
3-1

Object-Oriented Analysis, Design and
Implementation

Case Study
Part I

Assoc. Prof. Dr. Marenglen Biba

MSc in Computer Science, UoG-UNYT

Foundation Programme

(C) 2010 Pearson Education, Inc. All rights reserved.

Assoc. Prof. Marenglen Biba

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 In Chapters 12–13, you design and implement an object-oriented
automated teller machine (ATM) software system.

 Concise, carefully paced, complete design and implementation
experience.

 Perform the steps of an object-oriented design (OOD) process
using the UML
 Sections 12.2––12.7 and 13.2–13.3
 Relate these steps to the object-oriented concepts discussed in

Chapters 2–10

 Work with UML diagrams
 Chapter 13—tune the design with inheritance, then fully

implement the ATM.
 An end-to-end learning experience that concludes with a detailed

walkthrough of the complete Java code.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A local bank intends to install a new automated teller
machine (ATM) to allow users (i.e., bank customers) to
perform basic financial transactions

 Each user can have only one account at the bank.

 ATM users
 view their account balance

 withdraw cash

 deposit funds

(C) 2010 Pearson Education, Inc. All
rights reserved.

 ATM user interface:

 a screen that displays messages to the user

 a keypad that receives numeric input from the user

 a cash dispenser that dispenses cash to the user and

 a deposit slot that receives deposit envelopes from the user.

 The cash dispenser begins each day loaded with 500

$20 bills.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The analysis stage focuses on defining the problem to

be solved.

 When designing any system, one must solve the

problem right, but of equal importance, one must solve

the right problem.

 Our requirements document describes the requirements

of our ATM system in sufficient detail that you need

not go through an extensive analysis stage —it’s been

done for you.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Use case modeling identifies the use cases of the

system, each representing a different capability that the

system provides to its clients.

 “View Account Balance”

 “Withdraw Cash”

 “Deposit Funds”

 Each use case describes a typical scenario for which the

user uses the system.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The UML 2 standard specifies 13 diagram types for

documenting the system models.

 Each models a distinct characteristic of a system’s

structure or behavior — six diagrams relate to system

structure, the remaining seven to system behavior.

 We list only the two diagram types used in our case

study.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Use case diagrams model the interactions between a system
and its external entities (actors) in terms of use cases.

 Class diagrams model the classes, or “building blocks,”
used in a system.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Identify the classes that are needed to build the system by
analyzing the nouns and noun phrases that appear in the
requirements document.

 We introduce UML class diagrams to model these classes.
 Important first step in defining the system’s structure.

 Review the requirements document and identify key nouns
and noun phrases to help us identify classes that comprise
the ATM system.
 We may decide that some of these nouns and noun phrases are

actually attributes of other classes in the system.
 We may also conclude that some of the nouns do not correspond to

parts of the system and thus should not be modeled at all.
 Additional classes may become apparent to us as we proceed through

the design process.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 We create classes only for the nouns and noun phrases

that have significance in the ATM system.

 Though the requirements document frequently

describes a “transaction” in a general sense, we do not

model the broad notion of a financial transaction at this

time.

 Instead, we model the three types of transactions (i.e., “balance

inquiry,” “withdrawal” and “deposit”) as individual classes.

 These classes possess specific attributes needed for executing

the transactions they represent.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Classes:

 ATM

 screen

 keypad

 cash dispenser

 deposit slot

 account

 bank database

 balance inquiry

 withdrawal

 deposit

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The UML enables us to model, via class diagrams, the

classes in the ATM system and their interrelationships.

 Figure 12.6 represents class ATM.

 Each class is modeled as a rectangle with three

compartments.

 The top one contains the name of the class centered

horizontally in boldface.

 The middle compartment contains the class’s attributes.

 The bottom compartment contains the class’s operations.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The solid line that connects the two classes represents

an association—a relationship between classes.

 The numbers near each end of the line are multiplicity

values, which indicate how many objects of each class

participate in the association.

 At any given moment, one ATM object participates in an

association with either zero or one Withdrawal objects—

zero if the current user is not currently performing a

transaction or has requested a different type of transaction, and

one if the user has requested a withdrawal.

 Figure 12.8 lists and explains the multiplicity types.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 In Fig. 12.9, the solid diamonds attached to the ATM

class’s association lines indicate that ATM has a

composition relationship with classes Screen,

Keypad, CashDispenser and DepositSlot.

 Composition implies a whole/part relationship.

 The class that has the composition symbol (the solid

diamond) on its end of the association line is the whole

(in this case, ATM), and the classes on the other end of

the association lines are the parts.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Composition relationships have the following properties:

 Only one class in the relationship can represent the whole

 The parts in the composition relationship exist only as long as the

whole does, and the whole is responsible for the creation and

destruction of its parts.

 A part may belong to only one whole at a time, although it may be

removed and attached to another whole, which then assumes

responsibility for the part.

 If a has-a relationship does not satisfy one or more of these

criteria, the UML specifies that hollow diamonds be

attached to the ends of association lines to indicate

aggregation—a weaker form of composition.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Classes have attributes (data) and operations (behaviors).

 Class attributes are implemented in Java programs as fields, and
class operations are implemented as methods.

 In this section, we determine many of the attributes needed in the
ATM system.

 Look for descriptive words and phrases in the requirements
document.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 An operation is a service that objects of a class provide

to clients (users) of the class.

 We can derive many of the class operations by

examining the key verbs and verb phrases in the

requirements document.

 The verb phrases in Fig. 12.16 help us determine the

operations of each class.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Java: How to Program. 9th ed. by Deitel &
Deitel
◦ Chapters 1- 10

◦ This case study: chapters 12 and 13.

(C) 2010 Pearson Education, Inc. All
rights reserved.

