Lesson 8
Object-Oriented Programming:

Polymorphism
Dr. Marenglen Biba

OBJECTIVES
In this Chapter you'll learn:

m The concept of polymorphism.

m To use overridden methods to effect polymorphism.

m To distinguish between abstract and concrete classes.

m To declare abstract methods to create abstract classes.

m How polymorphism makes systems extensible and maintainable.
m To determine an object’s type at execution time.

m To declare and implement interfaces.

10.1 Introduction

10.2 Polymorphism Examples

10.3 Demonstrating Polymorphic Behavior
10.4 Abstract Classes and Methods

10.5 Case Study: Payroll System Using Polymorphism

10.5.1 Abstract Superclass Employee

10.5.2 Concrete Subclass SalariedEmployee

10.5.3 Concrete Subclass HourlyEmployee

10.5.4 Concrete Subclass CommissionEmployee

10.5.5 Indirect Concrete Subclass BasePTusCommissionEmployee

10.5.6 Polymorphic Processing, Operator instanceof and Downcasting

10.5.7 Summary of the Allowed Assignments Between Super and Subclass Variables

10.6 final Methods and Classes

10.7 Case Study: Creating and Using Interfaces

10.7.1 Developing a Payable Hierarchy

10.7.2 Interface Payable

10.7.3 Class Invoice

10.7.4 Madifying Class EmpToyee to Implement Interface Payable

10.7.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy

10.7.6 Using Interface Payable to Process Invoices and Employees Polymorphically
10.7.7 Common Interfaces of the Java API

10.8 (Optional) GUI and Graphics Case Study: Drawing with Polymorphism
10.9 Wrap-Up

10.1 Introduction

» Polymorphism

= Enables you to “program in the general” rather than “program
In the specific.”

= Polymorphism enables you to write programs that process
objects that share the same superclass as if they’re all objects
of the superclass; this can simplify programming.

10.1 Introduction (Cont.)

» Example: Suppose we create a program that simulates
the movement of several types of animals for a
biological study. Classes F1sh, Frog and B1rd
represent the three types of animals under investigation.

= Each class extends superclass Animal, which contains a
method move and maintains an animal’s current location as X-
y coordinates. Each subclass implements method move.

= A program maintains an Animal array containing references
to objects of the various Animal subclasses. To simulate the
animals’ movements, the program sends each object the same
message once per second—namely, move.

10.1 Introduction (Cont.)

>

Each specific type of Animal responds to a move message
In a unique way:

= a F1sh might swim three feet

= a Frog might jump five feet

= a B1rd might fly ten feet.

The program issues the same message (i.e., move) to each
animal object, but each object knows how to modify its x-y
coordinates appropriately for its specific type of movement.
Relying on each object to know how to “do the right thing”

In response to the same method call is the key concept of
polymorphism.

The same message sent to a variety of objects has “many
forms” of results—hence the term polymorphism.

10.1 Introduction (Cont.)

» With polymorphism, we can design and implement
systems that are easily extensible

= New classes can be added with little or no modification to the
general portions of the program, as long as the new classes are
part of the inheritance hierarchy that the program processes
generically.

= The only parts of a program that must be altered to

accommodate new classes are those that require direct
knowledge of the new classes that we add to the hierarchy.

10.2 Polymorphism Examples (Cont.)

» Example: Space Objects in a Video Game

= Avideo game manipulates objects of classes Mart1ian,
Venusian, Plutonian, SpaceShip and LaserBeam. Each
inherits from SpaceObject and overrides its draw method.

= A screen manager maintains a collection of references to objects of

the various classes and periodically sends each object the same
message — namely, draw.

= Each object responds in a unique way.

- AMartian object might draw itself in red with green eyes and the
appropriate number of antennae.

- A SpaceSh1ip object might draw itself as a bright silver flying saucer.

- ALaserBeam object might draw itself as a bright red beam across the
screen.

= The same message (in this case, draw) sent to a variety of objects
has “many forms” of results.

10.2 Polymorphism Examples (Cont.)

» A screen manager might use polymorphism to facilitate
adding new classes to a system with minimal
modifications to the system’s code.

» To add new objects to our video game:

= Build a class that extends SpaceObject and provides its
own draw method implementation.

= When objects of that class appear in the SpaceObject
collection, the screen manager code invokes method draw,
exactly as it does for every other object in the collection,
regardless of its type.

= So the new objects simply “plug right in” without any
modification of the screen manager code by the programmer.

10.3 Demonstrating Polymorphic
Behavior

» In the next example, we aim a superclass reference at a
subclass object.

= Invoking a method of a subclass object via a superclass reference
Invokes the subclass functionality

= The type of the referenced object, not the type of the variable,
determines which method is called

» This example demonstrates that an object of a subclass can
be treated as an object of its superclass, enabling various
Interesting manipulations.

» A program can create an array of superclass variables that
refer to objects of many subclass types.
= Allowed because each subclass object is an object of its superclass.

10.3 Demonstrating Polymorphic
Behavior (Cont.)

» A superclass object cannot be treated as a subclass object,
because a superclass object is not an object of any of its
subclasses.

» The is-a relationship applies only up the hierarchy from a
subclass to its direct (and indirect) superclasses, and not
down the hierarchy.

» The Java compiler does allow the assignment of a
superclass reference to a subclass variable if you explicitly
cast the superclass reference to the subclass type

= A technique known as downcasting that enables a program to invoke
subclass methods that are not in the superclass.

1 // Fig. 10.1: PolymorphismTest.java

2 // Assigning superclass and subclass references to superclass and

3 // subclass variables.

4

5 public class PolymorphismTest

6 {

7 public static void main(String[] args)

8 {

9 // assign superclass reference to superclass variable

10 CommissionEmployee commissionEmployee = new CommissionEmployee(

11 "Sue", "Jones", "222-22-2222", 10000, .06);

12

13 // assign subclass reference to subclass variable

14 BasePlusCommissionEmployee basePlusCommissionEmployee =

15 new BasePTusCommissionEmpTloyee(

16 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);

17

18 // invoke toString on superclass object using superclass variable

19 System.out.printf("%s %s:\n\n%s\n\n",
20 "Call CommissionEmployee's toString with superclass reference ", Variable refers t
21 "to superclass object”, commissionEmployee.toString()); -« analergew 04
22 CommissionEmployee

object, so that class’s

. . toString method is
Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass kel

variables. (Part | of 3.)

23 // invoke toString on subclass object using subclass variable
24 System.out.printf("%s %s:\n\n%s\n\n",

25 "Call BasePlusCommissionEmployee's toString with subclass"”,
26 "reference to subclass object",

27 basePlusCommissionEmployee.toString()); =

28

29 // invoke toString on subclass object using superclass variable
30 CommissionEmployee commissionEmployee2 =

31 basePTusCommissionEmployee;

32 System.out.printf("%s %s:\n\n%s\n",

33 "Call BasePlusCommissionEmployee's toString with superclas
34 "reference to subclass object”, commissionEmployee2.toString())3
35 } // end main

36 } // end class PolymorphismTest

Variable refers to a
BasePlus-

Call CommissionEmpTloyee's toString with superclass reference to superclass
object:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass
variables. (Part 2 of 3.)

CommissionEmployee
object, so that class’s
toString method is
called

Variable refers to a
_BaseP1us—
CommissionEmployee
object, so that class’s
toString method is
called

Call BasePTusCommissionEmployee's toString with subclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Call BasePTusCommissionEmployee's toString with superclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass
variables. (Part 3 of 3.)

10.3 Demonstrating Polymorphic
Behavior (Cont.)

» When a superclass variable contains a reference to a
subclass object, and that reference is used to call a method,
the subclass version of the method is called.

= The Java compiler allows this “crossover” because an object of a
subclass is an object of its superclass (but not vice versa).

» At execution time, the type of the object to which the
variable refers determines the actual method to use.
= This process is called dynamic binding.

10.4 Abstract Classes and Methods

» Abstract classes

Sometimes it’s useful to declare classes for which you never intend
to create objects.

Used only as superclasses in inheritance hierarchies, so they are
sometimes called abstract superclasses.

Cannot be used to instantiate objects — abstract classes are
iIncomplete.

Subclasses must declare the “missing pieces” to become “concrete”
classes, from which you can instantiate objects; otherwise, these
subclasses, too, will be abstract.

» An abstract class provides a superclass from which other
classes can inherit and thus share a common design.

10.4 Abstract Classes and Methods
(Cont.)

» Classes that can be used to instantiate objects are called
concrete classes.

» Such classes provide implementations of every method
they declare (some of the implementations can be
Inherited).

» Abstract superclasses are too general to create real

objects — they specify only what is common among
subclasses.

» Concrete classes provide the specifics that make it
reasonable to instantiate objects.

» Not all hierarchies contain abstract classes.

10.4 Abstract Classes and Methods
(Cont.)

>

>

You make a class abstract by declaring it with keyword
abstract.

An abstract class normally contains one or more abstract
methods.
= An abstract method is one with keyword abstract in its declaration,
as In
public abstract void draw(); // abstract method
Abstract methods do not provide implementations.

A class that contains abstract methods must be an abstract class
even If that class contains some concrete (nonabstract) methods.

Each concrete subclass of an abstract superclass also must
provide concrete implementations of each of the superclass’s
abstract methods.

Constructors and static methods cannot be declared
abstract.

10.4 Abstract Classes and Methods
(Cont.)

» Cannot instantiate objects of abstract superclasses, but
you can use abstract superclasses to declare variables

= These can hold references to objects of any concrete class
derived from those abstract superclasses.

= Programs typically use such variables to manipulate subclass
objects polymorphically.
» Can use abstract superclass names to invoke static
methods declared in those abstract superclasses.

10.5 Case Study: Payroll System Using
Polymorphism

» Use an abstract method and polymorphism to perform payroll
calculations based on the type of inheritance hierarchy headed by
an employee.

» Enhanced employee inheritance hierarchy requirements:

= A company pays 1ts employees on a weekly basis-.
The employees are of four types: Salaried
employees are paid a fixed weekly salary
regardless of the number of hours workeda. hourly
employees are paid by the hour and receive
overtime pay (i-e.. L.5 times their hourly salary
rate) for all hours worked in excess of 40 hours-
commission employees are paid a percentage of
their sales and base-salaried commission employees
receive a base salary plus a percentage of their
sales. For the current pay perioda. the company has
decided to reward salaried-commission employees by
adding 10%Z to their base salaries- The company
wants to write a Java application that performs
its payroll calculations polymorphically.

10.5 Case Study: Payroll System Using
Polymorphism (Cont.)

» abstract class Emp l1oyee represents the general
concept of an employee.

» Subclasses: SalariedEmployee,
commissionEmployee, HourlyEmployee and
BasePlusCommissionEmployee (an indirect
subclass)

» Fig. 10.2 shows the inheritance hierarchy for our
polymorphic employee-payroll application.

» Abstract class names are italicized in the UML.

Employee

SalariedEmployee I CommissionEmployee HourlyEmployee I
BasePlusCommissionEmployee I

Fig. 10.2 | Employee hierarchy UML class diagram.

10.5 Case Study: Payroll System Using
Polymorphism (Cont.)

» Abstract superclass Emp loyee declares the
“Interface” to the hierarchy—that Is, the set of methods
that a program can invoke on all Emp 1oyee objects.

= We use the term “interface” here in a general sense to refer to

the various ways programs can communicate with objects of
any Emp loyee subclass.

» Each employee has a first name, a last name and a

social security number defined in abstract superclass
Employee.

10.5.1 Abstract Superclass Employee

» Class Employee (Fig. 10.4) provides methods
earnings and toString, in addition to the get and set
methods that manipulate Emp loyee’s instance variables.

» An earnings method applies to all employees, but each
earnings calculation depends on the employee’s class.

= An abstract method—there is not enough information to
determine what amount earnings should return.

= Each subclass overrides earnings with an appropriate
implementation.

» Iterate through the array of Emp 1oyees and call method

earnings for each Employee subclass object.
= Method calls processed polymorphically.

10.5.1 Abstract Superclass Employee
(Cont.)

» The diagram in Fig. 10.3 shows each of the five classes
In the hierarchy down the left side and methods
earnings and toString across the top.

» For each class, the diagram shows the desired results of
each method.

» Declaring the earnings method abstract
Indicates that each concrete subclass must provide an
appropriate earnings implementation and that a
program will be able to use superclass Emp 1oyee
variables to invoke method earnings
polymorphically for any type of Emp loyee.

Employee

Salaried-
Employee

Hourly-
Employee

Commission-
Employee

BasePlus-
Commission-
Employee

earnings

abstract

weeklySalary

if (hours <= 40)
wage * hours
else if Chours > 40)
{
40 * wage +
(hours - 40) *
wage * 1.5

3

commissionRate *
grossSales

(commissionRate *
grossSales) +
baseSalary

toString

firstName lastName
social security number: SSN

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklysalary

hourly employee: firstName lastName
social security number: SSN
hourly wage: wage; hours worked: hours

commission employee: firstName lastName
social security number: SSN

gross sales: grossSales;

commission rate: commissionRate

base salaried commission employee:
firstName lastName

social security number: SSN

gross sales: grossSales;

commission rate: commissionRate;

base salary: baseSalary

Fig. 10.3 | Polymorphic interface for the Employee hierarchy classes.

I // Fig. 10.4: Employee.java

2 // Employee abstract superclass.

3

4 public abstract class Employee

5 {

6 private String firstName;

7 private String lastName;

8 private String socialSecurityNumber;

9

10 // three-argument constructor

11 public Employee(String first, String last, String ssn)
12 {

13 firstName = first;

14 lastName = last;

15 socialSecurityNumber = ssn;

16 } // end three-argument Employee constructor
17

18 // set first name

19 pubTlic void setFirstName(String first)
20 {
21 firstName = first; // should validate
22 } // end method setFirstName
23

Fig. 10.4 | Employee abstract superclass. (Part | of 3.)

24 // return first name

25 public String getFirstName()

26 {

27 return firstName;

28 } // end method getFirstName

29

30 // set last name

31 public void setLastName(String last)
32 {

33 TastName = last; // should validate
34 } // end method setlLastName

35

36 // return last name

37 public String getLastName()

38 {

39 return lastName;

40 } // end method getLastName

41

42 // set social security number

43 public void setSocialSecurityNumber(String ssn)
44 {

45 socialSecurityNumber = ssn; // should validate
46 } // end method setSocialSecurityNumber
47

Fig. 10.4 | Employee abstract superclass. (Part 2 of 3.)

48 // return social security number

49 public String getSocialSecurityNumber()

50 {

51 return socialSecurityNumber;

52 } // end method getSocialSecurityNumber

53

54 // return String representation of Employee object

55 @verride

56 public String toString()

57 {

58 return String.format("%s %s\nsocial security number: %s",

59 getFirstName(), getLastName(), getSocialSecurityNumber());
60 } // end method toString

61

62 // abstract method overridden by concrete subclasses This method must be
63 public abstract double earnings(); // no implementation here =

overridden in
subclasses to make
them concrete

64 } // end abstract class Employee

Fig. 10.4 | Employee abstract superclass. (Part 3 of 3.)

10.5.2 Concrete Subclass
SalariedEmployee

1 // Fig. 10.5: SalariedEmployee.java

2 // SalariedEmployee concrete class extends abstract class Employee.
3

4 public class SalariedEmployee extends Employee

5 {

6 private double weeklySalary;

7

8 // four-argument constructor

9 public SalariedEmployee(String first, String Tlast, String ssn,
10 double salary)

11 {

12 super(first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary

14 } // end four-argument SalariedEmployee constructor

15

16 // set salary

17 public void setWeeklySalary(double salary)

I8 {

19 weeklySalary = salary < 0.0 ? 0.0 : salary;
20 } // end method setWeeklySalary
21

Fig. 10.5 | SalariedEmployee concrete class extends abstract class Employee.
(Part | of 2.)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// return salary
public double getWeeklySalary()
{
return weeklySalary;
} // end method getWeeklySalary

// calculate earnings; override abstract method earnings in Employee
@Override
public double earnings() =

{
return getWeeklySalary(Q);
} // end method earnings

// return String representation of SalariedEmployee object
@Jverride
public String toString() =

Overriding earnings
makes this class
concrete

{
return String.format("salaried employee: %s\n%s: $%,.2f",
super.toString(), "weekly salary”, getWeeklySalary());
} // end method toString
} // end class SalariedEmployee

Overriding toString
provides customized
String representation
for this class

Fig. 10.5 | SalariedEmployee concrete class extends abstract class Employee.
(Part 2 of 2.)

10.5.3 Concrete Subclass
HourlyEmployee

1 // Fig. 10.6: HourlyEmployee.java

2 // HourlyEmployee class extends Employee.

3

4 public class HourlyEmployee extends Employee

5 {

6 private double wage; // wage per hour

7 private double hours; // hours worked for week

8

9 // five-argument constructor

10 public HourlyEmployee(String first, String last, String ssn,
11 double hourlyWage, double hoursWorked)

12 {

13 super(first, last, ssn);

14 setWage(hourlyWage); // validate hourly wage
15 setHours(hoursWorked); // validate hours worked
16 } // end five-argument HourlyEmployee constructor
17

18 // set wage

19 public void setWage(double hourlyWage)
20 {
21 wage = (hourlyWage < 0.0) ? 0.0 : hourlyWage;
22 } // end method setWage
23

Fig. 10.6 | HourlyEmployee class derived from Employee. (Part | of 3.)

24 // return wage

25 public double getWage()

26 {

27 return wage;

28 } // end method getWage

29

30 // set hours worked

31 public void setHours(double hoursWorked)
32 {

33 hours = ((hoursWorked >= 0.0) & & (hoursWorked <= 168.0)) ?
34 hoursWorked : 0.0;

35 } // end method setHours

36

37 // return hours worked

38 public double getHours()

39 {

40 return hours;

41 } // end method getHours

42

Fig. 10.6 | HourlyEmployee class derived from Employee. (Part 2 of 3.)

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

// calculate earnings; override abstract method earnings in Employee
@0Override
public double earnings() =

{
if (getHours() <= 40) // no overtime
return getWage() * getHours();
else
return 40 * getWage() + (gethours() - 40) * getWage() * 1.5;
} // end method earnings

// return String representation of HourlyEmployee object
@0Override
public String toString() =

Overriding earnings
makes this class
concrete

{
return String.format("hourly employee: %s\n%s: $%,.2f; %s: %,.2f",
super.toString(), "hourly wage", getWage(),
"hours worked", getHours());
} // end method toString

} // end class HourlyEmployee

Overriding toString
provides customized
String representation
for this class

Fig. 10.6 | HourlyEmployee class derived from Employee. (Part 3 of 3.)

10.5.4 Concrete Subclass
commissionEmployee

I // Fig. 10.7: CommissionEmployee.java

2 // CommissionEmployee class extends Employee.

3

4 public class CommissionEmployee extends Employee

5 {

6 private double grossSales; // gross weekly sales

7 private double commissionRate; // commission percentage
8

9 // five-argument constructor

10 public CommissionEmployee(String first, String last, String ssn,
11 double sales, double rate)

12 {

13 super(first, last, ssn);

14 setGrossSales(sales);

15 setCommissionRate(rate);

16 } // end five-argument CommissionEmployee constructor
17

18 // set commission rate

19 public void setCommissionRate(double rate)
20 {
21 commissionRate = (rate > 0.0 & & rate < 1.0) ? rate : 0.0;
22 } // end method setCommissionRate
23

Fig. 10.7 | CommissionEmployee class derived from Employee. (Part | of 3.)

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

// return commission rate
public double getCommissionRate()
{
return commissionRate;
} // end method getCommissionRate

// set gross sales amount
public void setGrossSales(double sales)
{
grossSales = (sales < 0.0) ? 0.0 : sales;
} // end method setGrossSales

// return gross sales amount
public double getGrossSales()
{

return grossSales;
} // end method getGrossSales

// calculate earnings; override abstract method earnings in Employee
@Override
pubTic double earnings() =

{

return getCommissionRate() * getGrossSales();
} // end method earnings

Overriding earnings
makes this class
concrete

Fig. 10.7 | CommissionEmployee class derived from Employee. (Part 2 of 3.)

48

49 // return String representation of CommissionEmployee object

50 @Override e ;
51 pubTic String toString() = Over.ndmg tOSt'."mg
52 { prov_ldes customlzeq
53 return String.format("%s: %s\n%s: $%,.2f; %s: %.2f", Sl HplIEEENeE el
54 "commission employee", super.toString(), for this class

55 "gross sales", getGrossSales(),

56 "commission rate", getCommissionRate());

57 } // end method toString

58 } // end class CommissionEmployee

Fig. 10.7 | CommissionEmployee class derived from Employee. (Part 3 of 3.)

10.5.5 Indirect Concrete Subclass
BasePlusCommissionEmployee

1 // Fig. 10.8: BasePlusCommissionEmployee.java

2 // BasePlusCommissionEmployee class extends CommissionEmployee.
3

4 public class BasePlusCommissionEmployee extends CommissionEmployee
5 {

6 private double baseSalary; // base salary per week

7

8 // six-argument constructor

9 public BasePlusCommissionEmployee(String first, String last,
10 String ssn, double sales, double rate, double salary)

11 {

12 super(first, last, ssn, sales, rate);

13 setBaseSalary(salary); // validate and store base salary
14 } // end six-argument BasePTusCommissionEmployee constructor
15

16 // set base salary

17 public void setBaseSalary(double salary)

I8 {

19 baseSalary = (salary < 0.0) ? 0.0 : salary; // non-negative
20 } // end method setBaseSalary
21

Fig. 10.8 | BasePlusCommissionEmployee class extends CommissionEmpTloyee.
(Part | of 2.)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

// return base salary
public double getBaseSalary()
{
return baseSalary;
} // end method getBaseSalary

// calculate earnings; override method earnings in CommissionEmployee
@)verride

public double earnings() =
{

return getBaseSalary() + super.earnings();
} // end method earnings

// return String representation of BasePlusCommissionEmployee object
@Jverride
public String toString() =

If we do not override
earnings in this class,
we inherit the version
in from superclass
CommissionEmployee
and this class is still a
concrete class

{
return String.format("%s %s; %s: $%,.2f",
"base-salaried", super.toString(),
"base salary", getBaseSalary());
} // end method toString
} // end class BasePlusCommissionEmployee

Overriding toString
provides customized
String representation
for this class

Fig. 10.8 | BasePTusCommissionEmployee class extends CommissionEmployee.
(Part 2 of 2.)

10.5.6 Polymorphic Processing, Operator
1nstanceof and Downcasting

» Fig. 10.9 creates an object of each of the four concrete.
= Manipulates these objects nonpolymorphically, via variables of
each object’s own type, then polymorphically, using an array of
Employee variables.
» While processing the objects polymorphically, the
program Increases the base salary of each
BasePlusCommissionEmployee by 10%

= Requires determining the object’s type at execution time.

» Finally, the program polymorphically determines and
outputs the type of each object in the Emp loyee array.

1 // Fig. 10.9: PayrollSystemTest.java

2 // Employee hierarchy test program.

3

4 public class Payroll1SystemTest

5 {

6 public static void main(String[] args)

7 {

8 // create subclass objects

9 SalariedEmployee salariedEmployee =

10 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
11 HourlyEmployee hourlyEmployee =

12 new HourlyEmployee("Karen", "Price", "222-22-2222", 16.75, 40);
13 CommissionEmployee commissionEmployee =

14 new CommissionEmpTloyee(

15 "Sue", "Jones", "333-33-3333", 10000, .06);

16 BasePlusCommissionEmployee basePlusCommissionEmployee =

17 new BasePTusCommissionEmployee(

18 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);

19
20 System.out.printin("Employees processed individually:\n");
21
22 System.out.printf("%s\n%s: $%,.2f\n\n",
23 salariedEmployee, "earned", salariedEmployee.earnings());

Fig. 10.9 | Employee hierarchy test program. (Part | of 6.)

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

System.out.printf("%s\n%s: $%,.2f\n\n",

hourlyEmployee, "earned"”, hourlyEmployee.earnings());
System.out.printf("%s\n%s: $%,.2f\n\n",

commissionEmployee, "earned"”, commissionEmployee.earnings());
System.out.printf("%s\n%s: $%,.2f\n\n",

basePTusCommissionEmployee,

"earned"”, basePTusCommissionEmployee.earnings());

// create four-element Employee array

Employee[] employees = new Employee[4]; <

// initialize array with Employees

Does not create
Employee objects—
just variables that can
refer to objects of
Employee subclasses

employees[0] = salariedEmployee; _w
employees[1] = hourlyEmployee;

employees[2] = commissionEmployee;
employees[3] = basePlusCommissionEmployee;

Aim each Employee
variable at an object of
an Employee subclass

System.out.printin("Employees processed polymorphically:\n");

// generically process each element in array employees
for (Employee currentEmployee : employees)

{

System.out.printin(currentEmployee); // invokes toString «——

Polymorphically
invokes toString

Fig. 10.9 | Employee hierarchy test program. (Part 2 of 6.)

48 // determine whether element is a BasePlusCommissionEmployee

49 if (currentEmployee instanceof BasePlusCommissionEmployee) '44447[Scurrentﬁmﬂ0yee
50 { a BasleP1lu5—

51 // downcast Employee reference to CommissionEmployee?
52 // BasePlusCommissionEmployee reference

53 BasePTusCommissionEmployee employee = This downcast

54 (BasePlusCommissionEmployee) currentEmployee; «— — |

55 works because

56 employee.setBaseSalary(1.10 * employee.getBaseSalary()); Furrentamﬂoyee
57 IS a B.aseI.D'I us-

58 System.out.printf(eSSt E S IeEE
59 "new base salary with 10%% increase is: $%,.2f\n",

60 employee.getBaseSalary());

61 ¥} // end if

62

63 System.out.printf(POl hiall

64 "earned $%,.2f\n\n", currentEmployee.earnings()); ‘______.oynmnplcgy

65 Y // end for invokes earnings

66

67 // get type name of each object in employees array

68 for (int j = 0; j < employees.length; j++)

69 System.out.printf("Employee %d is a %s\n", j,

70 employees[j].getClass().getName()); = Every object in Java knows its own type
71 } // end main

72 1} // end class PayrollSystemTest

Fig. 10.9 | Employee hierarchy test program. (Part 3 of 6.)

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

earned: $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned: $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: $10,000.00; commission rate: 0.06
earned: $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00
earned: $500.00

Fig. 10.9 | Employee hierarchy test program. (Part 4 of 6.)

Employees processed polymorphically:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: $10,000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00
new base salary with 10% increase 1is: $330.00

earned $530.00

Fig. 10.9 | Employee hierarchy test program. (Part 5 of 6.)

Employee 0 is a SalariedEmployee

Employee 1 is a HourlyEmployee

Employee 2 is a CommissionEmployee
Employee 3 is a BasePlusCommissionEmployee

Fig. 10.9 | Employee hierarchy test program. (Part 6 of 6.)

[
|

10.5.6 Polymorphic Processing, Operator
instanceof and Downcasting (Cont.)

» All calls to method toString and earnings are
resolved at execution time, based on the type of the
object to which currentEmp loyee refers.
= Known as dynamic binding or late binding.
= Java decides which class’s toString method to call at

execution time rather than at compile time

» A superclass reference can be used to invoke only
methods of the superclass
= The subclass method implementations are invoked

polymorphically.
= Attempting to invoke a subclass-only method directly on a
superclass reference is a compilation error.

Common Programming Error 10.3
Assigning a superclass variable to a subclass variable
(without an explicit cast) is a compilation error.

10.5.6 Polymorphic Processing, Operator
instanceof and Downcasting (Cont.)

» Every object in Java knows its own class and can
access this information through the getClass

method, which all classes inherit from class Object.

= The getClass method returns an object of type Class
(from package java. lang), which contains information
about the object’s type, including its class name.

= The result of the getClass call is used to invoke getName
to get the object’s class name.

10.5.7 Summary of the Allowed
Assignments Between Superclass and
Subclass Variables

>

>

There are four ways to assign superclass and subclass
references to variables of superclass and subclass types.

Assigning a superclass reference to a superclass variable is
straightforward.

Assigning a subclass reference to a subclass variable is
straightforward.

Assigning a subclass reference to a superclass variable is
safe, because the subclass object is an object of its
superclass.

= The superclass variable can be used to refer only to superclass
members.

= If this code refers to subclass-only members through the superclass
variable, the compiler reports errors.

10.5.7 Summary of the Allowed
Assignments Between Superclass and
Subclass Variables (Cont.)

» Attempting to assign a superclass reference to a
subclass variable is a compilation error.

= To avoid this error, the superclass reference must be cast to a
subclass type explicitly.

= At execution time, if the object to which the reference refers is
not a subclass object, an exception will occur.

= Use the Tnstanceot operator to ensure that such a cast is
performed only if the object is a subclass object.

10.6 final Methods and Classes

» A final method in a superclass cannot be overridden

In a subclass.

= Methods that are declared private are implicitly final,
because 1t’s not possible to override them in a subclass.

= Methods that are declared static are implicitly final.

= A final method’s declaration can never change, so all
subclasses use the same method implementation, and calls to

final methods are resolved at compile time—this is known
as static binding.

10.6 final Methods and Classes (Cont.)

» A final class cannot be a superclass (i.e., a class

cannot extend a final class).
= All methods in a final class are implicitly final.

» Class String is an example of a final class.

= |f you were allowed to create a subclass of String, objects of
that subclass could be used wherever Strings are expected.

= Since class String cannot be extended, programs that use
Strings can rely on the functionality of String objects as
specified in the Java API.

= Making the class T1nal also prevents programmers from
creating subclasses that might bypass security restrictions.

10.7 Case Study: Creating and Using
Interfaces

» Our next example reexamines the payroll system of
Section 10.5.

» Suppose that the company involved wishes to perform
several accounting operations in a single accounts payable
application
= Calculating the earnings that must be paid to each employee
= Calculate the payment due on each of several invoices (i.e., bills for

goods purchased)

» Both operations have to do with obtaining some kind of
payment amount.
= For an employee, the payment refers to the employee’s earnings.

= For an invoice, the payment refers to the total cost of the goods listed
on the invoice.

10.7 Case Study: Creating and Using
Interfaces (Cont.)

» Interfaces offer a capability requiring that unrelated
classes implement a set of common methods.

» Interfaces define and standardize the ways in which
things such as people and systems can interact with one
another.

= Example: The controls on a radio serve as an interface between
radio users and a radio’s internal components.

= Can perform only a limited set of operations (e.g., change the
station, adjust the volume, choose between AM and FM)

= Different radios may implement the controls in different ways
(e.g., using push buttons, dials, voice commands).

10.7 Case Study: Creating and Using
Interfaces (Cont.)

» The Interface specifies what operations a radio must
permit users to perform but does not specify how the
operations are performed.

» A Java Interface describes a set of methods that can be
called on an object.

10.7 Case Study: Creating and Using
Interfaces (Cont.)

» An interface declaration begins with the keyword
interface and contains only constants and

abstract methods.
= All interface members must be pub11ic.

= Interfaces may not specify any implementation details, such as
concrete method declarations and instance variables.

= All methods declared in an interface are implicitly pub11c
abstract methods.

= All fields are implicitly public, staticand final.

10.7 Case Study: Creating and Using
Interfaces (Cont.)

» To use an interface, a concrete class must specify that it
implements the interface and must declare each method
In the interface with specified signature.
= Add the implements keyword and the name of the interface to the

end of your class declaration’s first line.

» A class that does not implement all the methods of the
Interface is an abstract class and must be declared
abstract.

» Implementing an interface is like signing a contract with the
compiler that states, “I will declare all the methods
specified by the interface or | will declare my class
abstract.”

Common Programming Error 10.6

Failing to implement any method of an interface in a
concrete class that implements the interface results in a
compilation error indicating that the class must be de-
clared abstract.

10.7 Case Study: Creating and Using
Interfaces (Cont.)

» An interface is often used in place of an abstract
class when there iIs no default implementation to inherit
— that is, no fields and no default method
Implementations.

» Like pub11c abstract classes, interfaces are
typically pub 11 c types.

» Apub1cinterface must be declared in a file with the
same name as the interface and the . Java file-name
extension.

-~

10.7.1 Developing a Payable Hierarchy

» Next example builds an application that can determine
payments for employees and invoices alike.

= Classes Invoice and Emp loyee both represent things for
which the company must be able to calculate a payment
amount.

= Both classes implement the Payab 1 e interface, so a program
can invoke method getPaymentAmount on Invoice
objects and Emp 1oyee objects alike.

= Enables the polymorphic processing of Invo1ices and
Employees.

10.7.1 Developing a Payable Hierarchy
(Cont.)

» Fig. 10.10 shows the accounts payable hierarchy.

» The UML distinguishes an interface from other classes
by placing «interface» above the interface name.

» The UML expresses the relationship between a class
and an interface through a realization.

= A class is said to “realize,” or implement, the methods of an
Interface.

= A class diagram models a realization as a dashed arrow with a
hollow arrowhead pointing from the implementing class to the
Interface.

» A subclass inherits its superclass’s realization

relationships.

«interface»
Payable

Invoice I Employee
SalariedEmployee I

Fig. 10.10 | Payable interface hierarchy UML class diagram.

10.7.2 Interface Payable

» Fig. 10.11 shows the declaration of interface
Payable.

» Interface methods are always pub11c and
abstract, so they do not need to be declared as such.

» Interfaces can have any number of methods.

» Interfaces may also contain fields that are implicitly
final and static.

~Nonbh WN -

// Fig. 10.11: Payable.java
// Payable interface declaration.

public interface Payable

{

double getPaymentAmount(); // calculate payment; no implementation
} // end interface Payable

Fig.

10.11 | Payable interface declaration.

10.7.3 Class Invoice

» Java does not allow subclasses to inherit from more
than one superclass, but it allows a class to inherit from

one superclass and implement as many interfaces as it
needs.

» To iImplement more than one interface, use a comma-
separated list of interface names after keyword

1mp lements in the class declaration, as in:

public class (ClassName extends
SuperclassName

implements FirstInterface,
SecondInterface, ..

I // Fig. 10.12: Invoice.java

2 // Invoice class implements Payable.

3 n .
4 public class Invoice implements Payable = Cbssex&ndsObJect(unphuﬂy)and
5 implements interface Payable
6 private String partNumber;

7 private String partDescription;

8 private int quantity;

9 private double pricePerItem;

10

11 // four-argument constructor

12 public Invoice(String part, String description, int count,

13 double price)

14 {

15 partNumber = part;

16 partDescription = description;

17 setQuantity(count); // validate and store quantity

18 setPricePerItem(price); // validate and store price per item

19 } // end four-argument Invoice constructor
20

Fig. 10.12 | Invoice class that implements Payable. (Part | of 4.)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// set part number
public void setPartNumber(String part)
{

partNumber = part; // should validate
} // end method setPartNumber

// get part number
public String getPartNumber()
{
return partNumber;
} // end method getPartNumber

// set description
public void setPartDescription(String description)
{

partDescription = description; // should validate
} // end method setPartDescription

// get description
public String getPartDescription()
{
return partDescription;
} // end method getPartDescription

Fig. 10.12 | Invoice classthat implements Payable. (Part 2 of 4.)

45 // set quantity

46 public void setQuantity(int count)

47 {

48 quantity = (count < 0) ? 0 : count; // quantity cannot be negative
49 } // end method setQuantity

50

51 // get quantity

52 public int getQuantity()

53 {

54 return quantity;

55 } // end method getQuantity

56

57 // set price per item

58 public void setPricePerItem(double price)
59 {

60 pricePerItem = (price < 0.0) ? 0.0 : price; // validate price
61 } // end method setPricePerItem

62

63 // get price per item

64 public double getPricePerItem()

65 {

66 return pricePerItem;

67 } // end method getPricePerItem

68

Fig. 10.12 | Invoice classthat implements Payable. (Part 3 of 4.)

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

// return String representation of Invoice object
@verride
public String toString()
{
return String.format("%s: \n%s: %s (%s) \n%s: %d \n%s: $%,.2f",
"invoice", "part number", getPartNumber(), getPartDescription(),
"quantity", getQuantity(), "price per item", getPricePerItem());
} // end method toString

// method required to carry out contract with interface Payable
@Jverride
pubTlic double getPaymentAmount() =

{
return getQuantity() * getPricePerltem(); // calculate total cost

} // end method getPaymentAmount

} // end class Invoice

Providing an
implementation of the
interface’s method(s)
makes this class
concrete

Fig. 10.12 | Invoice classthat implements Payable. (Part 4 of 4.)

10.7.4 Modifying Class Emp loyee to
Implement Interface Payable
» When a class implements an interface, it makes a contract

with the compiler
= The class will implement each of the methods in the interface or that

the class will be declared abstract.

= |f the latter, we do not need to declare the interface methods as
abstract inthe abstract class—they are already implicitly
declared as such in the interface.

= Any concrete subclass of the abstract class must implement the
Interface methods to fulfill the contract.

= |f the subclass does not do so, it too must be declared abstract.

» Each direct Emp 1oyee subclass inherits the superclass’s
contract to implement method getPaymentAmount and
thus must implement this method to become a concrete
class for which objects can be instantiated.

1 // Fig. 10.13: Employee.java

2 // Employee abstract superclass implements Payable.

3 .
4 public abstract class Employee implements Payable Abﬁg@tcbssegmndSObJe;t
5 (implicitly) and implements interface
6 private String firstName; eI

7 private String lastName;

8 private String socialSecurityNumber;

9

10 // three-argument constructor

11 public Employee(String first, String last, String ssn)

12 {

13 firstName = first;

14 lastName = last;

15 socialSecurityNumber = ssn;

16 } // end three-argument Employee constructor

17

18 // set first name

19 pubTlic void setFirstName(String first)
20 {
21 firstName = first; // should validate
22 } // end method setFirstName
23

Fig. 10.13 | Employee class that implements Payable. (Part | of 3.)

24 // return first name

25 public String getFirstName()

26 {

27 return firstName;

28 } // end method getFirstName

29

30 // set last name

31 public void setLastName(String last)
32 {

33 TastName = last; // should validate
34 } // end method setlLastName

35

36 // return last name

37 public String getLastName()

38 {

39 return lastName;

40 } // end method getLastName

41

42 // set social security number

43 public void setSocialSecurityNumber(String ssn)
44 {

45 socialSecurityNumber = ssn; // should validate
46 } // end method setSocialSecurityNumber
47

Fig. 10.13 | Employee class that implements Payable. (Part 2 of 3.)

48 // return social security number

49 public String getSocialSecurityNumber()

50 {

51 return socialSecurityNumber;

52 } // end method getSocialSecurityNumber

53

54 // return String representation of Employee object

55 @verride

56 public String toString()

57 {

58 return String.format("%s %s\nsocial security number: %s",

59 getFirstName(), getLastName(), getSocialSecurityNumber());

60 } // end method toString

61

62 // Note: We do not implement Payable method getPaymentAmount here so
63 // this class must be declared abstract to avoid a compilation error.

64 } // end abstract class Employee

We don’t implement
the interface’s method,
so this class must be
declared abstract

Fig. 10.13 | Employee class that implements Payable. (Part 3 of 3.)

10.7.5 Modifying Class
SalariedEmployee for Use in the
Payable Hierarchy

» Figure 10.14 contains a modified
SalariedEmployee class that extends Emp loyee
and fulfills superclass Emp loyee’s contract to
implement Payab1e method getPayment-

Amount.

1 // Fig. 10.14: SalariedEmployee.java

2 // SalariedEmployee class extends Employee, which implements Payable.
3

4 public class SalariedEmployee extends Employee

5 {

6 private double weeklySalary;

7

8 // four-argument constructor

9 public SalariedEmployee(String first, String Tlast, String ssn,
10 double salary)

11 {

12 super(first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary

14 } // end four-argument SalariedEmployee constructor

15

16 // set salary

17 public void setWeeklySalary(double salary)

I8 {

19 weeklySalary = salary < 0.0 ? 0.0 : salary;
20 } // end method setWeeklySalary
21

Fig. 10.14 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part | of 2.)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

// return salary
public double getWeeklySalary()
{
return weeklySalary;
} // end method getWeeklySalary

// calculate earnings; implement interface Payable method that was
// abstract in superclass Employee

@Jverride

public double getPaymentAmount() =

{
return getWeeklySalary(Q);
} // end method getPaymentAmount

// return String representation of SalariedEmployee object
@verride
public String toString()
{
return String.format("salaried employee: %s\n%s: $%,.2f",
super.toString(), "weekly salary", getWeeklySalary());
} // end method toString
} // end class SalariedEmployee

Providing an
implementation of the
interface’s method(s)
makes this class
concrete

Fig. 10.14 | salariedEmployee class that implements interface Payable method
getPaymentAmount. (Part 2 of 2.)

10.7.5 Modifying Class
Salariedemployee for Use in the
Payable Hierarchy (Cont.)

» Objects of any subclasses of a class that imp lements an
Interface can also be thought of as objects of the interface
type.

» Thus, just as we can assign the reference of a
SalariedEmployee object to a superclass Employee

variable, we can assign the reference of a
SalariedEmployee object to an interface Payable

variable.

» Invoice implements Payable, so an Invoice object
also is a Payab e object, and we can assign the reference
of an Invo7ce object to a Payab /e variable.

10.7.6 Using Interface Payable to
Process Invoices and Employees
Polymorphically

1 // Fig. 10.15: PayablelnterfaceTest.java

2 // Tests interface Payable.

3

4 public class PayableInterfaceTest

5 {

6 public static void main(String[] args)

7 {

8 // create four-element Payable array

9 Payable[] payableObjects = new Payable[4]; = Cre_ates an array of four Payable

10 variables

11 // populate array with objects that implement Payable -

12 payableObjects[0] = new Invoice("01234", "seat", 2, 375.00);

13 payableObjects[1] = new Invoice("56789", "tire", 4, 79.95); Aim each Payable
14 payableObjects[2] = B variable at an object of
15 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00); a class that implement
16 payableObjects[3] = the Payable interface
17 new SalariedEmployee("Lisa", "Barnes", "888-88-8888", 1200.00);

18 o

19 System.out.printin(
20 "Invoices and Employees processed polymorphically:\n");
21

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part | of 3.)

22 // generically process each element in array payableObjects

23 for (Payable currentPayable : payableObjects)

24 {

25 // output currentPayable and its appropriate payment amount
26 System.out.printf("%s \n¥%s: $%,.2f\n\n",

27 currentPayable.toString(),

28 "payment due', currentPayable.getPaymentAmount());

29 } // end for

30 } // end main

31 } // end class PayablelInterfaceTest

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 2 of 3.)

Invoices and Employees processed polymorphically:

invoice:
part number: 01234 (seat)
quantity: 2

price per item: $375.00
payment due: $750.00

invoice:
part number: 56789 (tire)
quantity: 4

price per item: $79.95
payment due: $319.80

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

payment due: $800.00

salaried employee: Lisa Barnes
social security number: 888-88-8888
weekly salary: $1,200.00

payment due: $1,200.00

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 3 of 3.)

10.7.7 Common Interfaces of the Java API

» The Java API’s interfaces enable you to use your own
classes within the frameworks provided by Java, such
as comparing objects of your own types and creating
tasks that can execute concurrently with other tasks in
the same program.

» Figure 10.16 presents a brief overview of a few of the
more popular interfaces of the Java APl used in Java
How to Program, Ninth Edition.

Comparable Java contains several comparison operators (e.g., <, <=, >, >=, ==,
I=) that allow you to compare primitive values. However, these
operators cannot be used to compare objects. Interface Compa-
rable is used to allow objects of a class that impTements the
interface to be compared to one another. Interface Comparable
is commonly used for ordering objects in a collection such as an
array. We use Comparable in Chapter 20, Generic Collections,
and Chapter 21, Generic Classes and Methods.

Serializable An interface used to identify classes whose objects can be writ-
ten to (i.e., serialized) or read from (i.e., deserialized) some type
of storage (e.g., file on disk, database field) or transmitted
across a network. We use Serializable in Chapter 17, Files,
Streams and Object Serialization, and Chapter 27, Networking.

Runnable Implemented by any class for which objects of that class should
be able to execute in parallel using a technique called multi-
threading (discussed in Chapter 26, Multithreading). The
interface contains one method, run, which describes the behav-
ior of an object when executed.

Fig. 10.16 | Common interfaces of the Java API. (Part | of 2.)

GUI event-listener You work with graphical user interfaces (GUIs) every day. In

interfaces your web browser, you might type the address of a website to
visit, or you might click a button to return to a previous site.
The browser responds to your interaction and performs the
desired task. Your interaction is known as an event, and the
code that the browser uses to respond to an event is known as
an event handler. In Chapter 14, GUI Components: Part 1,
and Chapter 25, GUI Components: Part 2, you'll learn how to
build GUIs and event handlers that respond to user interac-
tions. Event handlers are declared in classes that implement an
appropriate event-listener interface. Each event-listener inter-
face specifies one or more methods that must be implemented
to respond to user interactions.

SwingConstants Contains a set of constants used in GUI programming to posi-
tion GUI elements on the screen. We explore GUI program-
ming in Chapters 14 and 25.

Fig. 10.16 | Common interfaces of the Java API. (Part 2 of 2.)

Lab session: Ex. 1

» (Payroll System Modification) Modify the payroll system of
Figs. 10.4-10.9 to include private instance variable birthDate

in class Employee.

» Use class Date of Fig. 8.7 to represent an employee’s
birthday. Add get methods to class Date. Assume that payroll
is processed once per month.

» Create an array of Employee variables to store references to
the various employee objects. In a loop, calculate the payroll
for each Employee (polymorphically), and add a $100.00
bonus to the person’s payroll amount if the current month is
the one in which the Employee’s birthday occurs.

Lab session: Ex. 2

» (Payroll System Modification) Modify the payroll system of
Figs. 10.4-10.9 to include an additional Employee subclass
PieceWorker that represents an employee whose pay is based
on the number of pieces of merchandise produced.

» Class PieceWorker should contain private instance variables
wage (to store the employee’s wage per piece) and pieces (to
store the number of pieces produced).

» Provide a concrete implementation of method earnings in
class PieceWorker that calculates the employee’s earnings by
multiplying the number of pieces produced by the wage per
piece.

» Create an array of Employee variables to store references to
objects of each concrete class in the new Employee hierarchy.
For each Employee, display its String representation and
earnings.

Lab session: Ex. 3

» Extend the program with a class for invoices,
Ex. Bill, with three attributes, amount,
number and payment status.

» Introduce an interface so that bills and
employees can be paid.
= Introduce a method called pay for performing the
payment
» Test the new feature by processing the
unrelated classes polimorphically.

End of Class

