Lesson 6
Classes and Objects:
A Deeper Look

Assoc. Prof. Marenglen Biba

OBJECTIVES
In this Chapter you'll learn:

m Encapsulation and data hiding.

m To use keyword this.

m To use static variables and methods.

m To import static members of a class.

m To use the enum type to create sets of constants with unique identifiers.
m To declare enum constants with parameters.

m To organize classes in packages to promote reuse.

0 O O C & & 0 o

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
.10
1
A2
A3
14
A5
.16
A7

Introduction

Time Class Case Study

Controlling Access to Members

Referring to the Current Object’s Members with the this Reference
Time Class Case Study: Overloaded Constructors

Default and No-Argument Constructors

Notes on Set and Get Methods

Composition

Enumerations

Garbage Collection and Method finalize

static Class Members

static Import

final Instance Variables

Time Class Case Study: Creating Packages

Package Access

(Optional) GUI and Graphics Case Study: Using Objects with Graphics
Wrap-Up

8.1 Introduction

» Deeper look at building classes, controlling access to
members of a class and creating constructors.

» Composition — a capability that allows a class to have
references to objects of other classes as members.

» More detalils on enum types.

» Discuss static class members and final instance
variables in detalil.

» Show how to organize classes in packages to help
manage large applications and promote reuse.

8.2 Time Class Case Study

» Class T1mel represents the time of day.

» private 1nt instance variables hour, minute and
second represent the time in universal-time format
(24-hour clock format in which hours are in the range
0-23).

» pub11c methods setTime,

touniversalStringand toString.
= Called the public services or the public interface that the
class provides to its clients.

1 // Fig. 8.1: Timel.java

2 // Timel class declaration maintains the time in 24-hour format.

3

4 public class Timel

5 {

6 private int hour; // 0 - 23 —‘ ; —
. private int minute: // O - 59 Iznsﬁncevlanibflesre[zresentthetlmem
8 private int second; // 0 - 59 AIELD 8. e

9

10 // set a new time value using universal time; ensure that

11 // the data remains consistent by setting invalid values to zero

12 public void setTime(int h, int m, int s)

13 {

14 hour = ((h>=08&& h <24) ?2h :0); // validate hour ;
15 minute = ((m>=0&& m< 60) ?2m=: 0); // validate minute \\//allldatethelmtlaltlme
16 second = ((s> 0&& s <60) ?s :0); // validate second alues

17 } // end method setTime

18

19 // convert to String in universal-time format (HH:MM:SS)

20 pubTic String toUniversalString()

21 { F he i :

22 return String.format("%02d:%02d:%02d", hour, minute, second); «— hormaﬁt keftlme In 24-
23 } // end method toUniversalString our clock format
24

Fig. 8.1 | Timel class declaration maintains the time in 24-hour format. (Part | of 2.)

25 // convert to String in standard-time format (H:MM:SS AM or PM)

26 public String toString()

27 { _

28 return String.format("%d:%02d:%02d %s", - Format the time in 12-
29 ((hour == 0 || hour == 12) ? 12 : hour % 12), hour clock format; this
30 minute, second, (hour < 12 ? "AM" : "PM")); is also the default

31 } // end method toString S'_cr1ng format for
32 1} // end class Timel Timel

Fig. 8.1 | Timel class declaration maintains the time in 24-hour format. (Part 2 of 2.)

1 // Fig. 8.2: TimelTest.java

2 // Timel object used in an application.

3

4 public class TimelTest

5 {

6 public static void main(String[] args)

7 {

8 // create and initialize a Timel object

9 Timel time = new Timel(); // invokes Timel constructor =
10

11 // output string representations of the time

12 System.out.print("The initial universal time is: ");
13 System.out.printin(time.toUniversalString()); =

14 System.out.print("The initial standard time 1is: ");

15 System.out.printin(time.toString()); 4ﬁgﬁﬁﬁﬁhhﬁﬁgﬁhﬁﬁgﬁﬁ
16 System.out.printin(); // output a blank Tine

17

18 // change time and output updated time

19 time.setTime(13, 27, 6); =
20 System.out.print("Universal time after setTime is: ");
21 System.out.printin(time.toUniversalString());
22 System.out.print("Standard time after setTime is: ");
23 System.out.printin(time.toString());
24 System.out.printin(); // output a blank Tine

Create default Timel

object

Get 24-hour format String
representation of time

Get 12-hour format String; call to
toString is unnecessary

Set the time using valid values for the
hour, minute and second

Fig. 8.2 | Timel object used in an application. (Part | of 2.)

25
26
27
28
29
30
31
32
33
34

// set time with invalid values; output updated time
time.setTime(99, 99, 99); =

System.out.printin("After attempting invalid settings:");

System.out.print("Universal time: ");
System.out.printin(time.toUniversalString());
System.out.print("Standard time: ");

System.out.printin(time.toString(Q);
} // end main
} // end class TimelTest

Set the time using invalid values for the
hour, minute and second

The initial universal time is: 00:00:00
The initial standard time is: 12:00:00 AM

Universal time after setTime is: 13:27:06
Standard time after setTime is: 1:27:06 PM

After attempting invalid settings:
Universal time: 00:00:00
Standard time: 12:00:00 AM

Fig. 8.2 | Timel object used in an application. (Part 2 of 2.)

y Software Engineering Observation 8.2
Interfaces change less frequently than implementations.
When an implementation changes, implementation-
dependent code must change accordingly. Hiding the
implementation reduces the possibility that other
program parts will become dependent on class
implementation details.

8.3 Controlling Access to Members

» Access modifiers pub11c and private control access to
a class’s variables and methods.
= Chapter 9 introduces access modifier protected.

» pub11c methods present to the class’s clients a view of the
services the class provides (the class’s pub 11 c interface).

» Clients need not be concerned with how the class

accomplishes its tasks.
= For this reason, the class’s private variables and private
methods (i.e., its implementation details) are not accessible to its

clients.
» private class members are not accessible outside the

class.

ooo~NONGKNbD WN =—

10
11
12
13

// Fig. 8.3: MemberAccessTest.java
// Private members of class Timel are not accessible.
public class MemberAccessTest
{
public static void main(String[] args)

{

Timel time = new Timel(); // create and initialize Timel object

time.hour = 7; // error: hour has private access in Timel

time.minute = 15; // error: minute has private access in Timel

time.second 30; // error: second has private access in Timel
} // end main

} // end class MemberAccessTest

-—

Each of these
statements attempts to
access data that is
private to class
Timel

Fig. 8.3 | Private members of class Timel are not accessible. (Part | of 2.)

MemberAccessTest.java:9: hour has private access in Timel
time.hour = 7; // error: hour has private access in Timel
A
MemberAccessTest.java:10: minute has private access in Timel
time.minute = 15; // error: minute has private access in Timel
A
MemberAccessTest.java:11l: second has private access in Timel

time.second = 30; // error: second has private access in Timel
A

3 errors

Fig. 8.3 | Private members of class Timel are not accessible. (Part 2 of 2.)

8.4 Referring to the Current Object’s
Members with the this Reference

» Every object can access a reference to itself with
keyword this.

» When a non-static method is called for a particular
object, the method’s body implicitly uses keyword
th1is to refer to the object’s instance variables and
other methods.
= Enables the class’s code to know which object should be

manipulated.

= Can also use keyword th1is explicitly inanon-static
method’s body.

» Can use the th1s reference implicitly and explicitly.

8.4 Referring to the Current Object’s
Members with the th1s Reference (Cont.)

» When you compile a . Java file containing more than
one class, the compiler produces a separate class file
with the . class extension for every compiled class.

» When one source-code (. Java) file contains multiple
class declarations, the compiler places both class files
for those classes in the same directory.

» A source-code file can contain only one pub1ic
class—otherwise, a compilation error occurs.

» Non-pub 11 c classes can be used only by other classes
In the same package.

1 // Fig. 8.4: ThisTest.java

2 // this used impTlicitly and explicitly to refer to members of an object.
3

4 public class ThisTest

5 {

6 public static void main(String[] args)

7 {

8 SimpleTime time = new SimpleTime(15, 30, 19);
9 System.out.printin(time.buildString());

10 } // end main

I1 } // end class ThisTest

12

I3 // class SimpleTime demonstrates the "this" reference
14 class SimpleTime

15 {

16 private int hour; // 0-23
17 private int minute; // 0-59
18 private int second; // 0-59
19

Fig. 8.4 | this used implicitly and explicitly to refer to members of an object. (Part
| of 3.)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// 1f the constructor uses parameter names identical to
// instance variable names the "this" reference is

// required to distinguish between names

public SimpleTime(int hour, int minute, int second)

{

The this reference enables you to
explicitly access instance variables
when they are shadowed by local
variables of the same name

this.hour = hour; // set "this" object's hour -
this.minute = minute; // set "this" object's minute
this.second = second; // set "this" object's second

} // end SimpleTime constructor

// use explicit and implicit "this" to call toUniversalString
pubTic String buildString()
{

return String.format("%24s: %s\n%24s: %s",
"this.toUniversalString()", this.toUniversalString(), =
"toUniversalString()", toUniversalString());

The this reference is not required to
call other methods of the same class

} // end method buildString

Fig. 8.4 | this used implicitly and explicitly to refer to members of an object. (Part

20f3))

38 // convert to String in universal-time format (HH:MM:SS)

39 public String toUniversalString()

40 {

41 // "this" is not required here to access instance variables,

42 // because method does not have local variables with same

43 // names as instance variables

44 return String.format("%02d:%02d:%02d", T , -

45 this.hour, this.minute, this.second); « R nopmquwedhem,gncethe
46 } // end method toUniversalString instance variables are not shadowed

47 } // end class SimpleTime

this.toUniversalString(): 15:30:19
toUniversalString(): 15:30:19

Fig. 8.4 | this used implicitly and explicitly to refer to members of an object. (Part
3of3)

8.4 Referring to the Current Object’s
Members with the th1s Reference (Cont.)

» SimpleTime declares three private instance
variables—hour, minute and second.

» Parameter names for the constructor can be identical to the
class’s instance-variable hames.
= We don’t recommend this practice
= Use it here to shadow (hide) the corresponding instance
= |llustrates a case in which explicit use of the th1is reference is

required.

» If a method contains a local variable with the same name as

?_figld, that method uses the local variable rather than the
1€1d.

= The local variable shadows the ficld in the method’s scope.
» Amethod can use the th1is reference to refer to the
shadowed field explicitly.

8.5 T1ime Class Case Study: Overloaded
Constructors

» Overloaded constructors enable objects of a class to be
Initialized in different ways.

» To overload constructors, simply provide multiple
constructor declarations with different signatures.

» Recall that the compiler differentiates signatures by the
number of parameters, the types of the parameters and
the order of the parameter types in each signature.

8.5 Time Class Case Study: Overloaded
Constructors (Cont.)

» Class T1me2 (Fig. 8.5) contains five overloaded
constructors that provide convenient ways to initialize
objects of the new class T1me?2.

» The compiler invokes the appropriate constructor by
matching the number, types and order of the types of
the arguments specified in the constructor call with the
number, types and order of the types of the parameters
specified in each constructor declaration.

1 // Fig. 8.5: Time2.java

2 // Time2 class declaration with overloaded constructors.

3

4 public class Time2

5 {

6 private int hour; // 0 - 23

7 private int minute; // 0 - 59

8 private int second; // 0 - 59

9

10 // Time2 no-argument constructor: initializes each instance variable
11 // to zero; ensures that Time2 objects start in a consistent state
12 public Time2()

13 {

14 this(0, 0, 0); // invoke Time2 constructor with three arguments
15 } // end Time2 no-argument constructor

16

17 // Time2 constructor: hour supplied, minute and second defaulted to O
18 public Time2(int h)

19 {
20 this(C h, 0, 0); // invoke Time2 constructor with three arguments
21 } // end Time2 one-argument constructor
22

Invoke three-argument
constructor

Invoke three-argument
constructor

Fig. 8.5 | Time2 class with overloaded constructors. (Part | of 5.)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

// Time2 constructor: hour and minute supplied, second defaulted to O

public Time2(int h, int m)
{

this(C h, m, 0); // invoke Time2 constructor with three arguments

} // end Time2 two-argument constructor

// Time2 constructor: hour, minute and second supplied
public Time2(int h, int m, int s)
{

setTime(h, m, s); // invoke setTime to validate time

Invoke three-argument
constructor

} // end Time2 three-argument constructor

// Time2 constructor: another Time2 object supplied
public Time2(Time2 time)
{
// invoke Time2 three-argument constructor
this(time.getHour(), time.getMinute(), time.getSecond());
} // end Time2 constructor with a Time2 object argument

[nvoke setTime to
validate the data

-—————————

Invoke three-argument
constructor

Fig. 8.5 | Time2 class with overloaded constructors. (Part 2 of 5.)

42 // Set Methods

43 // set a new time value using universal time; ensure that
44 // the data remains consistent by setting invalid values to zero
45 public void setTime(int h, int m, int s)
46 {

47 setHour(h); // set the hour

48 setMinute(m); // set the minute

49 setSecond(s); // set the second

50 } // end method setTime

51

52 // validate and set hour

53 public void setHour(int h)

54 {

55 hour = ((h>=08&& h <24) ?2h : 0);
56 } // end method setHour

57

58 // validate and set minute

59 public void setMinute(int m)

60 {

61 minute = ((m>=0&& m< 60) ?m=: 0);
62 } // end method setMinute

63

Fig. 8.5 | Time2 class with overloaded constructors. (Part 3 of 5.)

64 // validate and set second

65 public void setSecond(int s)
66 {

67 second = ((s >=0&& s <60) ?7s :0);
68 } // end method setSecond
69

70 // Get Methods

71 // get hour value

72 public int getHour()

73 {

74 return hour;

75 ¥ // end method getHour
76

77 // get minute value

78 public int getMinute()

79 {

80 return minute;

81 } // end method getMinute
82

83 // get second value

84 public int getSecond()

85 {

86 return second;

87 } // end method getSecond

Fig. 8.5 | Time2 class with overloaded constructors. (Part 4 of 5.)

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

// convert to String in universal-time format (HH:MM:SS)
public String toUniversalString()
{
return String.format(
"%02d:%02d:%02d", getHour(), getMinute(), getSecond());
} // end method toUniversalString

// convert to String in standard-time format (H:MM:SS AM or PM)
public String toString()
{
return String.format("%d:%02d:%02d %s",
((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12),
getMinute(), getSecond(), (getHour() < 12 ? "AM" : "PM"));
} // end method toString

103 } // end class Time2

Fig. 8.5 | Time2 class with overloaded constructors. (Part 5 of 5.)

|

2

3

4

5 {

6

7 {

8 Time2
9 Time2
10 Time2
11 Time2
12 Time2
13 Time2
14

15 System.
16 System.
17 System.
18 System.
19
20 System.
21 "t2:
22 System.
23 System.
24

// Fig. 8.6: Time2Test.java
// Overloaded constructors used to initialize Time2 objects.

public class Time2Test

public static void main(String[] args)

tl = new Time2(); // 00:00:00
t2 = new Time2(2); // 02:00:00
t3 = new Time2(21, 34); // 21:34:00
t4 = new Time2(12, 25, 42); // 12:25:42
t5 = new Time2(27, 74, 99); // 00:00:00
t6 = new Time2(t4); // 12:25:42
out.printin("Constructed with:");
out.printin("tl: all arguments defaulted”);
out.printf(" %s\n", tl.toUniversalString());
out.printf(" %s\n", tl.toString(Q));
out.printin(

hour specified; minute and second defaulted");
out.printf(" %s\n", t2.toUniversalString());
out.printf(" %s\n", t2.toString());

Compiler determines which
constructor to call based on the
number and types of the arguments

Fig. 8.6 | Overloaded constructors used to initialize Time2 objects. (Part | of 3.)

25 System.out.printin(

26 "t3: hour and minute specified; second defaulted");
27 System.out.printf(" %s\n", t3.toUniversalString());
28 System.out.printf(" %s\n", t3.toString());

29

30 System.out.println("t4: hour, minute and second specified”);
31 System.out.printf(" %s\n", t4.toUniversalString());
32 System.out.printf(" %s\n", t4.toString());

33

34 System.out.println("t5: all invalid values specified”);
35 System.out.printf(" %s\n", t5.toUniversalString());
36 System.out.printf(" %s\n", t5.toString());

37

38 System.out.printin("t6: Time2 object t4 specified”);

39 System.out.printf(" %s\n", t6.toUniversalString());
40 System.out.printf(" %s\n", t6.toString());

41 } // end main

42 1} // end class Time2Test

Fig. 8.6 | Overloaded constructors used to initialize Time2 objects. (Part 2 of 3.)

tl: all arguments defaulted
00:00:00
12:00:00 AM
t2: hour specified; minute and second defaulted
02:00:00
2:00:00 AM
t3: hour and minute specified; second defaulted
21:34:00
9:34:00 PM
t4: hour, minute and second specified
12:25:42
12:25:42 PM
t5: all invalid values specified
00:00:00
12:00:00 AM
t6: Time2 object t4 specified
12:25:42
12:25:42 PM

Fig. 8.6 | Overloaded constructors used to initialize Time2 objects. (Part 3 of 3.)

8.5 Time Class Case Study: Overloaded
Constructors (Cont.)

» A program can declare a so-called no-argument constructor
that Is invoked without arguments.

» Such a constructor simply initializes the object as specified
in the constructor’s body.

» Using this in method-call syntax as the first statement in
a constructor’s body Invokes another constructor of the
same class.

= Popular way to reuse initialization code provided by another of the
class’s constructors rather than defining similar code in the no-
argument constructor’s body.
» Once you declare any constructors in a class, the compiler
will not provide a default constructor.

8.7 Notes on Sef and Get Methods
(Cont.)

» Validity Checking in Set Methods

» The benefits of data integrity do not follow
automatically simply because instance variables are
declared private—you must provide validity
checking.

» Predicate Methods

» Another common use for accessor methods Is to test
whether a condition is true or false—such methods are
often called predicate methods.

= Example: ArrayList’s 1SEmpty method, which returns
true ifthe ArrayList is empty.

8.8 Composition

» A class can have references to objects of other classes
as members.

» This is called composition and is sometimes referred to
as a has-a relationship.

» Example: An AlarmClock object needs to know the
current time and the time when it’s supposed to sound
its alarm, so 1t’s reasonable to include two references to
Time objects in an AlarmClock object.

1 // Fig. 8.7: Date.java

2 // Date class declaration.

3

4 public class Date

5 {

6 private int month; // 1-12

7 private int day; // 1-31 based on month

8 private int year; // any year

9

10 // constructor: call checkMonth to confirm proper value for month;
11 // call checkDay to confirm proper value for day

12 public Date(int theMonth, 1int theDay, int theYear)
13 {

14 month = checkMonth(theMonth); // validate month
15 year = theYear; // could validate year

16 day = checkDay(theDay); // validate day

17

18 System.out.printf(

19 "Date object constructor for date %s\n", this);
20 } // end Date constructor
21

Fig. 8.7 | Date class declaration. (Part | of 3.)

22 // utility method to confirm proper month value

23 private int checkMonth(int testMonth)

24 {

25 if (testMonth > 0 & & testMonth <= 12) // validate month
26 return testMonth;

27 else // month is invalid

28 {

29 System.out.printf(

30 "Invalid month (%d) set to 1.", testMonth);

31 return 1; // maintain object in consistent state

32 } // end else

33 } // end method checkMonth

34

35 // utility method to confirm proper day value based on month and year
36 private int checkDay(int testDay)

37 {

38 int[] daysPerMonth =

39 { o0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
40

41 // check if day in range for month

42 if (testDay > 0 && testDay <= daysPerMonth[month])

43 return testDay;

44

Fig. 8.7 | Date class declaration. (Part 2 of 3.)

45 // check for Teap year

46 if (month == 2 && testDay == 29 && (year % 400 == 0 ||
47 (year % 4 == 0 && year % 100 =0)))

48 return testDay;

49

50 System.out.printf("Invalid day (%d) set to 1.", testDay);
31 return 1; // maintain object in consistent state

52 } // end method checkDay

53

54 // return a String of the form month/day/year

55 public String toString()

56 {

57 return String.format("%d/%d/%d", month, day, year);

58 } // end method toString

59 1} // end class Date

Fig. 8.7 | Date class declaration. (Part 3 of 3.)

I // Fig. 8.8: Employee.java

2 // Employee class with references to other objects.

3

4 public class Employee

5 {

6 private String firstName;

7 private String lastName; References to other objects composed
8 private Date birthDate; into class Employee
9 private Date hireDate; -J

10

11 // constructor to initialize name, birth date and hire date

12 public Employee(String first, String last, Date dateOfBirth,

13 Date dateOfHire)

14 {

I5 firstName = first;

16 TastName = last;

17 birthDate = dateOfBirth;

18 hireDate = dateOfHire;

19 } // end Employee constructor
20

Fig. 8.8 | Employee class with references to other objects. (Part | of 2.)

21 // convert Employee to String format

22 public String toString()

23 {

24 return String.format("%s, %s Hired: %s Birthday: %s",
25 TastName, firstName, hireDate, birthDate);

26 } // end method toString

27 1} // end class Employee

Fig. 8.8 | Employee class with references to other objects. (Part 2 of 2.)

I // Fig. 8.9: EmployeeTest.java

2 // Composition demonstration.

3

4 public class EmployeeTest

5 {

6 public static void main(String[] args)

7 { -

8 Date birth = new Date(7, 24, 1949); = P?;elpbﬁc“]”sed £
9 Date hire = new Date(3, 12, 1988); nitialize tmpfoyee
10 Employee employee = new Employee("Bob", "Blue™, birth, hire);
i1 5 .
12 System.out.printin(employee); = GasEmp19yeESStr?ng)
13 Y // end main FEp@SQHaUOHbycamngtoStr1ng
14 } // end class EmployeeTest implicitly

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988
Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

Fig. 8.9 | Composition demonstration.

8.9 Enumerations

» The basic enum type defines a set of constants
represented as unique identifiers.

» Like classes, all enum types are reference types.

» An enum type Is declared with an enum declaration,
which Is a comma-separated list of enum constants

» The declaration may optionally include other
components of traditional classes, such as constructors,
fields and methods.

8.9 Enumerations (Cont.)

» Each enum declaration declares an enum class with the following
restrictions:

enum constants are implicitly fina'l, because they declare constants that
shouldn’t be modified.

enum constants are implicitly static.

Any attempt to create an object of an enum type with operator new results in a
compilation error.

enum constants can be used anywhere constants can be used, such as in the
case labels of switch statements and to control enhanced for statements.
enum declarations contain two parts—the enum constants and the other
members of the enum type.

An enum constructor can specify any number of parameters and can be
overloaded.

» For every enum, the compiler generates the static method values
that returns an array of the enum’s constants.

» When an enum constant is converted to a String, the constant’s
identifier is used as the String representation.

1 // Fig. 8.10: Book.java

2 // Declaring an enum type with constructor and explicit instance fields
3 // and accessors for these fields

4

5 public enum Book

6 {

7 // declare constants of enum type

8 JHTP("Java How to Program", "2010"),

9 CHTP("C How to Program", "2007"),

10 IW3HTP("Internet & World Wide Web How to Program™, "2008"),
11 CPPHTP("C++ How to Program"™, "2008"),

12 VBHTP("Visual Basic 2008 How to Program"”, "2009"),

13 CSHARPHTP("Visual C# 2008 How to Program", "2009");

14

15 // instance fields

16 private final String title; // book title

17 private final String copyrightYear; // copyright year

18

enum constants
initialized with
constructor calls

Fig. 8.10 | Declaring an enum type with constructor and explicit instance fields and
accessors for these fields. (Part | of 2.)

19 // enum constructor

20 Book(String bookTitle, String year)
21 {

22 title = bookTitle;

23 copyrightYear = year;

24 } // end enum Book constructor

25

26 // accessor for field title

27 public String getTitle()

28 {

29 return title;

30 } // end method getTitle

31

32 // accessor for field copyrightYear
33 public String getCopyrightYear()

34 {

35 return copyrightYear;

36 } // end method getCopyrightYear

37 1} // end enum Book

Fig. 8.10 | Declaring an enum type with constructor and explicit instance fields and
accessors for these fields. (Part 2 of 2.)

1 // Fig. 8.11: EnumTest.java

2 // Testing enum type Book.

3 import java.util.EnumSet;

4

5 public class EnumTest

6 {

7 public static void main(String[] args)

8 {

9 System.out.printin("All books:\n");

10

11 // print all books in enum Book

12 for (Book book : Book.values()) = enlll‘m ?ethofdﬂ\;ames returr;sat

13 System.out.printf("%-10s%-45s%s\n", book, cofiection of the enum constants

14 book.getTitle(), book.getCopyrightYear());

15

16 System.out.printin("\nDisplay a range of enum constants:\n");

17

18 // print first four books E— thod

19 for (Book book : EnumSet.range(Book.JHTP, Book.CPPHTP)) =—H8 | =4" Ettme 2

20 System.out.printf("%-10s%-45s%s\n", book, ralr]'get.re ur?iha

21 book.getTitle(), book.getCopyrightYear()); cotiection ot the enum

22 } // end main cons.tgnts in the

23 } // end class EnumTest specified range of
constants

Fig. 8.11 | Testing an enum type. (Part | of 2.)

A11 books:

JHTP

CHTP
IW3HTP
CPPHTP
VBHTP
CSHARPHTP

Display a

JHTP
CHTP
IW3HTP
CPPHTP

Java How to Program

C How to Program

Internet & World Wide Web How to Program
C++ How to Program

Visual Basic 2008 How to Program

Visual C# 2008 How to Program

range of enum constants:

Java How to Program

C How to Program

Internet & World Wide Web How to Program
C++ How to Program

2010
2007
2008
2008
2009
2009

2010
2007
2008
2008

Fig. 8.11 |

Testing an enum type. (Part 2 of 2.)

8.9 Enumerations (Cont.)

» Use the stati1c method range of class EnumSet
(declared in package java.uti1) to access a range of an

enum’s constants.

= Method range takes two parameters—the first and the last enum
constants in the range

= Returns an EnumSet that contains all the constants between these
two constants, inclusive.

» The enhanced for statement can be used with an
EnumSet just as it can with an array.

» Class EnumSet provides several other static methods.

= java.sun.com/javase/7/docs/api/java/util/EnumS
et.html

8.10 Garbage Collection and Method
finalize

» Every class in Java has the methods of class Object
(package java. lang), one of which is the finalize
method.
= Rarely used because it can cause performance problems and there is

some uncertainty as to whether it will get called.

» Every object uses system resources, such as memory.
= Need a disciplined way to give resources back to the system when

they’re no longer needed; otherwise, “resource leaks” might occur.

» The JVM performs automatic garbage collection to reclaim
the memory occupied by objects that are no longer used.
= When there are no more references to an object, the object is eligible

to be collected.
= This typically occurs when the JVM executes its garbage collector.

8.10 Garbage Collection and Method
finalize (Cont.)

» S0, memory leaks that are common in other languages
like C and C++ (because memory Is not automatically
reclaimed in those languages) are less likely in Java,
but some can still happen in subtle ways.

» Other types of resource leaks can occur.
= An application may open a file on disk to modify its contents.

= If it does not close the file, the application must terminate
before any other application can use It.

8.10 Garbage Collection and Method
finalize (Cont.)

» The finalize method Is called by the garbage collector

to perform termination housekeeping on an object just

before the garbage collector reclaims the object’s memory.

= Method finalize does not take parameters and has return type
void.

= A problem with method finalize is that the garbage collector is
not guaranteed to execute at a specified time.

= The garbage collector may never execute before a program
terminates.

= Thus, it’s unclear if, or when, method finalize will be called.

= For this reason, most programmers should avoid method
finalize.

2 Software Engineering Observation 8.7

X A class that uses system resources, such as files on disk,
should provide a method that programmers can call to
release resources when they are no longer needed in a
program. Many Java API classes provide close or
dispose methods for this purpose. For example, class
Scanner (java.sun.com/javase/6/docs/api/
java/util/Scanner.html) has a close method.

8.11 static Class Members

» In certain cases, only one copy of a particular variable
should be shared by all objects of a class.

= A static field—-called a class variable—Is used In such
cases.

» A static variable represents classwide

Information—all objects of the class share the same
piece of data.

= The declaration of a stat1i c variable begins with the
keyword static.

8.11 static Class Members (Cont.)

4
>

Static variables have class scope.

Can access a class’s pub11c static members through a
reference to any object of the class, or by qualifying the
member name with the class name and a dot (.), as in
Math.random().

private static class members can be accessed by client
code only through methods of the class.

static class members are available as soon as the class is
loaded into memory at execution time.

To access a pub 11c¢ static member when no objects of the
class exist (and even when they do), prefix the class name and
a dot (.) to the static member, asin Math.PI.

To access a private static member when no objects of
the class exist, provide a pub11c static method and call it
by qualifying its name with the class name and a dot.

8.11 static Class Members (Cont.)

» A static method cannot access non-static class
members, because a static method can be called
even when no objects of the class have been
Instantiated.

= For the same reason, the this reference cannot be used in a
static method.

= The th1is reference must refer to a specific object of the class,

and when a static method is called, there might not be any
objects of its class in memory.

» If a static variable is not initialized, the compiler

assigns it a default value—in this case 0O, the default
value for type 1nt.

static variable shared
by all Employees

1 // Fig. 8.12: Employee.java

2 // Static variable used to maintain a count of the number of
3 // Employee objects in memory.

4

5 public class Employee

6 {

7 private String firstName;

8 private String lastName;

9 private static int count = 0; // number of Employees created =
10

11 // initialize Employee, add 1 to static count and

12 // output String indicating that constructor was called
13 public Employee(String first, String last)

14 {

15 firstName = first;

16 TastName = Tlast;

17

18 ++count; // increment static count of employees

19 System.out.printf("Employee constructor: %s %s; count = %d\n",
20 firstName, lastName, count);
21 } // end Employee constructor
22

static variables can
be access by all of the
class’s methods

Fig. 8.12 | static variable used to maintain a count of the number of EmpTloyee
objects in memory. (Part | of 2.)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

// get first name
public String getFirstName()
{
return firstName;
} // end method getFirstName

// get last name
public String getLastName()
{
return lastName;
} // end method getLastName

// static method to get static count value
public static int getCount()
{
return count;
} // end method getCount
} // end class Employee

A

static method can be called by the
class’s clients to get the current
count—whether or not there are any
Employee objects in memory

Fig. 8.12 | static variable used to maintain a count of the number of Employee

objects in memory. (Part 2 of 2.)

1 // Fig. 8.13: EmployeeTest.java

2 // Static member demonstration.

3

4 public class EmployeeTest

5 {

6 public static void main(String[] args)

7 {

8 // show that count is 0 before creating Employees

9 System.out.printf("Employees before instantiation: %d\n",

10 Employee.getCount()); = Gets.the count before

I creating Employees

12 // freate two Employees; count should be 2

13 Employee el = new Employee("Susan", "Baker");

14 Efployee e2 = new Employee("Bob", "Blue"); Gets the count after

15 . ‘

16 // show that count is 2 after creating two Employees creating Emp]oye_es,
. N . . . should call static

17 System.out.printin("\nEmployees after instantiation:); methods only via the

18 System.out.printf("via el.getCount(): %d\n", el.getCount()); ~———— Class name Y

19 System.out.printf("via e2.getCount(): %d\n", e2.getCount()); —

20 System.out.printf("via Employee.getCount(): %d\n",

21 Employee.getCount()); - ‘\ Srigstitnhelzcw]nt after

22 \ g mp loyees

Fig/8.13 | static member demonstration. (Part | of 2.)

When no objects of class Employee exist, client code can
access variable count by calling method getCount via the class
name, as in Employee.getCount().

When objects exist, method getCount can also be called via any
reference to an Employee object.

23
24
25
26
27
28
29
30
31
32
33
34

// get names of Employees

System.out.printf("\nEmployee 1: %s %s\nEmployee 2: %s %s\n",
el.getFirstName(), el.getLastName(),
e2.getFirstName(), e2.getLastName());

// in this example, there is only one reference to each Employee,
// so the following two statements indicate that these objects
// are eligible for garbage collection

el = null; =

e2 = null; =
} // end main
} // end class EmployeeTest

Employees before instantiation: 0
Employee constructor: Susan Baker; count = 1
Employee constructor: Bob Blue; count = 2

Employees after instantiation:
via el.getCount(): 2

via e2.getCount(): 2

via Employee.getCount(): 2

Employee 1: Susan Baker
Employee 2: Bob Blue

Good practice to set
variables tonu11 when
you no longer need the
objects they refer to;
enables the garbage
collector to retrieve
them if there are no
other references to
those objects.

Fig. 8.13 | static member demonstration. (Part 2 of 2.)

8.11 static Class Members (Cont.)

» Objects become “eligible for garbage collection” when
there are no more references to them in the program.

» Eventually, the garbage collector might reclaim the
memory for these objects (or the operating system will
reclaim the memory when the program terminates).

» The JVM does not guarantee when, or even whether,
the garbage collector will execute.

» When the garbage collector does execute, 1t’s possible
that no objects or only a subset of the eligible objects
will be collected.

8.15 Time Class Case Study: Creating
Packages

>

Each class in the Java API belongs to a package that
contains a group of related classes.

Packages are defined once, but can be imported into many
programs.

Pac

app
Pac

Kages help programmers manage the complexity of
ication components.

kages facilitate software reuse by enabling programs to

Import classes from other packages, rather than copying the
classes into each program that uses them.

Packages provide a convention for unique class names,
which helps prevent class-name conflicts.

8.15 Time Class Case Study: Creating
Packages (Cont.)

» The steps for creating a reusable class:

» Declare a pub 11 c class; otherwise, it can be used only by
other classes in the same package.

» Choose a unigue package name and add a package

declaration to the source-code file for the reusable class
declaration.

= |n each Java source-code file there can be only one package
declaration, and it must precede all other declarations and
statements.

» Compile the class so that it’s placed in the appropriate
package directory.

» Import the reusable class into a program and use the class.

8.

15 Ti1me Class Case Study: Creating

Packages (Cont.)

>

Placing a package declaration at the beginning of a Java
source file indicates that the class declared in the file is part of
the specified package.

Only package declarations, import declarationsand
comments can appear outside the braces of a class declaration.

A Java source-code file must have the following order:
= a package declaration (if any),

= 1mport declarations (if any), then

= class declarations.

Only one of the class declarations in a particular file can be
public.

Other classes in the file are placed in the package and can be
used only by the other classes in the package.

1 // Fig. 8.18: Timel.java

2 // Timel class declaration maintains the time in 24-hour format. Hel T - i
3 package com.deitel.jhtp.ch08; = ep;nm € Timel a unique ciass
4 name; must be first statement in file
5 public class Timel

6 {

7 private int hour; // 0 - 23

8 private int minute; // 0 - 59

9 private int second; // 0 - 59

10

11 // set a new time value using universal time; ensure that

12 // the data remains consistent by setting invalid values to zero

13 public void setTime(int h, int m, int s)

14 {

15 hour = ((h>=0&& h <24) ?2h :0); // validate hour

16 minute = ((m>=0& & m< 60) ?m: 0); // validate minute

17 second = ((s >=0&&% s < 60) ?2s :0); // validate second

18 } // end method setTime

19
20 // convert to String in universal-time format (HH:MM:SS)
21 pubTic String toUniversalString()
22 {
23 return String.format("%02d:%02d:%02d", hour, minute, second);
24 } // end method toUniversalString

Fig. 8.18 | Packaging class Timel for reuse. (Part | of 2.)

25

26 // convert to String in standard-time format (H:MM:SS AM or PM)
27 public String toString()

28 {

29 return String.format("%d:%02d:%02d %s",

30 ((hour == 0 || hour == 12) ? 12 : hour % 12),

31 minute, second, (hour < 12 ? "AM" : "PM"));

32 } // end method toString

33 1} // end class Timel

Fig. 8.18 | Packaging class Time1 for reuse. (Part 2 of 2.)

8.15 Time Class Case Study: Creating
Packages (Cont.)

4
>

Compile the class so that it’s stored in the appropriate package.

When a Java file containing a package declaration is compiled,
the resulting class file is placed in the directory specified by the
declaration.

The package declaration
package com.deitel.jhtp.ch08§;
indicates that class T1mel should be placed in the directory

com
deitel
Jhtp
ch08
The directory names in the package declaration specify the exact

location of the classes in the package.

8.15 Time Class Case Study: Creating

Packages (Cont.)

» Javac command-line option —d causes the javac
compiler to create appropriate directories based on the

class’s package declaration.
= The option also specifies where the directories should be

stored.

» Example:
javac -d . Timel.java

» specifies that the first directory in our package name
should be placed in the current directory (.).

» The compiled classes are placed into the directory that
IS named last in the package statement.

8.15 Time Class Case Study: Creating

Packages (Cont.)

» The package name is part of the fully qualified class

Nname.

= Class T1mel’s name is actually
com.deitel.jhtp.ch08.Timel

» Can use the fully qualified name in programs, or
1mport the class and use its simple name (the class

name by itself).

» If another package contains a class by the same name,
the fully qualified class names can be used to
distinguish between the classes in the program and

prevent a name conflict (also callec

a name collision).

1 // Fig. 8.19: TimelPackageTest.java

2 // Timel object used 1in an application.] R E—— .
3 import com.deitel.jhtp.ch08.Timel; // import class Timel «— | MPOTts €lass Timel for use in this
4 source code file
5 public class TimelPackageTest

6 {

7 public static void main(String[] args)

8 {

9 // create and initialize a Timel object

10 Timel time = new Timel(); // calls Timel constructor

11

12 // output string representations of the time

13 System.out.print("The initial universal time is: ");

14 System.out.println(time.toUniversalString());

15 System.out.print("The initial standard time 1is: ");

16 System.out.printin(time.toString());

17 System.out.printin(); // output a blank Tine

18

19 // change time and output updated time
20 time.setTime(13, 27, 6);
21 System.out.print("Universal time after setTime is: ");
22 System.out.printin(time.toUniversalString());
23 System.out.print("Standard time after setTime is: ");
24 System.out.printin(time.toString());

Fig. 8.19 | Timel object used in an application. (Part | of 2.)

25 System.out.printin(); // output a blank Tine
26

27 // set time with invalid values; output updated time

28 time.setTime(99, 99, 99);

29 System.out.println("After attempting invalid settings:");
30 System.out.print("Universal time: ");

31 System.out.printin(time.toUniversalString());

32 System.out.print("Standard time: ");

33 System.out.printin(time.toString());

34 } // end main

35 } // end class TimelPackageTest

The initial universal time is: 00:00:00
The initial standard time is: 12:00:00 AM

Universal time after setTime is: 13:27:06
Standard time after setTime is: 1:27:06 PM

After attempting invalid settings:
Universal time: 00:00:00
Standard time: 12:00:00 AM

Fig. 8.19 | Timel object used in an application. (Part 2 of 2.)

8.15 Time Class Case Study: Creating
Packages (Cont.)

» Fig. 8.19, line 3 Is a single-type-import declaration
= |t specifies one class to import.

» When your program uses multiple classes from the same
package, you can import those classes with a type-import-
on-demand declaration.

» Example:
import java.util.*; // import java.util classes
» uses an asterisk (*) at the end of the 1mport declaration to
inform the compiler that all pub 11 c classes from the
java.uti 1 package are available for use in the program.

= Only the classes from package java-.ut1i1 that are used in the
program are loaded by the JVM.

8.16 Package Access

» If no access modifier is specified for a method or
variable when 1t’s declared 1n a class, the method or
variable Is considered to have package access.

» If a program uses multiple classes from the same
package, these classes can access each other’s package-
access members directly through references to objects
of the appropriate classes, or in the case of static
members through the class name.

» Package access Is rarely used.

1 // Fig. 8.20: PackageDataTest.java

2 // Package-access members of a class are accessible by other classes

3 // in the same package.

4

5 public class PackageDataTest

6 {

7 public static void main(String[] args)

8 {

9 PackageData packageData = new PackageData();

10

11 // output String representation of packageData

12 System.out.printf("After instantiation:\n%s\n", packageData);

13

14 // change package access data 1n packageData object - - ,
I5 packageData.number = 77; - F‘:ccessm%(pacl;age access variables in
16 packageData.string = "Goodbye"; class PackageData
17

18 // output String representation of packageData

19 System.out.printf("\nAfter changing values:\n%s\n", packageData);
20 } // end main
21 } // end class PackageDataTest
22

Fig. 8.20 | Package-access members of a class are accessible by other classes in the
same package. (Part | of 3.)

23 // class with package access instance variables

24 class PackageData = Class has package access; can be used

25 { only by other classes in the same
26 int number; // package-access instance variable directory

2 String string; ackage-access instance variable

z;) H— ’ “———_ | Package access data can be accessed

by other classes in the same package

g: éﬁbi?zsggzﬁzggData() via a reference to an object of the class
31 {

32 number = 0;

33 string = "Hello";

34 } // end PackageData constructor

35

36 // return PackageData object String representation

37 pubTic String toString()

38 {

39 return String.format("number: %d; string: %s', number, string);
40 } // end method toString

41 } // end class PackageData

Fig. 8.20 | Package-access members of a class are accessible by other classes in the
same package. (Part 2 of 3.)

After instantiation:
number: 0; string: Hello

After changing values:
number: 77; string: Goodbye

Fig. 8.20 | Package-access members of a class are accessible by other classes in the
same package. (Part 3 of 3.)

Lab Session: static

» Savings Account Class. Create class SavingsAccount.

» Use a static variable annuallnterestRate to store the annual interest rate for
all account holders. Each object of the class contains a private instance
variable savingsBalance indicating the amount the saver currently has on
deposit.

» Provide method calculateMonthlylinterest to calculate the monthly interest
by multiplying the savingsBalance by annualinterestRate divided by 12 -
this interest should be added to savings-Balance.

» Provide a static method modifylInterestRate that sets the annuallnterestRate
to a new value.

» Write a program to test class SavingsAccount.
= Instantiate two savingsAccount objects, saverl and saver2, with balances
of $2000.00 and $3000.00, respectively.
= Set annuallnterestRate to 4%, then calculate the monthly interest for
each of 12 months and print the new balances for both savers.

= Next, set the annuallnterestRate to 5%, calculate the next month’s
interest and print the new balances for both savers.

End of Part |

» Chapter 8

> Java™ How to Program, 9/e

