure 7.8 uses arrays to summarize the results of data
collected in a survey:
▪ Forty students were asked to rate the quality of the food in the

student cafeteria on a scale of 1 to 10 (where 1 means awful
and 10 means excellent). Place the 40 responses in an integer
array, and summarize the results of the poll.

 Array responses is a 40-element int array of the
survey responses.

 11-element array frequency counts the number of
occurrences of each response (1 to 10).
▪ Each element is initialized to zero by default.
▪ We ignore frequency[0].

 If the data in the responses array contained invalid

values, such as 13, the program would have attempted

to add 1 to frequency[13], which is outside the

bounds of the array.

▪ Java doesn’t allow this.

▪ JVM checks array indices to ensure that they are greater than

or equal to 0 and less than the length of the array—this is

called bounds checking.

▪ If a program uses an invalid index, Java generates a so-called

exception to indicate that an error occurred in the program at

execution time.

 Examples thus far used arrays containing elements of

primitive types.

 Elements of an array can be either primitive types or

reference types.

 Next example uses an array of reference-type elements

— objects representing playing cards—to develop a

class that simulates card shuffling and dealing.

 Class Card (Fig. 7.9) contains two String instance

variables—face and suit—that are used to store

references to the face and suit names for a specific

Card.

 Method toString creates a String consisting of

the face of the card, " of " and the suit of the

card.

▪ Can invoke explicitly to obtain a string representation of a

Card.

▪ Called implicitly when the object is used where a String is

expected.

 Class DeckOfCards (Fig. 7.10) declares as an
instance variable a Card array named deck.

 Deck’s elements are null by default
▪ Constructor fills the deck array with Card objects.

 Method shuffle shuffles the Cards in the deck.
▪ Loops through all 52 Cards (array indices 0 to 51).

▪ Each Card swapped with a randomly chosen other card in the
deck.

 Method dealCard deals one Card in the array.
▪ currentCard indicates the index of the next Card to be

dealt

▪ Returns null if there are no more cards to deal

 Figure 7.11 demonstrates class DeckOfCards
(Fig. 7.10).

 When a Card is output as a String, the Card’s

toString method is implicitly invoked.

 Enhanced for statement
▪ Iterates through the elements of an array without using a counter.
▪ Avoids the possibility of “stepping outside” the array.
▪ Also works with the Java API’s prebuilt collections (see

Section 7.14).

 Syntax:
for (parameter : arrayName)

statement

where parameter has a type and an identifier and
arrayName is the array through which to iterate.

 Parameter type must be consistent with the array’s element
type.

 The enhanced for statement simplifies the code for
iterating through an array.

 The enhanced for statement can be used only to

obtain array elements

▪ It cannot be used to modify elements.

▪ To modify elements, use the traditional counter-controlled for
statement.

 Can be used in place of the counter-controlled for
statement if you don’t need to access the index of the

element.

 To pass an array argument to a method, specify the name of
the array without any brackets.
▪ Since every array object “knows” its own length, we need not pass

the array length as an additional argument.

 To receive an array, the method’s parameter list must
specify an array parameter.

 When an argument to a method is an entire array or an
individual array element of a reference type, the called
method receives a copy of the reference.

 When an argument to a method is an individual array
element of a primitive type, the called method receives a
copy of the element’s value.
▪ Such primitive values are called scalars or scalar quantities.

 Pass-by-value (also called call-by-value)

▪ A copy of the argument’s value is passed to the called method.

▪ The called method works exclusively with the copy.

▪ Changes to the called method’s copy do not affect the original

variable’s value in the caller.

 Pass-by-reference (also called call-by-reference)

▪ The called method can access the argument’s value in the

caller directly and modify that data, if necessary.

▪ Improves performance by eliminating the need to copy

possibly large amounts of data.

 A method call can pass two types of values to a method

▪ Copies of primitive values

▪ Copies of references to objects

 Objects cannot be passed to methods.

▪ Reference to objects are instead passed

 Variable-length argument lists

▪ Can be used to create methods that receive an

unspecified number of arguments.

▪ Parameter type followed by an ellipsis (...) indicates

that the method receives a variable number of

arguments of that particular type.

▪ The ellipsis can occur only once at the end of a

parameter list.

 Command-line arguments

▪ Can pass arguments from the command line to an application.

▪ Arguments that appear after the class name in the java
command are received by main in the String array args.

▪ The number of command-line arguments is obtained by

accessing the array’s length attribute.

▪ Command-line arguments are separated by white space, not

commas.

 Arrays class
▪ Provides static methods for common array manipulations.

 Methods include
▪ sort for sorting an array (ascending order by default)

▪ binarySearch for searching a sorted array

▪ equals for comparing arrays

▪ fill for placing values into an array.

 Methods are overloaded for primitive-type arrays and
for arrays of objects.

 System class static arraycopy method
▪ Copies contents of one array into another.

 Java API provides several predefined data structures, called
collections, used to store groups of related objects.
▪ Each provides efficient methods that organize, store and retrieve your

data without requiring knowledge of how the data is being stored.

▪ Reduce application-development time.

 Arrays do not automatically change their size at execution time
to accommodate additional elements.

 ArrayList<T> (package java.util) can dynamically change its
size to accommodate more elements.
▪ T is a placeholder for the type of element stored in the collection.

▪ This is similar to specifying the type when declaring an array, except that
only nonprimitive types can be used with these collection classes.

 Classes with this kind of placeholder that can be used with any
type are called generic classes.

 Figure 7.24 demonstrates some common ArrayList
capabilities.

 An ArrayList’s capacity indicates how many items

it can hold without growing.

 When the ArrayList grows, it must create a larger

internal array and copy each element to the new array.

▪ This is a time-consuming operation. It would be inefficient for

the ArrayList to grow each time an element is added.

▪ An ArrayList grows only when an element is added and the

number of elements is equal to the capacity—i.e., there is no

space for the new element.

 Method add adds elements to the ArrayList.
▪ One-argument version appends its argument to the end of the
ArrayList.

▪ Two-argument version inserts a new element at the specified
position.

▪ Collection indices start at zero.

 Method size returns the number of elements in the
ArrayList.

 Method get obtains the element at a specified index.
 Method remove deletes an element with a specific value.

▪ An overloaded version of the method removes the element at the
specified index.

 Method contains determines if an item is in the
ArrayList.

 Program that that simulates tossing a coin.

 Application to play a game of guess the
number.

 Program calculates the distance between two
points.

