
Software Engineering

Introduction to

Software Engineering

Assoc. Prof. Marenglen Biba

MSc in Computer Science, UoG-UNYT

Foundation Programme

Material

• Slides

– http://www.marenglenbiba.net/foundprog-se/

– Sufficient for FP exam purposes

• Reference book

– B. Bruegge & A. H. Dutoit. Object-Oriented Software Engineering:
Using UML, Patterns, and Java, 2nd Edition. (in library)

• Other useful material

– I. Sommerville. Software Engineering (in library)

– R. Pressman. Software Engineering: A Practitioner's Approach
(in library)

– B. Bruegge & A. H. Dutoit. Object-Oriented Software Engineering:

Using UML, Patterns, and Java, 2nd Edition. (in library)

http://www.marenglenbiba.net/foundprog-se/
http://www.marenglenbiba.net/foundprog-se/
http://www.marenglenbiba.net/foundprog-se/

Intro to Software Engineering

• The Software Engineering Discipline

• The Software Process

Why Software Engineering?

• The new Airbus A380 uses a substantial amount of software to

create a "paperless“ cockpit.

• Software engineering successfully maps and plans the millions of

lines of code comprising the plane's software

Software Disasters

• Software errors cost the U.S. economy $60 billion

annually in rework, lost productivity and actual damages.

• We all know software bugs can be annoying, but faulty

software can also be expensive, embarrassing,

destructive and deadly.

Software Disasters

Mariner Bugs Out (1962)

• Cost: $18.5 million

• Disaster: The Mariner 1 rocket with a space

probe headed for Venus diverted from its

intended flight path shortly after launch. Mission

Control destroyed the rocket 293 seconds after

liftoff.

• Cause: A programmer incorrectly transcribed a

handwritten formula into computer code, missing

a single superscript bar. Without the smoothing

function indicated by the bar, the software treated

normal variations of velocity as if they were

serious, causing faulty corrections that sent the

rocket off course.

Software Disasters

Ariane Rocket Goes Boom (1996)

• Cost: $500 million

• Disaster: Ariane 5, Europe‟s newest
unmanned rocket, was intentionally
destroyed seconds after launch on its
maiden flight. Also destroyed was its cargo
of four scientific satellites to study how the
Earth‟s magnetic field interacts with solar
winds.

• Cause: Shutdown occurred when the
guidance computer tried to convert the
sideways rocket velocity from 64-bits to a
16-bit format. The number was too big,
and an overflow error resulted. When the
guidance system shut down, control
passed to an identical redundant unit,
which also failed because it was running
the same algorithm.

Software Disasters

Hartford Coliseum Collapse (1978)

• Cost: $70 million, plus another $20 million

damage to the local economy

• Disaster: Just hours after thousands of fans

had left the Hartford Coliseum, the steel-

latticed roof collapsed under the weight of

wet snow.

• Cause: The programmer of the CAD

software used to design the coliseum

incorrectly assumed the steel roof supports

would only face pure compression. But when

one of the supports unexpectedly buckled

from the snow, it set off a chain reaction that

brought down the other roof sections like

dominoes.

Software Disasters

World War III… Almost (1983)

• Cost: Nearly all of humanity

• Disaster: The Soviet early warning system

falsely indicated the United States had

launched five ballistic missiles. Fortunately

the Soviet duty officer had a “funny feeling

in my gut” and reasoned if the U.S. was

really attacking they would launch more

than five missiles, so he reported the

apparent attack as a false alarm.

• Cause: A bug in the Soviet software failed

to filter out false missile detections caused

by sunlight reflecting off cloud-tops.

Software Disasters

Wall Street Crash (1987)

• Cost: $500 billion in one day

• Disaster: On “Black Monday” (October

19, 1987), the Dow Jones Industrial

Average plummeted 508 points, losing

22.6% of its total value. The S&P 500

dropped 20.4%. This was the greatest

loss Wall Street ever suffered in a single

day.

• Cause: A long bull market was halted by

a rash of SEC investigations of insider

trading and by other market forces. As

investors fled stocks in a mass exodus,

computer trading programs generated a

flood of sell orders, overwhelming the

market, crashing systems and leaving

investors effectively blind.

Software Engineering Disasters

Oops

Software Engineering Disasters

Oops

Software Engineering in Economy

 The economies of ALL developed nations are

dependent on software.

More and more systems are software controlled

 Software engineering is concerned with theories,

methods and tools for professional software

development.

 Expenditure on software represents a

significant fraction of GNP in all developed countries.

Software costs

 Software costs often dominate computer system costs.

The costs of software on a PC are often greater than the

hardware cost.

 Software costs more to maintain than it does to develop.

For systems with a long life, maintenance costs may be

several times development costs.

 Software engineering is concerned with cost-effective

software development.

Origins

• The term software engineering first appeared in the 1968 NATO

Software Engineering Conference and was meant to provoke

thought regarding the current "software crisis" at the time.

• Since then, it has continued as a profession and field of study

dedicated to creating software that is of higher quality, more

affordable, maintainable, and quicker to build.

• Although it is questionable what impact it has had on actual software

development over the last more than 40 years, the field's future looks

bright.

– According to important rating companies who have rated "software engineering"

as the best job in America in different years.

– http://money.cnn.com/magazines/moneymag/best-jobs/.

– Best job in America for many years

http://money.cnn.com/magazines/moneymag/best-jobs/
http://money.cnn.com/magazines/moneymag/best-jobs/
http://money.cnn.com/magazines/moneymag/best-jobs/

Why is Software Development difficult?

• The problem is usually ambiguous

• The requirements are usually unclear and changing when they

become clearer

• The problem domain (called application domain) is complex, and so

is the solution domain

• The development process is difficult to manage

• Software offers extreme flexibility

David Lorge Parnas - an early pioneer in

software engineering who developed the

concepts of modularity and information hiding

in systems which are the foundation of

object oriented methodologies.

Software Development is more than just

Writing Code

• It is problem solving

– Understanding a problem

– Proposing a solution and plan

– Engineering a system based on the proposed

solution using a good design

• It is about dealing with complexity

– Creating abstractions and models

– Notations for abstractions

• It is knowledge management

– Elicitation, analysis, design, validation of �the

system and the solution process

• It is rationale management

– Making the design and development decisions

explicit to all stakeholders involved.

Techniques, Methodologies and

Tools

• Techniques:

– Formal procedures for producing results using some

well-defined notation

• Methodologies:

– Collection of techniques applied across software

development and unified by a philosophical approach

• Tools:

– Instruments or automated systems to accomplish a

technique

– Interactive Development Environment (IDE)

– Computer Aided Software Engineering (CASE)

Computer Science vs. Software

Engineering

• Computer Scientist

– Assumes techniques and tools have to be developed.

– Proves theorems about algorithms, designs languages, defines

knowledge representation schemes

– Has infinite time…

• Engineer

– Develops a solution for a problem formulated by a client

– Uses computers & languages, techniques and tools

• Software Engineer

– Works in multiple application domains

– Has only 3 months...

– …while changes occurs in the problem formulation (requirements)

and also in the available technology.

20

Challenge: Dealing with complexity and
change

Software Engineering is a collection of techniques,
methodologies and tools that help with the
production of

A high quality software system developed with

a given budget before a given deadline while
change occurs

Software Engineering: A Working Definition

Software Engineering:

 A Problem Solving Activity

• Analysis:

– Understand the nature of the problem and break the

problem into pieces

• Synthesis:

– Put the pieces together into a large structure

For problem solving we use techniques, methodologies and

tools.

Frequently asked questions about

software engineering

22

Question Answer

What is software? Computer programs and associated documentation.

Software products may be developed for a particular

customer or may be developed for a general market.

What are the attributes of good software? Good software should deliver the required functionality

and performance to the user and should be

maintainable, dependable and usable.

What is software engineering? Software engineering is an engineering discipline that is

concerned with all aspects of software production.

What are the fundamental software

engineering activities?

Software specification, software development, software

validation and software evolution.

What is the difference between software

engineering and computer science?

Computer science focuses on theory and fundamentals;

software engineering is concerned with the practicalities

of developing and delivering useful software.

What is the difference between software

engineering and system engineering?

System engineering is concerned with all aspects of

computer-based systems development including

hardware, software and process engineering. Software

engineering is part of this more general process.

Frequently asked questions about

software engineering

Question Answer

What are the key challenges facing

software engineering?

Coping with increasing diversity, demands for reduced

delivery times and developing trustworthy software.

What are the costs of software

engineering?

Roughly 60% of software costs are development costs,

40% are testing costs. For custom software, evolution

costs often exceed development costs.

What are the best software engineering

techniques and methods?

While all software projects have to be professionally

managed and developed, different techniques are

appropriate for different types of system. For example,

games should always be developed using a series of

prototypes whereas safety critical control systems require

a complete and analyzable specification to be developed.

You can‟t, therefore, say that one method is better than

another.

What differences has the web made to

software engineering?

The web has led to the availability of software services

and the possibility of developing highly distributed service-

based systems. Web-based systems development has led

to important advances in programming languages and

software reuse.

23

Essential attributes of good software

24

Product characteristic Description

Maintainability Software should be written in such a way so that it can evolve to

meet the changing needs of customers. This is a critical attribute

because software change is an inevitable requirement of a

changing business environment.

Dependability and

security

Software dependability includes a range of characteristics

including reliability, security and safety. Dependable software

should not cause physical or economic damage in the event of

system failure. Malicious users should not be able to access or

damage the system.

Efficiency Software should not make wasteful use of system resources such

as memory and processor cycles. Efficiency therefore includes

responsiveness, processing time, memory utilisation, etc.

Acceptability Software must be acceptable to the type of users for which it is

designed. This means that it must be understandable, usable and

compatible with other systems that they use.

Software engineering: not just an

engineering discipline

 Software engineering is an engineering discipline that is

concerned with all aspects of software production from

the early stages of system specification through to

maintaining the system after it has gone into use.

 Engineering discipline

 Using appropriate theories and methods to solve problems

bearing in mind organizational and financial constraints.

 All aspects of software production

 Not just technical process of development.

 Also project management and the development of tools, methods

etc. to support software production.

25

General issues that affect most

software

 Heterogeneity

 Increasingly, systems are required to operate as distributed

systems across networks that include different types of computer

and mobile devices.

 Business and social change

 Business and society are changing incredibly quickly as

emerging economies develop and new technologies become

available. They need to be able to change their existing software

and to rapidly develop new software.

 Security and trust

 As software is intertwined with all aspects of our lives, it is

essential that we can trust that software.

26

Application types

 Stand-alone applications

 These are application systems that run on a local computer, such

as a PC. They include all necessary functionality and do not need

to be connected to a network.

 Interactive transaction-based applications

 Applications that execute on a remote computer and are

accessed by users from their own PCs or terminals. These

include web applications such as e-commerce applications.

 Embedded control systems

 These are software control systems that control and manage

hardware devices. Numerically, there are probably more

embedded systems than any other type of system.

27

Application types

 Batch processing systems

 These are business systems that are designed to process data in

large batches. They process large numbers of individual inputs to

create corresponding outputs.

 Entertainment systems

 These are systems that are primarily for personal use and which

are intended to entertain the user.

 Systems for modeling and simulation

 These are systems that are developed by scientists and

engineers to model physical processes or situations, which

include many, separate, interacting objects.

28

Application types

 Data collection systems

 These are systems that collect data from their environment using

a set of sensors and send that data to other systems for

processing.

 Systems of systems

 These are systems that are composed of a number of other

software systems.

29

Software engineering fundamentals

 Some fundamental principles apply to all types of

software system, irrespective of the development

techniques used:

 Systems should be developed using a managed and understood

development process. Of course, different processes are used for

different types of software.

 Dependability and performance are important for all types of

system.

 Understanding and managing the software specification and

requirements (what the software should do) are important.

 Where appropriate, you should reuse software that has already

been developed rather than write new software.

30

Software engineering and the web

 The Web is now a platform for running application and

organizations are increasingly developing web-based

systems rather than local systems.

Web services allow application functionality to be

accessed over the web.

 Cloud computing is an approach to the provision of

computer services where applications run remotely on

the „cloud‟.

 Users do not buy software buy pay according to use.

31

Web software engineering

 Software reuse is the dominant approach for constructing

web-based systems.

 When building these systems, you think about how you can

assemble them from pre-existing software components and systems.

Web-based systems should be developed and delivered

incrementally.

 It is now generally recognized that it is impractical to specify all the

requirements for such systems in advance.

 User interfaces are constrained by the capabilities of web

browsers.

 Technologies such as AJAX allow rich interfaces to be created

within a web browser but are still difficult to use. Web forms with

local scripting are more commonly used.

32

Web-based software engineering

Web-based systems are complex distributed systems but

the fundamental principles of software engineering

discussed previously are as applicable to them as they

are to any other types of system.

 The fundamental ideas of software engineering,

discussed here, apply to web-based software in the same

way that they apply to other types of software system.

33

The ACM/IEEE Code of Ethics

34

Software Engineering Code of Ethics and Professional Practice

ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE

The short version of the code summarizes aspirations at a high level of the abstraction; the

clauses that are included in the full version give examples and details of how these

aspirations change the way we act as software engineering professionals. Without the

aspirations, the details can become legalistic and tedious; without the details, the

aspirations can become high sounding but empty; together, the aspirations and the details

form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design,

development, testing and maintenance of software a beneficial and respected profession. In

accordance with their commitment to the health, safety and welfare of the public, software

engineers shall adhere to the following Eight Principles:

7-35

Intro to Software Engineering

• The Software Engineering Discipline

• The Software Process

Software Process

 Software process models

 Process activities

 Coping with change

 The Rational Unified Process

 An example of a modern software process.

36

Inherent Problems with Software

Development

• Requirements are constantly changing

– The client might not know all the requirements in

advance

• Frequent changes are difficult to manage

– Identifying checkpoints for planning and cost

estimation is difficult

• There is more than one software system

– New system must often be backward compatible with

existing system (“legacy system”)

The software process

 A structured set of activities required to develop a software system.

 Many different software processes but all involve:

 Specification – defining what the system should do;

 Design – defining the organization of the system

 Implementation –implementing the system;

 Validation – checking that it does what the customer wants;

 Evolution – changing the system in response to changing

customer needs.

 A software process model is an abstract representation of a process.

It presents a description of a process from some particular

perspective.

38

Software process descriptions

When we describe and discuss processes, we usually

talk about the activities in these processes such as

specifying a data model, designing a user interface, etc.

and the ordering of these activities.

 Process descriptions may also include:

 Products, which are the outcomes of a process activity;

 Roles, which reflect the responsibilities of the people involved in

the process;

 Pre- and post-conditions, which are statements that are true

before and after a process activity has been enacted or a product

produced.

39

0-40

Software lifecycle

Software Life Cycle

• The term “Lifecycle” is based on the metaphor of the life of a person:

Post-

Development

Conception

Development Pre- Development

Childhood Adulthood Retirement Childhood

Software Lifecycle Definition

• Software lifecycle

– Models for the development of software

• Set of activities and their dependency relationships

to each other to support the development of a software

system

• Examples:

– Analysis, design, implementation, testing

– Design depends on analysis

A Typical Example

of Software Lifecycle Activities

System

Design

Detailed

Design

Implemen-

tation
Testing

Requirements

Elicitation
Analysis

Software Lifecycle Activities

System

Design

Detailed

Design

Implemen-

tation
Testing

Requirements

Elicitation

Use Case
Model

Analysis

Software Lifecycle Activities

Application
Domain
Objects

Expressed in

terms of

Use Case
Model

System

Design

Detailed

Design

Implemen-

tation
Testing

Requirements

Elicitation
Analysis

Software Lifecycle Activities

Sub-
systems

Structured

by

Application
Domain
Objects

Expressed in

terms of

Use Case
Model

System

Design

Detailed

Design

Implemen-

tation
Testing

Requirements

Elicitation
Analysis

Software Lifecycle Activities

Sub-
systems

Structured

by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in

terms of

Use Case
Model

System

Design

Detailed

Design

Implemen-

tation
Testing

Requirements

Elicitation
Analysis

Software Lifecycle Activities

Sub-
systems

Structured

by

class...

class...

class...

Source
Code

Implemented by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in

terms of

Use Case
Model

System

Design

Detailed

Design

Implemen-

tation
Testing

Requirements

Elicitation
Analysis

Software Lifecycle Activities

Sub-
systems

Structured

by

class...

class...

class...

Source
Code

Implemented by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in

terms of

Test
Case

Model

?

Verified

By

class.... ?
Use Case

Model

System

Design

Detailed

Design

Implemen-

tation
Testing

Requirements

Elicitation
Analysis

Plan-driven and agile processes

 Plan-driven processes are processes where all of the

process activities are planned in advance and progress is

measured against this plan.

 In agile processes, planning is incremental and it is

easier to change the process to reflect changing

customer requirements.

 In practice, most practical processes include elements of

both plan-driven and agile approaches.

 There are no right or wrong software processes.

50

Reuse-oriented software engineering

 Reuse-oriented software engineering

 The system is assembled from existing components.

 May be plan-driven or agile.

51

Software Lifecycles Standards

• Software Development as Application Domain

– Modeling the software lifecycle

• IEEE Standard 1074 for Software Lifecycles

• Modeling the software life cycle

– Sequential models

• Pure waterfall model

– Iterative models

• Boehm‟s spiral model

• Unified Process

The Waterfall

Model of the

Software Life Cycle

Example of a waterfall model : DOD

Standard 2167A
• Software development activities:

– System Requirements Analysis/Design

– Software Requirements Analysis

– Preliminary Design and Detailed Design

– Coding and CSU testing

– CSC Integration and Testing

– CSCI Testing

– System integration and Testing

• Required by the U.S. Department of Defense for all

software contractors in the 1980-90‟s.

Activity Diagram of

MIL DOD-STD-2167A

Preliminary

Design Review

Critical Design

Review (CDR)

System

Requirements

Review

System

Design

Review

Software

Specification

Review

System
Requirements

Analysis

Software

Requirements
Analysis

System

Design

…

Preliminary
Design

Detailed
Design

Coding &

CSU Testing

CSC
Integration

& Testing

From the Waterfall Model to the V Model

System Design

Requirements
Analysis

Requirements
Engineering

Object Design

Integration

Testing

System

Testing

Unit

 Testing

Implemen-

tation

System

Testing

Unit

 Testing

Integration

 Testing

Acceptance

The V-model is a variation of the waterfall

model that makes explicit the dependency

between development activities and

verification activities.

Activity Diagram of the V Model
System

Requirements
Analysis

Implementation

Preliminary
Design

Detailed
Design

Software
Requirements
Elicitation

Operation

Client
Acceptance

Requirements
Analysis

Unit
Test

System
Integration
& Test

Component
Integration
& Test

Problem with the V-Model:

Developers Perception =

 User Perception

precedes
Is validated by

Properties of Waterfall-based Models

• Managers love waterfall models

– Nice milestones

– No need to look back (linear system)

– Always one activity at a time

– Easy to check progress during development:

90% coded, 20% tested

• However, software development is non-linear

– While a design is being developed, problems

with requirements are identified

– While a program is being coded, design and

requirement problems are found

– While a program is tested, coding errors,

design errors and requirement errors are

found.

• The spiral model proposed by Boehm has the following set
of activities

– Determine objectives and constraints

– Evaluate alternatives

– Identify risks

– Resolve risks by assigning priorities to risks

– Develop a series of prototypes for the identified risks
starting with the highest risk

– Use a waterfall model for each prototype development

– If a risk has successfully been resolved, evaluate the
results of the round and plan the next round

– If a certain risk cannot be resolved, terminate the project
immediately

• This set of activities is applied to a couple of so-called
rounds.

Spiral Model

Rounds in Boehm’s Spiral Model

• Concept of Operations

• Software Requirements

• Software Product Design

• Detailed Design

• Code

• Unit Test

• Integration and Test

• Acceptance Test

• Implementation

• For each round go through

these activities:

– Define objectives,

alternatives, constraints

– Evaluate alternatives,

identify and resolve risks

– Develop and verify a

prototype

– Plan the next round.

Diagram of Boehm’s Spiral Model

Round 1, Concept of Operations, Quadrant IV:

Determine Objectives,Alternatives & Constraints

Project

Start

Round 1, Concept of Operations, Quadrant I:

Evaluate Alternatives, identify & resolve Risks

Risk Analysis

Round 1, Concept of Operations, Quadrant II:

Develop and Verify

Concept of Operation

Activity

Round 1, Concept of Operations, Quadrant III:

Prepare for Next Activity

Requirements and

Life cycle Planning

Round 2, Software Requirements, Quadrant IV:

Determine Objectives,Alternatives & Constraints

Start

of Round 2

Limitations of Waterfall and Spiral

Models

• Neither of these models deal well with frequent change

– The Waterfall model assumes that once you are done

with a phase, all issues covered in that phase are

closed and cannot be reopened

– The Spiral model can deal with change between

phases, but does not allow change within a phase

• What do you do if change is happening more frequently?

– In software development “The only constant is the

change”

Coping with change

 Change is inevitable in all large software projects.

 Business changes lead to new and changed system

requirements

 New technologies open up new possibilities for improving

implementations

 Changing platforms require application changes

 Change leads to rework so the costs of change include

both rework (e.g. re-analysing requirements) as well as

the costs of implementing new functionality

68

Reducing the costs of rework

 Change avoidance, where the software process includes

activities that can anticipate possible changes before

significant rework is required.

 For example, a prototype system may be developed to show

some key features of the system to customers.

 Change tolerance, where the process is designed so that

changes can be accommodated at relatively low cost.

 This normally involves some form of incremental development.

 Proposed changes may be implemented in increments that have

not yet been developed. If this is impossible, then only a single

increment (a small part of the system) may have be altered to

incorporate the change.

69

An Alternative: Issue-Based

Development
• A system is described as a collection of issues

– Issues are either closed or open

– Closed issues have a resolution

– Closed issues can be reopened (Iteration!)

• The set of closed issues is the basis of the system model

I1:Open

I2:Closed I3:Closed

A.I1:Open

A.I2:Open

SD.I1:Closed

SD.I2:Closed

SD.I3:Closed

Planning Requirements Analysis System Design

Waterfall Model: Analysis Phase

I1:Open

I2:Open I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:Open Analysis Analysis

Waterfall Model: Design Phase

I1:Closed

I2:Closed I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:Open Analysis

Design

Analysis

Waterfall Model: Implementation

Phase
I1:Closed

I2:Closed I3:Closed

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2:Open

SD.I3:Open

Implementation

Design

Analysis

Waterfall Model: Project is Done

I1:Closed

I2:Closed I3:Closed

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2:Open

SD.I3:Open

Implementation

Design

Analysis

Issue-Based Model: Analysis Phase

I1:Open

I2:Open I3:Open

D.I1:Open

Imp.I1:Open

Analysis:80%

 Design: 10%

Implemen-

tation: 10%

Issue-Based Model: Design Phase

I1:Closed

I2:Closed I3:Open

SD.I1:Open

SD.I2:Open

Imp.I1:Open

Imp.I2:Open

Imp.I3:Open
Analysis:40%

 Design: 60%

Implemen-

tation: 0%

Issue-Based Model: Implementation

Phase
I1:Open

I2:Closed I3:Closed

A.I1:Open

A.I2:Closed

SD.I1:Open

SD.I2:Closed

SD.I3:Open

Analysis:10%

Design: 10%

Implemen-

tation: 60%

Issue-Based Model: Prototype is

Done
I1:Closed

I2:Closed I3: Pending

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2: Unresolved

SD.I3:Closed

The Rational Unified Process

 A modern generic process derived from the work on the

UML and associated process.

 Brings together aspects of the 3 generic process models

discussed previously.

 Normally described from 3 perspectives

 A dynamic perspective that shows phases over time;

 A static perspective that shows process activities;

 A practice perspective that suggests good practice.

79

RUP phases

 Inception

 Establish the business case for the system.

 Elaboration

 Develop an understanding of the problem domain and the system

architecture.

 Construction

 System design, programming and testing.

 Transition

 Deploy the system in its operating environment.

80

RUP

Phases in the Rational Unified

Process

82

RUP iteration

 In-phase iteration

 Each phase is iterative with results developed incrementally.

 Cross-phase iteration

 As shown by the loop in the RUP model, the whole set of phases

may be enacted incrementally.

 At the end of each repetition some kind of prototype or artefact are

produced.

 The phases can be repeated many times (i.e. iterations),

producing one or many prototypes or artefacts.

 In each of the iterations other workflows can be addressed and

involved.

83

Static workflows in the Rational

Unified Process

Workflow Description

Business modelling The business processes are modelled using business

use cases.

Requirements Actors who interact with the system are identified and

use cases are developed to model the system

requirements.

Analysis and design A design model is created and documented using

architectural models, component models, object

models and sequence models.

Implementation The components in the system are implemented and

structured into implementation sub-systems.

Automatic code generation from design models helps

accelerate this process.

84

Static workflows in the Rational

Unified Process

Workflow Description

Testing Testing is an iterative process that is carried out in conjunction

with implementation. System testing follows the completion of

the implementation.

Deployment A product release is created, distributed to users and installed in

their workplace.

Configuration and

change management

This supporting workflow managed changes to the system (see

Chapter 25).

Project management This supporting workflow manages the system development (see

Chapters 22 and 23).

Environment This workflow is concerned with making appropriate software

tools available to the software development team.

85

RUP good practice

 Develop software iteratively

 Plan increments based on customer priorities and deliver highest

priority increments first.

Manage requirements

 Explicitly document customer requirements and keep track of

changes to these requirements.

 Use component-based architectures

 Organize the system architecture as a set of reusable

components.

86

RUP good practice

 Visually model software

 Use graphical UML models to present static and dynamic views

of the software.

 Verify software quality

 Ensure that the software meet‟s organizational quality standards.

 Control changes to software

 Manage software changes using a change management system

and configuration management tools.

87

End of class

• Get the material from

– http://www.marenglenbiba.net/foundprog-se/

– Sufficient for FP exam purposes

http://www.marenglenbiba.net/foundprog/
http://www.marenglenbiba.net/foundprog/
http://www.marenglenbiba.net/foundprog/

