
Dr. Marenglen Biba

 Polymorphism

 Enables you to “program in the general” rather than “program

in the specific.”

 Polymorphism enables you to write programs that process

objects that share the same superclass as if they’re all objects

of the superclass; this can simplify programming.

 Example: Suppose we create a program that simulates
the movement of several types of animals for a
biological study. Classes Fish, Frog and Bird
represent the three types of animals under investigation.
 Each class extends superclass Animal, which contains a

method move and maintains an animal’s current location as x-
y coordinates. Each subclass implements method move.

 A program maintains an Animal array containing references
to objects of the various Animal subclasses. To simulate the
animals’ movements, the program sends each object the same
message once per second—namely, move.

 Each specific type of Animal responds to a move message
in a unique way:
 a Fish might swim three feet
 a Frog might jump five feet
 a Bird might fly ten feet.

 The program issues the same message (i.e., move) to each
animal object, but each object knows how to modify its x-y
coordinates appropriately for its specific type of movement.

 Relying on each object to know how to “do the right thing”
in response to the same method call is the key concept of
polymorphism.

 The same message sent to a variety of objects has “many
forms” of results—hence the term polymorphism.

 With polymorphism, we can design and implement

systems that are easily extensible

 New classes can be added with little or no modification to the

general portions of the program, as long as the new classes are

part of the inheritance hierarchy that the program processes

generically.

 The only parts of a program that must be altered to

accommodate new classes are those that require direct

knowledge of the new classes that we add to the hierarchy.

 Example: Space Objects in a Video Game
 A video game manipulates objects of classes Martian,
Venusian, Plutonian, SpaceShip and LaserBeam. Each
inherits from SpaceObject and overrides its draw method.

 A screen manager maintains a collection of references to objects of
the various classes and periodically sends each object the same
message — namely, draw.

 Each object responds in a unique way.
 A Martian object might draw itself in red with green eyes and the

appropriate number of antennae.

 A SpaceShip object might draw itself as a bright silver flying saucer.

 A LaserBeam object might draw itself as a bright red beam across the
screen.

 The same message (in this case, draw) sent to a variety of objects
has “many forms” of results.

 A screen manager might use polymorphism to facilitate
adding new classes to a system with minimal
modifications to the system’s code.

 To add new objects to our video game:
 Build a class that extends SpaceObject and provides its

own draw method implementation.

 When objects of that class appear in the SpaceObject
collection, the screen manager code invokes method draw,
exactly as it does for every other object in the collection,
regardless of its type.

 So the new objects simply “plug right in” without any
modification of the screen manager code by the programmer.

 In the next example, we aim a superclass reference at a
subclass object.
 Invoking a method of a subclass object via a superclass reference

invokes the subclass functionality

 The type of the referenced object, not the type of the variable,
determines which method is called

 This example demonstrates that an object of a subclass can
be treated as an object of its superclass, enabling various
interesting manipulations.

 A program can create an array of superclass variables that
refer to objects of many subclass types.
 Allowed because each subclass object is an object of its superclass.

 A superclass object cannot be treated as a subclass object,

because a superclass object is not an object of any of its

subclasses.

 The is-a relationship applies only up the hierarchy from a

subclass to its direct (and indirect) superclasses, and not

down the hierarchy.

 The Java compiler does allow the assignment of a

superclass reference to a subclass variable if you explicitly

cast the superclass reference to the subclass type

 A technique known as downcasting that enables a program to invoke

subclass methods that are not in the superclass.

 When a superclass variable contains a reference to a

subclass object, and that reference is used to call a method,

the subclass version of the method is called.

 The Java compiler allows this “crossover” because an object of a

subclass is an object of its superclass (but not vice versa).

 At execution time, the type of the object to which the

variable refers determines the actual method to use.

 This process is called dynamic binding.

 Abstract classes

 Sometimes it’s useful to declare classes for which you never intend

to create objects.

 Used only as superclasses in inheritance hierarchies, so they are

sometimes called abstract superclasses.

 Cannot be used to instantiate objects — abstract classes are

incomplete.

 Subclasses must declare the “missing pieces” to become “concrete”

classes, from which you can instantiate objects; otherwise, these

subclasses, too, will be abstract.

 An abstract class provides a superclass from which other

classes can inherit and thus share a common design.

 Classes that can be used to instantiate objects are called
concrete classes.

 Such classes provide implementations of every method
they declare (some of the implementations can be
inherited).

 Abstract superclasses are too general to create real
objects — they specify only what is common among
subclasses.

 Concrete classes provide the specifics that make it
reasonable to instantiate objects.

 Not all hierarchies contain abstract classes.

 You make a class abstract by declaring it with keyword
abstract.

 An abstract class normally contains one or more abstract
methods.
 An abstract method is one with keyword abstract in its declaration,

as in
public abstract void draw(); // abstract method

 Abstract methods do not provide implementations.
 A class that contains abstract methods must be an abstract class

even if that class contains some concrete (nonabstract) methods.
 Each concrete subclass of an abstract superclass also must

provide concrete implementations of each of the superclass’s
abstract methods.

 Constructors and static methods cannot be declared
abstract.

 Cannot instantiate objects of abstract superclasses, but

you can use abstract superclasses to declare variables

 These can hold references to objects of any concrete class

derived from those abstract superclasses.

 Programs typically use such variables to manipulate subclass

objects polymorphically.

 Can use abstract superclass names to invoke static
methods declared in those abstract superclasses.

 Use an abstract method and polymorphism to perform payroll
calculations based on the type of inheritance hierarchy headed by
an employee.

 Enhanced employee inheritance hierarchy requirements:
 A company pays its employees on a weekly basis.
The employees are of four types: Salaried
employees are paid a fixed weekly salary
regardless of the number of hours worked, hourly
employees are paid by the hour and receive
overtime pay (i.e., 1.5 times their hourly salary
rate) for all hours worked in excess of 40 hours,
commission employees are paid a percentage of
their sales and base-salaried commission employees
receive a base salary plus a percentage of their
sales. For the current pay period, the company has
decided to reward salaried-commission employees by
adding 10% to their base salaries. The company
wants to write a Java application that performs
its payroll calculations polymorphically.

 abstract class Employee represents the general

concept of an employee.

 Subclasses: SalariedEmployee,

CommissionEmployee , HourlyEmployee and

BasePlusCommissionEmployee (an indirect

subclass)

 Fig. 10.2 shows the inheritance hierarchy for our

polymorphic employee-payroll application.

 Abstract class names are italicized in the UML.

 Abstract superclass Employee declares the

“interface” to the hierarchy—that is, the set of methods

that a program can invoke on all Employee objects.

 We use the term “interface” here in a general sense to refer to

the various ways programs can communicate with objects of

any Employee subclass.

 Each employee has a first name, a last name and a

social security number defined in abstract superclass

Employee.

 Class Employee (Fig. 10.4) provides methods
earnings and toString, in addition to the get and set
methods that manipulate Employee’s instance variables.

 An earnings method applies to all employees, but each
earnings calculation depends on the employee’s class.
 An abstract method—there is not enough information to

determine what amount earnings should return.

 Each subclass overrides earnings with an appropriate
implementation.

 Iterate through the array of Employees and call method
earnings for each Employee subclass object.
 Method calls processed polymorphically.

 The diagram in Fig. 10.3 shows each of the five classes
in the hierarchy down the left side and methods
earnings and toString across the top.

 For each class, the diagram shows the desired results of
each method.

 Declaring the earnings method abstract
indicates that each concrete subclass must provide an
appropriate earnings implementation and that a
program will be able to use superclass Employee
variables to invoke method earnings
polymorphically for any type of Employee.

 Fig. 10.9 creates an object of each of the four concrete.

 Manipulates these objects nonpolymorphically, via variables of

each object’s own type, then polymorphically, using an array of

Employee variables.

 While processing the objects polymorphically, the

program increases the base salary of each

BasePlusCommissionEmployee by 10%

 Requires determining the object’s type at execution time.

 Finally, the program polymorphically determines and

outputs the type of each object in the Employee array.

 All calls to method toString and earnings are
resolved at execution time, based on the type of the
object to which currentEmployee refers.
 Known as dynamic binding or late binding.

 Java decides which class’s toString method to call at
execution time rather than at compile time

 A superclass reference can be used to invoke only
methods of the superclass
 The subclass method implementations are invoked

polymorphically.

 Attempting to invoke a subclass-only method directly on a
superclass reference is a compilation error.

 Every object in Java knows its own class and can

access this information through the getClass

method, which all classes inherit from class Object.
 The getClass method returns an object of type Class

(from package java.lang), which contains information

about the object’s type, including its class name.

 The result of the getClass call is used to invoke getName

to get the object’s class name.

 There are four ways to assign superclass and subclass
references to variables of superclass and subclass types.

 Assigning a superclass reference to a superclass variable is
straightforward.

 Assigning a subclass reference to a subclass variable is
straightforward.

 Assigning a subclass reference to a superclass variable is
safe, because the subclass object is an object of its
superclass.
 The superclass variable can be used to refer only to superclass

members.
 If this code refers to subclass-only members through the superclass

variable, the compiler reports errors.

 Attempting to assign a superclass reference to a

subclass variable is a compilation error.

 To avoid this error, the superclass reference must be cast to a

subclass type explicitly.

 At execution time, if the object to which the reference refers is

not a subclass object, an exception will occur.

 Use the instanceof operator to ensure that such a cast is

performed only if the object is a subclass object.

 A final method in a superclass cannot be overridden

in a subclass.

 Methods that are declared private are implicitly final,

because it’s not possible to override them in a subclass.

 Methods that are declared static are implicitly final.

 A final method’s declaration can never change, so all

subclasses use the same method implementation, and calls to

final methods are resolved at compile time—this is known

as static binding.

 A final class cannot be a superclass (i.e., a class

cannot extend a final class).

 All methods in a final class are implicitly final.

 Class String is an example of a final class.

 If you were allowed to create a subclass of String, objects of

that subclass could be used wherever Strings are expected.

 Since class String cannot be extended, programs that use

Strings can rely on the functionality of String objects as

specified in the Java API.

 Making the class final also prevents programmers from

creating subclasses that might bypass security restrictions.

 Our next example reexamines the payroll system of
Section 10.5.

 Suppose that the company involved wishes to perform
several accounting operations in a single accounts payable
application
 Calculating the earnings that must be paid to each employee

 Calculate the payment due on each of several invoices (i.e., bills for
goods purchased)

 Both operations have to do with obtaining some kind of
payment amount.
 For an employee, the payment refers to the employee’s earnings.

 For an invoice, the payment refers to the total cost of the goods listed
on the invoice.

 Interfaces offer a capability requiring that unrelated

classes implement a set of common methods.

 Interfaces define and standardize the ways in which

things such as people and systems can interact with one

another.

 Example: The controls on a radio serve as an interface between

radio users and a radio’s internal components.

 Can perform only a limited set of operations (e.g., change the

station, adjust the volume, choose between AM and FM)

 Different radios may implement the controls in different ways

(e.g., using push buttons, dials, voice commands).

 The interface specifies what operations a radio must

permit users to perform but does not specify how the

operations are performed.

 A Java interface describes a set of methods that can be

called on an object.

 An interface declaration begins with the keyword

interface and contains only constants and

abstract methods.

 All interface members must be public.

 Interfaces may not specify any implementation details, such as

concrete method declarations and instance variables.

 All methods declared in an interface are implicitly public
abstract methods.

 All fields are implicitly public, static and final.

 To use an interface, a concrete class must specify that it
implements the interface and must declare each method
in the interface with specified signature.
 Add the implements keyword and the name of the interface to the

end of your class declaration’s first line.

 A class that does not implement all the methods of the
interface is an abstract class and must be declared
abstract.

 Implementing an interface is like signing a contract with the
compiler that states, “I will declare all the methods
specified by the interface or I will declare my class
abstract.”

 An interface is often used in place of an abstract
class when there is no default implementation to inherit

— that is, no fields and no default method

implementations.

 Like public abstract classes, interfaces are

typically public types.

 A public interface must be declared in a file with the

same name as the interface and the .java file-name

extension.

 Next example builds an application that can determine

payments for employees and invoices alike.

 Classes Invoice and Employee both represent things for

which the company must be able to calculate a payment

amount.

 Both classes implement the Payable interface, so a program

can invoke method getPaymentAmount on Invoice
objects and Employee objects alike.

 Enables the polymorphic processing of Invoices and

Employees.

 Fig. 10.10 shows the accounts payable hierarchy.

 The UML distinguishes an interface from other classes
by placing «interface» above the interface name.

 The UML expresses the relationship between a class
and an interface through a realization.
 A class is said to “realize,” or implement, the methods of an

interface.

 A class diagram models a realization as a dashed arrow with a
hollow arrowhead pointing from the implementing class to the
interface.

 A subclass inherits its superclass’s realization
relationships.

 Fig. 10.11 shows the declaration of interface

Payable.

 Interface methods are always public and

abstract, so they do not need to be declared as such.

 Interfaces can have any number of methods.

 Interfaces may also contain fields that are implicitly

final and static.

 Java does not allow subclasses to inherit from more

than one superclass, but it allows a class to inherit from

one superclass and implement as many interfaces as it

needs.

 To implement more than one interface, use a comma-

separated list of interface names after keyword

implements in the class declaration, as in:

public class ClassName extends
SuperclassName

implements FirstInterface,
SecondInterface, …

 When a class implements an interface, it makes a contract
with the compiler
 The class will implement each of the methods in the interface or that

the class will be declared abstract.
 If the latter, we do not need to declare the interface methods as
abstract in the abstract class—they are already implicitly
declared as such in the interface.

 Any concrete subclass of the abstract class must implement the
interface methods to fulfill the contract.

 If the subclass does not do so, it too must be declared abstract.

 Each direct Employee subclass inherits the superclass’s
contract to implement method getPaymentAmount and
thus must implement this method to become a concrete
class for which objects can be instantiated.

 Figure 10.14 contains a modified

SalariedEmployee class that extends Employee
and fulfills superclass Employee’s contract to

implement Payable method getPayment-
Amount.

 Objects of any subclasses of a class that implements an
interface can also be thought of as objects of the interface
type.

 Thus, just as we can assign the reference of a
SalariedEmployee object to a superclass Employee
variable, we can assign the reference of a
SalariedEmployee object to an interface Payable
variable.

 Invoice implements Payable, so an Invoice object
also is a Payable object, and we can assign the reference
of an Invoice object to a Payable variable.

 The Java API’s interfaces enable you to use your own

classes within the frameworks provided by Java, such

as comparing objects of your own types and creating

tasks that can execute concurrently with other tasks in

the same program.

 Figure 10.16 presents a brief overview of a few of the

more popular interfaces of the Java API used in Java

How to Program, Ninth Edition.

 (Payroll System Modification) Modify the payroll system of
Figs. 10.4–10.9 to include private instance variable birthDate
in class Employee.

 Use class Date of Fig. 8.7 to represent an employee’s
birthday. Add get methods to class Date. Assume that payroll
is processed once per month.

 Create an array of Employee variables to store references to
the various employee objects. In a loop, calculate the payroll
for each Employee (polymorphically), and add a $100.00
bonus to the person’s payroll amount if the current month is
the one in which the Employee’s birthday occurs.

 (Payroll System Modification) Modify the payroll system of
Figs. 10.4–10.9 to include an additional Employee subclass
PieceWorker that represents an employee whose pay is based
on the number of pieces of merchandise produced.

 Class PieceWorker should contain private instance variables
wage (to store the employee’s wage per piece) and pieces (to
store the number of pieces produced).

 Provide a concrete implementation of method earnings in
class PieceWorker that calculates the employee’s earnings by
multiplying the number of pieces produced by the wage per
piece.

 Create an array of Employee variables to store references to
objects of each concrete class in the new Employee hierarchy.
For each Employee, display its String representation and
earnings.

 Extend the program with a class for invoices,
Ex. Bill, with three attributes, amount,
number and payment status.

 Introduce an interface so that bills and
employees can be paid.
 Introduce a method called pay for performing the

payment

 Test the new feature by processing the
unrelated classes polimorphically.

