
3-1

Software Engineering

Object-Oriented Analysis and Design

and

Modeling with UML

Assoc. Prof. Marenglen Biba

MSc in Computer Science, UoG-UNYT

Foundation Programme

Material

• Get the material from

– http://www.marenglenbiba.net/foundprog/

– Sufficient for FP exam purposes

• Other useful material

– I. Sommerville. Software Engineering (in library)

– R. Pressman. Software Engineering: A Practitioner's Approach
(in library)

– B. Bruegge & A. H. Dutoit. Object-Oriented Software Engineering:

Using UML, Patterns, and Java, 2nd Edition.

http://www.marenglenbiba.net/foundprog/

Class Diagrams

• Class diagrams represent the structure of the system

• Used

– during requirements analysis to model application domain

concepts

– during system design to model subsystems

– during object design to specify the detailed behavior and

attributes of classes.

Table zone2price

Enumeration getZones()

Price getPrice(Zone)

TarifSchedule

* *

Trip

zone:Zone

Price: Price

Classes

• A class represents a concept

• A class encapsulates state (attributes) and behavior
(operations)

Table zone2price

Enumeration getZones()

Price getPrice(Zone)

TarifSchedule

zone2price

getZones()

getPrice()

TarifSchedule

Name

Attributes

Operations

Signature

TarifSchedule

The class name is the only mandatory information

Each attribute has a type
Each operation has a signature

Type

Instances

• An instance represents a phenomenon

• The attributes are represented with their values

• The name of an instance is underlined

• The name can contain only the class name of the
instance (anonymous instance)

zone2price = {

{‘1’, 0.20},

{‘2’, 0.40},

{‘3’, 0.60}}

tarif2006:TarifSchedule

zone2price = {

{‘1’, 0.20},

{‘2’, 0.40},

{‘3’, 0.60}}

:TarifSchedule

Associations

Associations denote relationships between classes

Price

Zone
Enumeration getZones()

Price getPrice(Zone)

TarifSchedule TripLeg

* *

The multiplicity of an association end denotes how many
objects the instance of a class can legitimately reference.

1-to-1 and 1-to-many Associations

1-to-1 association

1-to-many association

Polygon

draw()

Point

x: Integer

y: Integer

*

Country

name:String

City

name:String

11

Many-to-many Associations

StockExchange Company

tickerSymbol
Lists

**

• A stock exchange lists many companies.
• Each company is identified by a ticker symbol

From Problem Statement To Object

Model

Class Diagram:

StockExchange Company

tickerSymbol
Lists

**

Problem Statement: A stock exchange lists many companies.

Each company is uniquely identified by a ticker symbol

From Problem Statement to Code

Problem Statement : A stock exchange lists many companies.
Each company is identified by a ticker symbol

Class Diagram:

private Vector m_Company = new Vector();

public int m_tickerSymbol;
private Vector m_StockExchange = new Vector();

public class StockExchange
{

};

public class Company
{

};

Java Code

StockExchange Company

tickerSymbol
Lists

**

Associations

are mapped to

Attributes!

Qualification: Another Example

*StockExchange
Company

Lists *
tickerSymbol

1

StockExchange

Company

tickerSymbol
Lists **

Aggregation
• An aggregation is a special case of association denoting a

“consists-of” hierarchy

• The aggregate is the parent class,

the components are the children classes

Exhaust system

Muffler

diameter

Tailpipe

diameter

1 0..2

TicketMachine

ZoneButton

3

A solid diamond denotes composition: A strong form of
aggregation where the life time of the component instances
is controlled by the aggregate. That is, the parts don’t exist
on their own (“the whole controls/destroys the parts”)

Inheritance

• Inheritance is another special case of an association

denoting a “kind-of” hierarchy

• Inheritance simplifies the analysis model by introducing a

taxonomy

• The children classes inherit the attributes and

operations of the parent class.

Button

ZoneButtonCancelButton

Packages

• Packages help you to organize UML models to increase

their readability

• We can use the UML package mechanism to organize

classes into subsystems

• Any complex system can be decomposed into

subsystems, where each subsystem is modeled as a

package.

Account

CustomerBank

Object Modeling in Practice

Class Identification: Name of Class, Attributes and Methods

Is Foo the right name?

Foo

Amount

CustomerId

Deposit()
Withdraw()
GetBalance()

Object Modeling in Practice:

Brainstorming

Foo

Amount

CustomerId

Deposit()
Withdraw()
GetBalance()

Account

Amount

CustomerId

Deposit()
Withdraw()
GetBalance()Is Foo the right name?

“Dada”

Amount

CustomerId

Deposit()
Withdraw()
GetBalance()

Object Modeling in Practice: More

classes

Account

Amount

Deposit()
Withdraw()
GetBalance()

Customer

Name

CustomerId

CustomerIdAccountIdBank

Name

1) Find New Classes

2) Review Names, Attributes and Methods

Object Modeling in Practice:

Associations

Account

Amount

Deposit()
Withdraw()
GetBalance()

Customer

Name

CustomerId

CustomerIdAccountI
d

AccountIdBank

Name

1) Find New Classes

2) Review Names, Attributes and Methods

3) Find Associations between Classes

owns

4) Label the generic assocations

6) Review

associations

*
2

*?

has

5) Determine the multiplicity of the assocations

Practice Object Modeling: Find

Taxonomies

Savings

Account

Withdraw()

Checking

Account

Withdraw()

Mortgage

Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountI
d

AccountId

Customer

Name

CustomerId()

Has*
Bank

Name
*

Sequence Diagrams

• Used during analysis

– To refine use case descriptions

– to find additional objects

(“participating objects”)

• Used during system design

– to refine subsystem interfaces

• Instances are represented by

rectangles. Actors by sticky figures

• Lifelines are represented by

dashed lines

• Messages are represented by

arrows

• Activations are represented by

narrow rectangles.

selectZone()

pickupChange()

pickUpTicket()

insertCoins()

TicketMachine
Passenger

Focus on

Controlflow

Messages ->

Operations on

participating Object

zone2price

selectZone()

insertCoins()

pickupChange()

pickUpTicket()

TicketMachine

Sequence Diagrams can also model the Flow of

Data

• The source of an arrow indicates the activation which sent

the message

• Horizontal dashed arrows indicate data flow, for example

return results from a message

Passenger

selectZone()

ZoneButton TarifSchedule Display

lookupPrice(selection)

displayPrice(price)

price

Dataflow

…continued on next slide...

Sequence Diagrams: Iteration &

Condition

• Iteration is denoted by a * preceding the message

name

• Condition is denoted by boolean expression in []

before the message name

Passenger
ChangeProcessor

insertChange(coin)

CoinIdentifier Display CoinDrop

displayPrice(owedAmount)

lookupCoin(coin)

price

[owedAmount<0] returnChange(-owedAmount)

Iteration

Condition

…continued on next slide...

…continued from previous slide...

*

Creation and destruction

• Creation is denoted by a message arrow pointing to the object

• Destruction is denoted by an X mark at the end of the destruction

activation

– In garbage collection environments, destruction can be used to

denote the end of the useful life of an object.

Passenger
ChangeProcessor

…continued from previous slide...

Ticket

createTicket(selection)

free()

Creation of Ticket

Destruction of Ticket

print()

Sample code for the diagram
public class Machine{

Display ds = new Display();

private ZoneButton zb = new ZoneButton(ds);

private TarifSchedule tf = new TarifSchedule();

public static void main(String[] args){

int selection = zb.selectZone();

double price = tf.lookupPrice(selection);

zb.sendPrice(price);

}

public class ZoneButton{

private Display ds;

public ZoneButton(Display ds){

this.ds = ds;

}

public void sendPrice(double price){

ds.displayPrice(price);

}
7-24

Sequence Diagram Properties

• UML sequence diagram represent behavior

in terms of interactions

• Useful to identify or find missing objects

• Time consuming to build, but worth the

investment

• Complement the class diagrams (which

represent structure).

UML Summary

• UML provides a wide variety of notations for representing many

aspects of software development

– Powerful, but complex

• UML is a powerful language

– Can be misused to generate unreadable models

– Can be misunderstood when using too many exotic features

• We concentrated on a few notations:

– Functional model: Use case diagram

– Object model: class diagram

– Dynamic model: sequence diagrams, statechart and activity

diagrams.

Lab Session on UML

• Class diagrams

7-27

