
3-1

Software Engineering

Object-Oriented Analysis and Design

and

Modeling with UML

Assoc. Prof. Marenglen Biba

MSc in Computer Science, UoG-UNYT

Foundation Programme

Material

• Get the material from

– http://www.marenglenbiba.net/foundprog/

– Sufficient for FP exam purposes

• Other useful material

– I. Sommerville. Software Engineering (in library)

– R. Pressman. Software Engineering: A Practitioner's Approach
(in library)

– B. Bruegge & A. H. Dutoit. Object-Oriented Software Engineering:

Using UML, Patterns, and Java, 2nd Edition.

Requirements Analysis and UML

• Abstraction and Modeling

• Decomposition

• Hierarchy

• Object-Oriented Modeling

• UML Diagrams

• Use case diagrams

• Case study in lab

What is the problem with this Drawing?

Abstraction

• Complex systems are hard to understand

• The 7 +- 2 phenomena

• Our short term memory cannot store more than 7+-2
pieces at the same time -> limitation of the brain

• My Phone Number: 498928918204

Abstraction

• Chunking:

• Group collection of objects to reduce complexity

• 4 chunks:

• State-code, Area-code, Local-Prefix, Internal-Nr

• Complex systems are hard to understand

• The 7 +- 2 phenomena

• Our short term memory cannot store more than 7+-2
pieces at the same time -> limitation of the brain

• My Phone Number: 498928918204

Abstraction

Phone Number

Country-Code Area-Code Local-Prefix Internal-Nr

• Chunking:

• Group collection of objects to reduce complexity

• State-code, Area-code, Local Prefix, Internal-Nr

• Complex systems are hard to understand

• The 7 +- 2 phenomena

• Our short term memory cannot store more than 7+-2
pieces at the same time -> limitation of the brain

• My Phone Number: 498928918204

We use Models to describe Software
Systems

• Object model: What is the structure of

the system?

• Functional model: What are the

functions of the system?

• Dynamic model: How does the system

react to external events?

• System Model: Object model +

functional model + dynamic model

Technique to deal with
Complexity: Decomposition

• A technique used to master complexity (“divide and
conquer”)

• Two major types of decomposition

– Functional decomposition

– Object-oriented decomposition

• Functional decomposition

– The system is decomposed into modules

– Each module is a major function in the application
domain

– Modules can be decomposed into smaller modules.

Decomposition (cont’d)

• Object-oriented decomposition
– The system is decomposed into classes (“objects”)

– Each class is a major entity in the application

domain

– Classes can be decomposed into smaller classes

Class Identification

• Basic assumptions:

–We can find the classes for a new software

system: Greenfield Engineering

–We can identify the classes in an existing

system: Reengineering

–We can create a class-based interface to an

existing system: Interface Engineering.

Hierarchy

• So far we got abstractions

–This leads us to classes and objects

–“Chunks”

• Another way to deal with complexity is to
provide relationships between these chunks

• One of the most important relationships is
hierarchy

• 2 special hierarchies

• "Part-of" hierarchy

• "Is-kind-of" hierarchy.

I/O Devices CPU Memory

Part-of Hierarchy (Aggregation)

Computer

Cache ALU Program
 Counter

Is-Kind-of Hierarchy (Taxonomy)

Cell

Muscle Cell Blood Cell Nerve Cell

Striate Smooth Red White Cortical Pyramidal

Where are we?

• Three ways to deal with complexity:

– Abstraction, Decomposition, Hierarchy

• Object-oriented decomposition is good

– Unfortunately, depending on the purpose of the

system, different objects can be found

• How can we do it right?

– Start with a description of the functionality of a system

– Then proceed to a description of its structure

• Ordering of development activities

– Software lifecycle

Requirements Elicitation

• UML diagrams

• Case Study: Use case diagrams with UML

7-16

Software Lifecycle Activities

Sub-
systems

Structured

by

class...
class...
class...

Source
Code

Implemented by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in

terms of

Test
Case
Model

?

Verified

By

class.... ?
Use Case
Model

System

Design

Detailed

Design

Implemen-

tation
Testing

Requirements

Elicitation
Analysis

First step in identifying the Requirements:
System identification

• Two questions need to be answered:

1. How can we identify the purpose of a system?

• What are the requirements, what are the constraints?

2. What is inside, what is outside the system?

• These two questions are answered during requirements

elicitation and analysis

• Requirements elicitation:

– Definition of the system in terms understood by the customer

and/or user (“Requirements specification”)

• Analysis:

• Definition of the system in terms understood by the

developer (Technical specification, “Analysis model”)

• Requirements Process: Consists of the activities Requirements

Elicitation and Analysis.

Techniques to elicit Requirements

• Bridging the gap between end user and developer:

– Questionnaires: Asking the end user a list of pre-

selected questions

– Task Analysis: Observing end users in their

operational environment

– Scenarios: Describe the use of the system as a

series of interactions between a specific end user and

the system

– Use cases: Abstractions that describe a class of

scenarios.

• Job: Software Analyst, Business Analyst

What is UML?

• UML (Unified Modeling Language)

– Nonproprietary standard for modeling software systems,

OMG

– Convergence of notations used in object-oriented methods

• OMT (James Rumbaugh and collegues)

• Booch (Grady Booch)

• OOSE (Ivar Jacobson)

• Current Version: UML 2.2

– Information at the OMG portal http://www.uml.org/

• Commercial tools: Rational (IBM),Together (Borland), Visual

Architect (business processes, BCD)

• Open Source tools: ArgoUML, StarUML, Umbrello

• Commercial and Opensource: PoseidonUML (Gentleware)

What is UML? Unified Modeling Language

• Convergence of different notations used in object-oriented methods,
mainly

• OMT (James Rumbaugh and collegues), OOSE (Ivar Jacobson),
Booch (Grady Booch)

• They also developed the Rational Unified Process, which became the
Unified Process in 1999

25 year at GE Research,

where he developed OMT,

joined (IBM) Rational in

1994, CASE tool OMTool

At Ericsson until 1994,

developed use cases and the

CASE tool Objectory, at IBM

Rational since 1995,

http://www.ivarjacobson.com

Developed the

Booch method

(“clouds”), ACM

Fellow 1995, and

IBM Fellow 2003

http://www.booch.

com/

UML Basic Notation: First Summary

• UML provides a wide variety of notations
for modeling many aspects of software
systems

• Models:

–Functional model: Use case diagrams

–Object model: Class diagrams

–Dynamic model: Sequence diagrams,

statechart diagram

UML: First Pass

• You can solve 80% of the modeling problems by

using 20 % UML

• We teach you those 20%

• 80-20 rule: Pareto principle

Vilfredo Pareto, 1848-1923

Introduced the concept of Pareto

Efficiency,

Founder of the field of microeconomics.

UML First Pass

• Use case diagrams

– Describe the functional behavior of the system as seen

by the user

• Class diagrams

– Describe the static structure of the system: Objects,

attributes, associations

• Sequence diagrams

– Describe the dynamic behavior between objects of the

system

• Statechart diagrams

– Describe the dynamic behavior of an individual object

• Activity diagrams

– Describe the dynamic behavior of a system, in particular

the workflow.

UML Core Conventions

• All UML Diagrams denote graphs of nodes and edges

– Nodes are entities and drawn as rectangles or ovals

– Rectangles denote classes or instances

– Ovals denote functions

• Names of Classes are not underlined
• SimpleWatch

• Firefighter

• Names of Instances are underlined
• myWatch:SimpleWatch

• Joe:Firefighter

• An edge between two nodes denotes a
relationship between the corresponding entities

UML first pass: Use case diagrams

Use case diagrams represent the functionality of the system

from user’s point of view

Actor.

Use Case

System boundary

Classifier

UML first pass: Class diagrams

Class

Association

Multiplicity

Class diagrams represent the structure of the system

2
1 1

1

1

1

1

2

SimpleWatch

Display Battery Time PushButton

UML first pass: Class diagrams

1
2

push()

release()

1

1

blinkIdx

blinkSeconds()

blinkMinutes()

blinkHours()

stopBlinking()

referesh()

LCDDisplay Battery

Load

1

2

1

Time

Now

1

Watch

Operations

state

PushButton

Attribute

Class diagrams represent the structure of the system

Class

Association

Multiplicity

Additional References

• Martin Fowler

–UML Distilled: A Brief Guide to the Standard

Object Modeling Language, 3rd ed., Addison-

Wesley, 2003

• Grady Booch,James Rumbaugh,Ivar
Jacobson

–The Unified Modeling Language User Guide,

Addison Wesley, 2nd edition, 2005

• Open Source UML tools

–http://java-source.net/open-source/uml-

modeling

Use case diagrams

7-30

Use case diagrams

• Use case diagrams

– Describe the functional behavior of the system as seen by the user

• Class diagrams

– Describe the static structure of the system: Objects, attributes,

associations

• Sequence diagrams

– Describe the dynamic behavior between objects of the system

• Statechart diagrams

– Describe the dynamic behavior of an individual object

• Activity diagrams

– Describe the dynamic behavior of a system, in particular the workflow.

UML Use Case Diagrams

An Actor represents a role,

that is, a type of user of

the system

Passenger

PurchaseTicket

Used during requirements elicitation
and analysis to represent external
behavior (“visible from the outside of
the system”)

Use case model:
The set of all use cases that
completely describe the
functionality of the system.

A use case represents a class of
functionality provided by the system

Actors

• An actor is a model for an external entity

which interacts (communicates) with the

system:

– User

– External system (Another system)

– Physical environment (e.g. Weather)

• An actor has a unique name and an

optional description

• Examples:

– Passenger: A person in the train

– GPS satellite: An external system

that provides the system with GPS

coordinates.

Passenger

Name

Optional
Description

Use Case
• A use case represents a class of

functionality provided by the system

• Use cases can be described textually,

with a focus on the event flow

between actor and system

• The textual use case description

consists of 6 parts:

1. Unique name

2. Participating actors

3. Entry conditions

4. Exit conditions

5. Flow of events

6. Special requirements.

PurchaseTicket

Textual Use Case
Description Example

1. Name: Purchase ticket

2. Participating actor:
Passenger

3. Entry condition:

• Passenger stands in front

of ticket distributor

• Passenger has sufficient

money to purchase ticket

4. Exit condition:

• Passenger has ticket

5. Flow of events:

1. Passenger selects the

number of zones to be
traveled

2. Ticket Distributor displays
the amount due

3. Passenger inserts

money, at least the
amount due

4. Ticket Distributor returns
change

5. Ticket Distributor issues
ticket

6. Special requirements: None.

Passenger
PurchaseTicket

Uses Cases can be related

• Extends Relationship

–To represent seldom invoked use cases or

exceptional functionality

• Includes Relationship

–To represent functional behavior common to

more than one use case.

The <<extends>> Relationship
• <<extends>> relationships

model exceptional or seldom

invoked cases

• The exceptional event flows are

factored out of the main event flow

for clarity

• The direction of an <<extends>>

relationship is to the extended use

case

• Use cases representing

exceptional flows can extend

more than one use case.

Passenger

PurchaseTicket

TimeOut

<<extends>>

NoChange

<<extends>> OutOfOrder

<<extends>>

Cancel

<<extends>>

The <<includes>> Relationship

• <<includes>> relationship

represents common functionality
needed in more than one use
case

• <<includes>> behavior is

factored out for reuse, not
because it is an exception

• The direction of a
<<includes>> relationship is

to the using use case (unlike the
direction of the <<extends>>

relationship).

Passenger

PurchaseSingleTicket

PurchaseMultiCard

<<includes>>

CollectMoney

<<includes>>

NoChange

<<extends>>

Cancel

<<extends>>

Cancel

<<extends>>

Use Case Models can be packaged

Actor.

Use Case

System boundary

Classifier

Actor vs Class vs Object

• Actor

– An entity outside the system to be modeled, interacting

with the system (“Passenger”)

• Class

– An abstraction modeling an entity in the application or

solution domain

– The class is part of the system model (“User”, “Ticket

distributor”, “Server”)

• Object

– A specific instance of a class (“Joe, the passenger who

is purchasing a ticket from the ticket distributor”).

Class diagrams in UML: composition

7-41

Class diagrams in UML: inheritance

7-42

Class diagrams in UML: inheritance

7-43

Case Study for UML Diagrams

• Lab session

– Work in StarUML

7-44

End of class

7-45

