
Intelligent Information Systems 9999
ISBN 666-666-666, pages 1–14

Modelling (Bio)Logical Sequences through
Markov Logic Networks

Marenglen Biba, Stefano Ferilli and Floriana Esposito

Department of Computer Science, University of Bari, Italy
Via E. Orabona, 4, 70125, Bari, Italy
{biba,ferilli,esposito}@di.uniba.it

Abstract

Markov Logic Networks are a powerful representation that combines first-order
logic and probability by attaching weights to first-order formulas and using these
as templates for features of Markov networks. In this paper we propose a simple
temporal extension of MLN that is able to deal with sequences of logical atoms. We
also propose iterated robust tabu search (IRoTS) for MAP inference and Markov
Chain-IRoTS (MC-IRoTS) for conditional inference in the new framework. We
show how MC-IRoTS can also be used for discriminative weight learning. As
application domain, we describe how sequences of protein secondary structure can
be modelled through the proposed language and show through some preliminary
experiments the promise of our approach for the problem of protein fold recognition
from these sequences.

1 Introduction

Many real-world application domains are characterized by both uncertainty and
complex relational structure. Statistical learning focuses on the former, and rela-
tional learning on the latter. Statistical Relational Learning [10] aims at combining
the power of both. One of the representation formalisms in this area is Markov
Logic which subsumes both finite first-order logic and probabilistic graphical mod-
els as special cases [26]. Upon this formalism, Markov Logic Networks (MLNs)
can be built serving as templates for constructing Markov Networks (MNs). In
Markov Logic a weight is attached to each clause and learning an MLN consists in
structure learning (learning the clauses) and weight learning (setting the weight
of each clause).

Dealing with sequential data has become an important application area of ma-
chine learning. Such data are frequently found in computational biology, speech
recognition, activity recognition, information extraction, etc. One of the main
problems in this area of machine learning is assigning labels to sequences of ob-
jects. This class of problems has been called sequential supervised learning [8].
Probabilistic graphical models and in particular Hidden Markov Models (HMM)
have been quite successful in modeling sequential phenomena. However, the main
weaknesses for this model are: 1. It handles sequences of flat alphabets only (i.e.
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sequential objects have no structure) and 2. It is hard to express dependencies in
the input data. Recently, to overcome the first problem, the work in [18], intro-
duced Logical Hidden Markov Models (LoHMM), an extension of HMM to handle
sequences of logical atoms. However, the second problem still remains for LoHMM.
For this reason, conditional random fields (CRFs) [14] have been proposed. CRFs
are discriminatively trained graphical models instead of generatively trained such
as HMMs. CRFs can easily handle non-independent input features and represent
the conditional probability distribution P (Y |X) where X represents elements of
the input space and Y of the output space. For many tasks in computational
biology, information extraction or user modeling CRF have outperformed HMMs

One of the problems where sequences exhibit internal structure is modeling
sequences of protein secondary structure. These sequences can be seen as sequences
of logical atoms (details about logic can be found in [9]). For example the following
sequence of the TIM beta/alpha-barrel protein:

st(′SB′, null,medium), st(′SB′, plus,medium), he(h(right, alpha), long),

st(′SB′, plus,medium), he(h(right, alpha),medium), ...

represents a sequence of logical atoms. Helices and strands are represented
respectively by he(type,length) and st(orientation, length). Traditional HMMs or
CRFs would ignore the structure of the symbols in the sequence loosing therefore
the structure that each symbol implies or would take into account all the pos-
sible combinations (of orientation and length) into account that could lead to a
combinatiorial explosion of the number of parameters.

The first approach to dealing with sequences of logical atoms by extending
CRFs is that of [12] where the authors propose TildeCRF that uses relational re-
gression trees in the gradient tree boosting approach [8] to make relational abstrac-
tion through logical variables and unification. The authors showed that TildeCRF
outperformed previous approaches based on LoHMMs such as [12, 7].

In this paper we propose Stochastic MLNs, a simple model based on MLNs that
is able to deal with sequences of logical atoms. We also propose two algorithms
for inference and learning in SMLNs based on the iterated robust tabu search
metaheuristic. Finally, we model in SMLNs the problem of protein fold recognition
from sequences of protein secondary structure and show through some preliminary
experiments the promise of our approach.

The paper is organized as follows: in Section 2 we introduce MNs and MLNs, in
Section 3 we describe existing learning approaches for MLNs, Section 4 introduces
Stochastic MLNs, Section 5 introduces the Iterated Local Search (ILS) and robust
tabu search (RoTS) metaheuristic and the satisfiability solver Iterated Robust
Tabu Search (IRoTS) that combines both and describes how IRoTS can be used
for MAP inference in MLNs instead of the Viterbi algorithm, Section 6 introduces
Markov Chain IRoTS (MC-IRoTS) for performing inference in MLNs, Section 7
describes how protein sequences can be modeled in SMLNs. Section 8 presents
some preliminary experiments and Section 9 concludes with future work.
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2 Markov Networks and Markov Logic Networks

A Markov Network (or Markov random field) represents a model for the joint
distribution of a set of variables X = (X1,X2,. . . ,Xn) ∈ χ [5] (in this paper we deal
only with discrete features and variables). The model has an undirected graph G
and a set of potential functions. There is a node for each variable and a potential
function φk for each clique in the graph (a clique in an undirected graph G, is a set
of vertices V, such that for every two vertices in V, there exists an edge connecting
the two). A potential function is a non-negative real-valued function of the state
of the corresponding clique. The joint distribution defined by a MN is given by
the following:

P (X = x) =
1
Z

∏
k

φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of the variables that
appear in that clique). Z is known as the partition function and is given by:

Z =
∑
x∈χ

∏
k

φk(x{k}) (2)

MNs are often represented as log-linear models, by replacing each clique po-
tential with an exponentiated weighted sum of features of the clique state. This
replacement gives the following:

P (X = x) =
1
Z

exp(
∑
j

wjfj(x)) (3)

A feature f may be any real-valued function of the state. The focus of this
paper is on binary features, fj ∈ {0, 1}. Thus, if we translate from the potential-
function form, the model will have one feature for each possible state xk of each
clique and its weight will be log(φ(x{k}). This representation is exponential in the
size of the cliques, but however, we can specify a much smaller number of features
in a more compact representation than the potential-function form. This is the
case when large cliques are present and MLNs try to take advantage of this.

A first-order knowledge base (KB) can be considered as a set of hard constraints
on a set of possible worlds: if a world violates a single formula, it will have zero
probability. The idea in Markov Logic is to soften these constraints: when a world
violates a formula in the KB it will be less probable, but not impossible. The fewer
formulas a world will violate, the more probable it will be. Each formula has an
attached weight that represents how hard a constraint it is. A higher weight of a
formula means there is a greater difference in log probability between a world that
satisfies that formula and one that does not, all other things being equal.

An MLN [26] T is a set of pairs (Fi;wi), where Fi is a formula in FOL and
wi is a real number. Together with a finite set of constants C = {c1, c2, . . . , cp} it
defines a MN MT ;C as follows:

1. There is a binary node in MT ;C for each possible grounding of each predi-
cate appearing in T and the value of the node is 1 if the ground predicate is true,
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and 0 otherwise.

2. There is one feature in MT ;C for each possible grounding of each formula Fi in
T and the value of this feature is 1 if the ground formula is true, and 0 otherwise.
The weight wi of the formula Fi in T becomes the weight of this feature. There
is an edge between two nodes of MT ;C iff the corresponding ground predicates
appear together in at least one grounding of a formula in T.

An MLN can be viewed as a template for constructing MNs. The probability
distribution over possible worlds x defined by the ground MN MT ;C is given by:

P (X = x) =
1
Z

exp(
F∑
i=1

wini(x)) (4)

where F is the number of formulas in T and ni(x) is the number of true
groundings of Fi in x. When formula weights increase, an MLN will resemble a
purely logical KB and in the limit of all infinite weights it becomes equivalent to
it.

The focus of this paper is on MLNs with function-free clauses assuming domain
closure in order to ensure that the MNs generated will be finite. In this case, the
groundings of a formula are formed by replacing the variables with constants in
all possible ways.

3 Learning Approaches for MLNs

The first attempt to learn MLNs structure was that in [26], where the authors used
an ILP system to learn the clauses and then learned the weights by maximizing
pseudo-likelihood [1]. In [19] another method was proposed that combines ideas
from ILP and feature induction of Markov networks. This algorithm, that per-
forms a beam or shortest first search in the space of clauses guided by a weighted
pseudo-log-likelihood (WPLL) measure, outperformed that of [26]. Recently, in
[16] a bottom-up approach was proposed in order to reduce the search space. This
algorithm uses a propositional Markov network learning method to construct tem-
plate networks that guide the construction of candidate clauses. In this way, it
generates fewer candidates for evaluation. Recently a structure learning algorithm
based on ILS was proposed in [2] and it was shown to improve over those in [16, 19].
For every candidate structure, in all these algorithms the parameters that opti-
mize the WPLL are set through L-BFGS that approximates the second-derivative
of the WPLL by keeping a running finite-sized window of previous first-derivatives.
Another algorithm that works in a discriminative fashion was proposed in [3], that
scores structures by conditional likelihood and learns parameters by maximum
likelihood.

Learning MLNs in a discriminative fashion has produced for predictive tasks
much better results than generative approches as the results in [28] show. In
this work the voted-perceptron algorithm was generalized to arbitrary MLNs by
replacing the Viterbi algorithm with a weighted satisfiability solver. The new al-
gorithm is gradient descent with an MPE approximation to the expected sufficient
statistics (true clause counts). These could vary widely between clauses, causing
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the learning problem to be highly ill-conditioned, and making gradient descent
very slow. In [17] a preconditioned scaled conjugate gradient approach is shown to
outperform the algorithm in [28] in terms of learning time and prediction accuracy.
This algorithm is based on the scaled conjugate gradient method and very good
results are obtained with a simple approach: per-weight learning weights, with the
weight’s learning rate being the global one divided by the corresponding clause’s
empirical number of true groundings.

4 Temporal Extension of Markov Logic

In stochastic processes the world evolves and a ground predicate’s truth value
depends on the time step t. In order to model in MLNs the evolution of objects
and relations we need to represent time. To achieve this we introduce the concept of
temporal predicates which have an additional time argument. Time is represented
as a non-negative integer variable and all predicates are of the form P (x1, ..., xn, t)
where t denotes time.

We define Stochastic Markov Logic Networks (SMLNs) as a set of MLN for-
mulas defined on the temporal predicates. In addition, we borrow from Linear
Temporal Logic [21] the concept of temporal operator and introduce succ, a time
predicate (similar to the operator next in LTL) that represents the successor of a
time step t, i.e., succ(1,2), succ(2,3) and so on.

In principle, the structure of SMLNs could be learned in a similar fashion as
for MLNs. This task could be made easier by imposing further restrictions such
as the Markovian assumption, or through the use of declarative bias. We plan to
perform this in the future by using the structure learning algorithms proposed in
[2, 3]. In this paper, we assume the structure of the model to be fixed and try to
learn optimal parameters for discriminative training of SMLNs for the problem of
protein fold recognition from sequences of secondary structure.

5 MAP inference using Iterated Robust Tabu Search

In logic, one of the main problems is determining if a KB is satisfiable (SAT prob-
lem), i.e., if there is a truth assignment to ground atoms that make the KB true.
This problem is NP-complete. However, Stochastic Local Search (SLS) methods
have made great progress towards efficiently solving SAT problems with hundreds
of thousands of variables in a few minutes. The optimization variant of SAT is
MAX-SAT where the problem is to find a truth assignment that maximizes the
number of satisfied clauses (unweighted MAX-SAT) or if clauses have an associated
weight, maximize the total weight of the satisfied clauses (weighted MAX-SAT).
Both, unweighted and weighted MAX-SAT are NP-complete problems. First-order
problems can also be successfully solved through SLS methods by performing first
a propositionalization and then applying a SAT solver.

The currently best performing SLS algorithms for MAX-SAT are Tabu Search
(TS) algorithms, Dynamic Local Search and Iterated Local Search (ILS). Here we
will describe a combination of a variant of TS with ILS to build a hybrid SAT
solver that we will use for inference and learning in SMLNs.
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5.1 Iterated Local Search and Robust Tabu Search

Many widely known and high-performance local search algorithms make use of
randomized choice in generating or selecting candidate solutions for a given com-
binatorial problem instance. These algorithms are called SLS algorithms [13] and
represent one of the most successful and widely used approaches for solving hard
combinatorial problem. Many “simple” SLS methods come from other search
methods by just randomizing the selection of the candidates during search, such
as Randomized Iterative Improvement (RII), Uniformed Random Walk, etc. Many
other SLS methods combine “simple” SLS methods to exploit the abilities of each
of these during search. These are known as Hybrid SLS methods [13]. ILS is one
of these metaheuristics because it can be easily combined with other SLS methods.

One of the simplest and most intuitive ideas for addressing the fundamental
issue of escaping local optima is to use two types of SLS steps: one for reaching local
optima as efficiently as possible, and the other for effectively escaping local optima.
ILS methods [13, 15] exploit this key idea, and essentially use two types of search
steps alternatingly to perform a walk in the space of local optima w.r.t the given
evaluation function. The algorithm works as follows: The search process starts
from a randomly selected element of the search space. From this initial candidate
solution, a locally optimal solution is obtained by applying a subsidiary local search
procedure. Then each iteration step of the algorithm consists of three major steps:
first a perturbation method is applied to the current candidate solution s; this
yields a modified candidate solution s’ from which in the next step a subsidiary
local search is performed until a local optimum s” is obtained. In the last third
step, an acceptance criterion is used to decide from which of the two local optima
s or s’ the search process is continued. The algorithm can terminate after some
steps have not produced improvement or simply after a certain number of steps.
The choice of the components of the ILS has a great impact on the performance
of the algorithm.

Robust Tabu Search (RoTS) [31] is a special case of Tabu Search. In each
search step, the RoTS algorithm for MAX-SAT flips a non-tabu variable that
achieves a maximal improvement in the total weight of the unsatisfied clauses (the
size of this improvement is also called score) and declares it tabu for the next tt
steps. The parameter tt is called the tabu tenure. An exception to this tabu rule
is made if a more recently flipped variable achieves an improvement over the best
solution seen so far (this mechanism is called aspiration). Furthermore, whenever
a variable has not been flipped within a certain number of search steps (we use
10n), it is forced to be flipped. This implements a form of long-term memory and
helps prevent stagnation of the search process. The tabu status of variables is
determined by comparing the number of search steps that have been performed
since the most recent flip of a given variable with the current tabu tenure.

5.2 Iterated Robust Tabu Search

The original version of IRoTS for MAX-SAT was proposed in [30]. Algorithm 1
starts by independently (with equal prabability) initializing the truth values of
the atoms. Then it performs a local search to efficiently reach a local optimum
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Algorithm 1 Iterated Robust Tabu Search
Input: C: set of weighted clauses in CNF, BestScore: current best score)
CLC = Random initialization of truth values for atoms in C;
CLS = LocalSearchRoTS(CLS);
BestAssignment = CLS ;
BestScore = Score(CLS);
repeat

CL’C = PerturbRoTS(BestAssignment);
CL’S = LocalSearchRoTS(CL’C);
if Score(CL’S) ≥ BestScore then

BestScore = Score(CL’S)
end if
BestAssignment = accept(BestAssignment,CL’S);

until two consecutive steps have not produced improvement
Return BestAssignment

CLS by using RoTS. At this point, a perturbation method based again on RoTS
is applied leading to the neighbor CL′C of CLS and then again a local search
based on RoTS is applied to CL′C to reach another local optimum CL′S . The
accept function decides whether the search must continue from the previous local
optimum or from the last found local optimum CL′S (accept can perform random
walk or iterative improvement in the space of local optima).

Careful choice of the various components of Algorithm 1 is important to achieve
high performance. For the tabu tenure we refer to the parameters used in [30] that
have proven to be highly performant accross many domains. At the begining of
each local search and perturbation phase, all variables are declared non-tabu. The
clause perturbation operator (flipping the atoms truth value) has the goal to jump
in a different region of the search space where search should start with the next
iteration. There can be strong or weak perturbations which means that if the
jump in the search space is near to the current local optimum the subsidiary local
search procedure LocalSearchRoTS may fall again in the same local optimum and
enter regions with the same value of the objective function called plateau, but if
the jump is too far, LocalSearchRoTS may take too many steps to reach another
good solution. In our algorithm we use a fixed number of RoTS steps 9n/10
with tabu tenure n/2 where n is the number of atoms (in future work we intend
to dynamically adapt the nature of the perturbation). Regarding the procedure
LocalSearchRoTS , it performs RoTS steps until no improvement is achieved for
n2/4 steps with a tabu tenure n/10 + 4. The accept function always accepts the
best solution found so far. The difference of our algorithm with that in [30] is that
we do not dynamically adapt the tabu tenure and do not use a probabilistic choice
in accept.

5.3 MAP Inference using IRoTS

Maximum a posteriori (MAP) inference in Markov Networks means finding the
most likely state of a set of output variables given the state of the input variables.
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This problem is NP-hard. For discriminative training, the voted perceptron is a
special case in which tractable inference is possible using the Viterbi algorithm
[4]. In [28] the voted perceptron was generalized to MLNs by replacing the Viterbi
algorithm with a weighted SAT solver. This algorithm is gradient descent and
computing the gradient of the conditional log-likelihood (CLL) requires the com-
putation of the number of true groundings for each clause. This can be performed
by finding the MAP state which can be computed by dynamic programming meth-
ods. Since for MLNs, the MAP state is the state that maximizes the sum of the
weights of the satisfied ground clauses, this state can be efficiently found using a
weighted MAX-SAT solver. The authors in [28] use the MaxWalkSat solver [27].
In this paper we propose to use IRoTS as a MAX-SAT solver and show how this
algorithm can be applied not only to MLNs but also to the proposed extension
SMLNs. IRoTS is one the best weighted MAX-SAT solvers and we want to show
also how MAP inference in SMLNs can benefit from it.

Given a SMLN in the form of clauses based on temporal predicates, including a
time predicate and a set of evidence atoms, the KB to be used as input for IRoTS
is formed by constructing all groundings of clauses in the SMLNs involving query
atoms. Then the evidence atoms are replaced by their true values followed by
semplification. Once the SMLN has been propositionalized it is a natural input to
IRoTS.

6 Markov Chain Iterated Robust Tabu Search

In this section we describe how IRoTS can be combined with Markov Chain Monte
Carlo (MCMC) in order to uniformly sample from the space of satisfying assign-
ments of a clause. We show how the proposed algorithm MC-IRoTS can be used
for inference and learning in SMLNs.

6.1 Conditional Inference through MC-IRoTS

Conditional inference in graphical models involves computing the distribution of
the query variables given the evidence and it has been shown to be #P-complete.
The most widely used approach to approximate inference is by using MCMC meth-
ods and in particular Gibbs sampling. One of the problems that arises in real-world
applications, is that an inference method must be able to handle probabilistic and
deterministic dependencies that might hold in the domain. MCMC methods are
suitale for handling probabilistic dependencies but give poor results when deter-
ministic or near deterministic dependencies characterize a certain domain. On the
other side logical ones, like satisfiability testing cannot be applied to probabilistic
dependencies. One approach to deal with both kinds of dependencies is that of
[24] where the authors use SampleSAT [32] in a MCMC algorithm to uniformly
sample from the set of satisfying solutions. As pointed out in [32], SAT solvers
find solutions very fast but they may sample highly non-uniformly. On the other
side, MCMC methods may take exponential time, in terms of problem size, to
reach the stationary distribution. For this reason, the authors in [32] proposed to
use a hybrid strategy ny combining random walk steps with MCMC steps, and in
particular with Metropolis transitions. This permits to efficiently jump between
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isolated or near-isolated regions of non-zero probability, while preserving detailed
balance.

We use the same approach as the authors did in [24], but instead of SampleSAT,
for MC-IRoTS we propose to use SampleIRoTS, which performs with probability
p a RoTS step and with probability 1 − p a simulated annealing (SA) step. We
used fixed temperature annealing (i.e., Metropolis) moves. The goal is to reach as
fast as possible a first solution through IRoTS and then exploit the ability of SA
to explore a cluster of solutions. A cluster of solutions is usually a set of connected
solutions, so that any two solutions within the cluster can be connected through a
series of flips without leaving the cluster. In many domains of interest, solutions
exist in clusters and it is highly useful to explore such clusters without leaving
them. SA has good properties in exploring a connected space, therefore it samples
near-uniformly and often explores all the neighboring solutions.

Through MC-IRoTS we can perform conditional inference given evidence to
compute probabilites for query predicates. These probabilites can be used to
make predictions from the model.

6.2 Discriminative Learning by Sampling with MC-IRoTS

Discriminative approaches to weight learning try to optimize the conditional log-
likelihood (CLL). Preconditioned Scaled Conjugate Gradient (PSCG) is the state-
of-the-art discriminative training algorithm for MLN and it was shown in [17] to
outperform the voted perceptron. PSCG is a conjugate gradient method that uses
samples from MC-SAT to approximate the Hessian for MLNs instead of the line
search to choose a step size. This approach is also known as scaled conjugate
gradient and was originally proposed in [23] for training neural networks. PSCG,
in each iteration, takes a step in the diagonalized Newton direction (for details see
[17]). Here we propose to use MC-IRoTS to sample for approximating the Hessian
for SMLNs. The goal is to use samples from MC-IRoTS that can serve as good
estimates for computing the Hessian.

7 Modelling Protein Sequences in SMLNs

In this section we describe how sequences of protein secondary structure can be
modelled in SMLNs, how to learn model parameters from the data and how to
make predictions from the model.

7.1 Model Construction and Weight Learning

The approach we follow is quite simple: we write a few formulas that represent
the structure of the domain and then from the training sequences we learn the
weights of these formulas.

The dataset we refer to is that used in [12]. The data consists of logical se-
quences of the secondary structure of protein domains:

beginSequence.
strand(′SB′, null,medium).
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strand(′SB′, plus,medium).
helix(right, alpha, long).
...
...
strand(′SB′, plus,medium).
helix(right, alpha,medium).
strand(′SB′, plus, short).
endSequence.

A simple SMLN that can be used to model these data can be the following:

//predicates
Helix (wing , typeh, length, time)
Strand(types, pm, length, time)
Succ(time, time)
//rules

Helix (Right ,+ty1 ,+l1 ,+t1 ) ∧ Succ(t2 , t1 ) ∧Helix (Right ,+ty2 ,+l2 , t2 )

Helix (Right ,+ty1 ,+l1 ,+t1 ) ∧ Succ(t2 , t1 ) ∧ Strand(typ1 ,+p1 ,+le1 , t2 )

Strand(typ1 ,+p1 ,+le1 ,+t1 ) ∧ Succ(t2 , t1 ) ∧Helix (Right ,+ty2 ,+l2 , t2 )

Strand(typ1 ,+p1 ,+le1 ,+t1 ) ∧ Succ(t2 , t1 ) ∧ Strand(typ1 ,+p2 ,+le2 , t2 )

Strand(typ1 ,+p1 ,+le1 ,+t1 ) ∧ Succ(t2 , t1 ) ∧ Strand(typ2 ,+p2 ,+le2 , t2 )

The first three expressions, represent the temporal predicates (Helix and Strand)
and the time predicate Succ. The rules express temporal relations between Helix
and Strand. The first rule expresses that a helix is followed by another helix, the
second rules states that helix is followed by a strand and so on. The last two rules
differ in that one states that strand is followed by another strand of the same type,
while the other states that two strands of different types appear in the sequence
one following the other. The + operator is used to express that the argument
should be grounded, so that a weight is learned for each grounded formula. If
multiple variables are preceded by +, a weight is learned for each combination of
their values.

It must be noted that this model is not the only one. We have stated some
regularities that in general are true but we would like to learn weights that can
express how strong each rule it is. A reasonable model would also be that of
learning a rule for each grounding of the argument that expresses the type of
strand, i.e., Strand(+typ1, p1, le1, t1) We plan to experiment this in the future.

7.2 Making Predictions from the Learned SMLNs

There are several ways in which a SMLNs can be used to make predictions regard-
ing sequences. One way is to predict the sequence with highest probability (this
is performed in other models by the Viterbi algorithm). In SMLNs this means
performing MAP inference given the evidence. For example, given a certain se-
quence and a query predicate (helix or strand), we can perform MAP inference



Modelling (Bio)Logical Sequences through Markov Logic 11

through IRoTS and return the positive query atoms. Then we can count how
many of the returned positive query atoms are true in the sequence and consider
these atoms correctly classified. If there are several models (one for each protein
fold) a majority vote can be used to assign the sequence, i.e., the sequence belongs
to the model that gives the highest number of correctly classified atoms for that
sequence.

Another way to get a classifier is to get the probability of query atoms given
evidence through MC-IRoTS. In this case CLL (conditional log-likelihood averaged
over all the groundings of the query predicate where predicted probability p is
summed for positive atoms and 1 - p for negative ones) can be used to assign the
sequence to the fold that produces the highest CLL.

8 Experiments

Through some preliminary experiments we want to answer the following questions:
(Q1) Are SMLNs suitable for modeling and learning with sequences of logical

atoms?
(Q2) Can we use SMLNs to make predictions for sequences and are these

predictions reasonably good?

8.1 Dataset and Systems

We implemented the algorithms IRoTS and MC-IRoTS as extensions of the alchemy
system [20] and used the implementation of PSCG in this package to learn weights
for the SMLN.

The protein fold classification task is to predict one of the five most populated
SCOP folds of alpha and beta proteins (a/b). We will use for our experiments only
two folds from the dataset in [12] with a subset of the whole sequences. (Our goal
here is to show how SMLNs can be used for sequence modeling/learning and not
to boost performance or compare with other methods. For this reason we did not
optimize any parameters for the learning and inference algorithms). We randomly
extracted 80 sequences (totally 160) from each of the folds TIM beta/alpha-barrel
(c1) and NAD(P)-binding Rossmann-fold (c2). We divided this set in the training
set (60 sequences) and test set (20 sequences). The classification problem is a
multi-class one. We will learn for each fold a model based on the SMLN presented
in the previous section and will test both models on the 40 test sequences (thus
for each model we have 20 positive and 20 negative testing sequences)

In order to learn weights for the SMLN presented in the previous section we
used PSCG with MC-IRoTS as a sampler. We performed two weight learning
experiments, one for each protein fold giving in input the same SMLN. We used
100 iterations for PSCG with 50 samples for MC-IRoTS. We used the lazy version
of inference in alchemy [25]. (all these parameters could be greatly optimized and
we plan to do this in the future for more complete experiments).
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8.2 Results

After learning a SMLN on each training set of 60 sequences we performed MAP
inference through IRoTS with both learned models on the two testing sets. For
each sequence, every model produced positive query atoms and we checked the
number of predicted positive atoms that were true in the sequence. The sequence
was assigned to the model that infered the highest number of correct predictions.
From the 40 test sequences, 31 sequences were correctly assigned to the belonging
fold, 4 sequences were predicted equally by both models and 5 sequences were
classified incorrectly. For the equally predicted sequences we decided to use MC-
IRoTS to perform inference over these sequence in order to get CLL for each one.
Surprisingly, using the probability for each atom in the sequence, all these cases
were correctly classified, thus we achieved a classification rate of 35 out of 40.

The results respond to questions (Q1) and (Q2). Since the scope of the exper-
iments was only to confirm these questions, we did not perform cross-validation
for accuracy evaluation or parameters optimization to increase perfomance. We
plan, howefer, to perform extensive experiments and compare with state-of-the-art
methods such that in [12].

9 Conclusions and Future Work

Markov Logic Networks are a powerful representation that combines first-order
logic and probability by attaching weights to first-order formulas and viewing
these as templates for features of Markov networks. In this paper we have proposed
Stochastic Markov Logic Networks, (SMLNs), a simple extension of MLN that is
able to deal with sequences of logical atoms. We also propose iterated robust tabu
search (IRoTS) for MAP inference in SMLNs and Markov Chain-IRoTS (MC-
IRoTS) for conditional inference in SMLNs. We show how MC-IRoTS can be
also used for discriminative weight learning in SMLNs. As application domain,
we have described how sequences of protein secondary structure can be modelled
in SMLNs and have shown through some preliminary experiments the promise of
our approach.

Future work regarding the algorithms proposed includes: comparing perfor-
mace of IRoTS toward MaxWalkSat regarding MAP inference in MLNs and SMLNs;
comparing conditional inference results of MC-IRoTS towards MC-SAT; compar-
ing learning results with PSCG by using MC-SAT and MC-IRoTS; compare sam-
pling of SampleSAT and SampleIRoTS regarding uniformity.

Regarding protein sequence modelling in SMLNs we intend to: perform ex-
tensive experiments with SMLNs for all the five folds of the protein secondary
structure problem; optimize the parameters of IRoTS and MC-IRoTS for learning
and inference; evaluate the best way to make predictions from SMLNs by com-
paring the use of MAP inference with CLL results; verify in inference if the use of
AUC (area under curve) for precision-recall curves can help improve classification
accuracy; finally investigate if structure learning algorithms such as that in [2, 3]
can be used to learn the rules from the sequences and if this improves over a fixed
structure.

Regarding SMLNs in general, we would like to apply this simple extension of
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MLNs to more complex domains where stochastic relational problems must be han-
dled. Natural application domains for SMLNs are areas such as Systems Biology
and Gene Regulatory Networks where networks involved in stochastic processes
need to be modeled.
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Pedro Domingos for helpful discussions on MLNs, Marc Sumner for his help on
alchemy, Daniel Lowd for his help on PSCG and Hoifung Poon for discussions on
MC-SAT. We thank Kristian Kersting for kindly providing us the dataset on pro-
teins sequences. Finally, we also thank the anonymous reviewers for their useful
comments.

References

[1] Besag, J. Statistical analysis of non-lattice data. Statistician, 24:179–195, 1975.

[2] Biba, M., Ferilli, S., and Esposito, F. Structure Learning of Markov Logic Networks
through Iterated Local Search. In Proc. 18th ECAI, 2008. To appear.

[3] Biba, M. and Ferilli, S. and Esposito, F. Discriminative Structure Learning of Markov
Logic Networks . In Proceedings of 18th International Conference on Inductive Logic
Programming, (ILP 2008), LNCS 5194, (pp. 59-76), Springer, 2008.

[4] Collins, M. Discriminative training methods for hidden Markov models: Theory and
experiments with perceptron algorithms. In Proc. of the 2002 Conference on Empirical
Methods in Natural Language Processing, 18. Philadelphia, PA: ACL, 2002.

[5] Della Pietra, S., Pietra, V. D., and Laferty, J. Inducing features of random fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:380–392, 1997.

[6] De Raedt, L., and Dehaspe, L. Clausal discovery. Machine Learning, 26:99–146, 1997.

[7] Dick, U., Kersting, K. Fisher Kernels for Relational Data. In J. Fuernkranz, T. Schef-
fer, M. Spiliopoulou, editors, Proc. 17th ECML, pages 114-125, 2006.

[8] Dietterich, T., Ashenfelter, A., Bulatov. Y. Training conditional random fields via
gradient tree boosting. ICML 2004.

[9] Genesereth, M. R., and Nilsson, N. J. Logical foundations of articial intelligence. San
Mateo, CA: Morgan Kaufmann, 1987.

[10] Getoor, L., and Taskar, B. Introduction to statistical relational learning. MIT Press,
2007.

[11] Grossman, D., and Domingos, P. Learning bayesian network classiers by maximizing
conditional likelihood. In Proc. 21st Int’l Conf. on Machine Learning, pages 361–368,
Banf, Canada: ACM Press, 2004.

[12] Gutmann, B., and Kersting, K. TildeCRF: Conditional Random Fields for Logical
Sequences. In J. Fuernkranz, T. Scheffer, M. Spiliopoulou, editors, Proc. of the 17th
ECML, pages 174-185, 2006.

[13] Hoos, H. H., and Stutzle, T. Stochastic local search: Foundations and applications.
Morgan Kaufmann, San Francisco, 2005.

[14] Laferty, J., McCallum, A., and Pereira, F. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data. In Proc. 18th Int’l Conf. on
Machine Learning, pages 282–289, 2001.



14 Marenglen Biba, Stefano Ferilli and Floriana Esposito

[15] Loureno, H.R., Martin, O., and Stutzle, T. Iterated local search. In Handbook of
Metaheuristics, pages 321–353, Kluwer Academic Publishers, 2002.

[16] Mihalkova, L., and Mooney, R. J. Bottom-up learning of markov logic network
structure. In Proc. 24th Int’l Conf. on Machine Learning, pages 625–632, 2007.

[17] Lowd, D., and Domingos, P. Efficient weight learning for markov logic networks.
In Proc. of the 11th European Conference on Principles and Practice of Knowledge
Discovery in Databases, pages, 200–211, 2007.

[18] Kersting, K., De Raedt, L., and Raiko, T. Logial Hidden Markov Models. Journal
of Articial Intelligence Research (JAIR), 25:425456, 2006.

[19] Kok, S., and Domingos, P. Learning the structure of markov logic networks. In Proc,
22nd Int’l Conf. on Machine Learning, pages 441–448, 2005.

[20] Kok, S., Singla, P., Richardson, M., and Domingos, P.: The alchemy system for sta-
tistical relational ai (Technical Report). Department of Computer Science and Engi-
neering, University of Washington, Seattle, WA, http://alchemy.cs.washington.edu/,
2005.

[21] Manna Z., and Pnueli, A. The Temporal Logic of Reactive and Concurrent Systems.
Springer, 1992.

[22] McCallum, A. Efficiently inducing features of conditional random fields. In Proc.
19th Conf. on Uncertainty in Artificial Intelligence, pages 403–410, 2003.

[23] M. Moller. A scaled conjugate gradient algorithm for fast supervised learning. Neural
Networks, 6:525533, 1993.

[24] Poon, H., and Domingos, P. Sound and efficient inference with probabilistic and
deterministic dependencies. In Proc. 21st Nat’l Conf. on Articial Intelligence, pages
458–463, AAAI Press, 2006.

[25] Poon, H., Domingos, P., and Sumner, M. A General Method for Reducing the
Complexity of Relational Inference and its Application to MCMC. In Proc. 23rd
Nat’l Conf. on Articial Intelligence, 2008, Chicago, IL: AAAI Press. To appear.

[26] Richardson, M., and Domingos, P. Markov logic networks. Machine Learning,
62:107–236, 2006.

[27] Selman, B., Kautz, H., and Cohen, B. Local search strategies for satisability testing.
In Johnson, D. S., and Trick, M. A., eds., Cliques, Coloring, and Satisability: Second
DIMACS Implementation Challenge, American Mathematical Society. 521532, 1996.

[28] Singla, P., and Domingos, P. Discriminative training of markov logic networks. In
Proc. 20th Nat’l Conf. on Articial Intelligence, pages 868–873, AAAI Press, 2005.

[29] Sha, F., and Pereira, F. Shallow parsing with conditional random fields. In Proc.
HLT-NAACL, pages 134–141, 2003.

[30] Smyth, K., Hoos, H., Sttzle, T. Iterated Robust Tabu Search for MAX-SAT. Cana-
dian Conference on AI, 129-144, 2003.

[31] Taillard. E.D. Robust taboo search for the quadratic assignment problem. Parallel
Computing, 17:443455, 1991.

[32] Wei, W., Erenrich, J., Selman, B. Towards efficient sampling: Exploiting random
walk strategies. In AAAI-04.


