
Copyright © 2012 Pearson Education, Inc. 1-1

Introduction to Computer Science

Lesson 3

BSc in Computer Science

University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2012 Pearson Education, Inc. 0-2

From last lesson: the binary addition

facts

Copyright © 2012 Pearson Education, Inc. 1-3

Binary addition

Copyright © 2012 Pearson Education, Inc. 1-4 1-4

Storing Integers

• Two’s complement notation: The most
popular means of representing integer
values

• Excess notation: Another means of
representing integer values

• Both can suffer from overflow errors.

Copyright © 2012 Pearson Education, Inc. 1-5

Two's Complement Notation

• The most popular system for representing integers within

today's computers is two's complement notation.

• This system uses a fixed number of bits to represent

each of the values in the system.

• In today's equipment, it is common to use a two's

complement system in which each value is represented

by a pattern of 32 bits or 64 bits.

• Such a large system allows a wide range of numbers to

be represented.

Copyright © 2012 Pearson Education, Inc. 1-6 1-6

Figure 1.21 Two’s complement

notation systems

• Note that in a two's

complement system, the

leftmost bit of a bit

pattern indicates the sign

of the value represented.

• Thus, the leftmost bit is

often called the sign bit.

In a two's complement

system, negative values

are represented by the

patterns whose sign bits

are 1; nonnegative

values are represented

by patterns whose sign

bits are 0.

Copyright © 2012 Pearson Education, Inc. 1-7

Properties of two’s complement notation

• In a two's complement system, there is a convenient relationship

between the patterns representing positive and negative values of the

same magnitude.

• They are identical when read from right to left, up to and

including the first 1.

• From there on, the patterns are complements of one another.

• The complement of a pattern is the pattern obtained by changing all

the 0s to 1s and all the 1s to 0s; 0110 and 1001 are complements.

• For example, in the four-bit system the patterns representing 2 and -2

both end with 10, but the pattern representing 2 begins with 00,

whereas the pattern representing -2 begins with 11.

• This observation leads to an algorithm for converting back and forth

between bit patterns representing positive and negative values of the

same magnitude. We merely copy the original pattern from right

to left until a 1 has been copied, then we complement the

remaining bits as they are transferred to the final bit pattern.

Copyright © 2012 Pearson Education, Inc. 1-8 1-8

Figure 1.22 Coding the value -6 in two’s

complement notation using four bits

Copyright © 2012 Pearson Education, Inc. 1-9

Addition in two’s complement

• To add values represented in two's complement notation, we apply

the same algorithm that we used for binary addition, except that all

bit patterns, including the answer, are the same length.

• This means that when adding in a two's complement system, any

extra bit generated on the left of the answer by a final carry must

be truncated.

– Thus "adding" 0101 and 0010 produces 0111, and "adding" 0111

and 1011 results in 0010 (0111 + 1011 = 10010,which is

truncated to 0010).

Copyright © 2012 Pearson Education, Inc. 1-10 1-10

Figure 1.23 Addition problems converted

to two’s complement notation

Copyright © 2012 Pearson Education, Inc. 1-11

The Problem of Overflow
• One problem we have avoided in the preceding examples is that in any two's

complement system there is a limit to the size of the values that can be

represented.

• When using two's complement with patterns of four bits, the largest positive

integer that can be represented is 7, and the most negative integer is -8.

• In particular, the value 9 can not be represented, which means that we

cannot hope to obtain the correct answer to the problem 5 + 4. In fact, the

result would would appear as -7. This phenomenon is called overflow.

• That is, overflow is the problem that occurs when a computation produces a

value that falls outside the range of values that can be represented. When

using two's complement notation, this might occur when adding two

positive values or when adding two negative values.

Copyright © 2012 Pearson Education, Inc. 1-12

Overflow

• Of course, because most computers use two's complement systems with

longer bit patterns than we have used in our examples, larger values can be

manipulated without causing an overflow.

• Today, it is common to use patterns of 32 bits for storing values in two's

complement notation, allowing for positive values as large as 2,147,483,647

to accumulate before overflow occurs.

• If still larger values are needed, longer bit patterns (64 bits) can be used or

perhaps the units of measure can be changed.

– For instance, finding a solution in terms of miles instead of inches

results in smaller numbers being used and might still provide the

accuracy required.

Copyright © 2012 Pearson Education, Inc. 1-13

Overflow 

• On September 19, 1989, a hospital computer system

malfunctioned after years of reliable service.

• Close inspection revealed that this date was 32,768 (=215)

days after January 1, 1900, and the machine was programmed

to compute dates based on that starting date.

• Thus, because of overflow, September 19, 1989 produced a

negative value - a phenomenon for which the computer's

program was not designed to handle.

Copyright © 2012 Pearson Education, Inc. 1-14

Binary subtraction

• The most common way of subtracting binary numbers is done by first

taking the second value (the number to be subtracted) and apply

what is known as two's complement, this is done in two steps:

– 1. complement each digit in turn (change 1 for 0 and 0 for 1).

– 2. add 1 (one) to the result.

– note: step 1. by itself is known as one's complement.

• By applying these steps you are effectively turning the value into a

negative number, and as when dealing with decimal numbers, if you

add a negative number to a positive number then you are effectively

subtracting to the same value.

In other words 25 + (-8) = 17, which is the same as writing 25 - 8 =

17.

Copyright © 2012 Pearson Education, Inc. 1-15

Subtraction example
• An example, let's do the following subtraction 11101011 -

01100110 (23510 - 10210).

This gives us 10000101, now we can convert this value into decimal,

which gives 13310

So the full calculation in decimal is 23510 - 10210 = 13310 (correct !!)

Copyright © 2012 Pearson Education, Inc. 1-16

Binary multiplication

Copyright © 2012 Pearson Education, Inc. 1-17

Binary multiplication

Copyright © 2012 Pearson Education, Inc. 1-18

Excess notation

• Another method of representing integer values is excess notation. As is the

case with two's complement notation, each of the values in an excess

notation system is represented by a bit pattern of the same length.

• We observe that the first pattern with a 1 as its most significant bit appears

approximately halfway through the list.

– We pick this pattern to represent zero; the patterns following this are

used to represent 1, 2, 3, . . . ; and the patterns preceding it are used for -

1, -2, -3, . . .

• The resulting code, when using patterns of length four, is shown in Figure

1.24. There we see that the value 5 is represented by the pattern 1101 and -5

is represented by 0011. (Note that the difference between an excess

system and a two's complement system is that the sign bits are reversed.)

Copyright © 2012 Pearson Education, Inc. 1-19 1-19

Figure 1.24 An excess eight

conversion table
• The system represented in Figure 1.24 is

known as excess eight notation.

• In each case, you will find that the binary

interpretation exceeds the excess notation

interpretation by the value 8.

• For example, the pattern 1100 in binary

notation represents the value 12, but in our

excess system it represents 4;

• 0000 in binary notation represents 0, but in

the excess system it represents negative 8.

• In a similar manner, an excess system based

on patterns of length five would be called

excess 16 notation, because the pattern

10000 for instance, would be used to

represent zero rather than representing its

usual value of 16.

Copyright © 2012 Pearson Education, Inc. 1-20 1-20

Figure 1.25 An excess notation system

using bit patterns of length three

• Excess four notation

Copyright © 2012 Pearson Education, Inc. 1-21

Floating point
• In contrast to the storage of integers, the storage of a value with a fractional

part requires that we store not only the pattern of 0s and 1s representing its

binary representation but also the position of the radix point.

• A popular way of doing this is based on scientific notation and is called

floating-point notation.

• We first designate the high-order bit of the byte as the sign bit. Once again,

a 0 in the sign bit will mean that the value stored is nonnegative, and a 1 will

mean that the value is negative.

• Next, we divide the remaining seven bits of the byte into two groups, or

fields, the exponent field and the mantissa field. Let us designate the

three bits following the sign bit as the exponent field and the remaining four

bits as the mantissa field.

Copyright © 2012 Pearson Education, Inc. 1-22

Floating point

• We can explain the meaning of the fields by considering the following example.

• Suppose a byte consists of the bit pattern 01101011. Analyzing this pattern with the

preceding format, we see that the sign bit is 0, the exponent is 110, and the mantissa

is 1011. To decode the byte, we first extract the mantissa and place a radix point on

its left side, obtaining

.1011

• Next, we extract the contents of the exponent field (110) and interpret it as an integer

stored using the three-bit excess method. Thus the pattern in the exponent field in our

example represents a positive 2. This tells us to move the radix in our solution to the

right by two bits. (A negative exponent would mean to move the radix to the left.)

Consequently, we obtain

10.11

• which is the binary representation for 2 3/4. Next, we note that the sign bit in our

example is 0; the value represented is thus nonnegative. We conclude that the byte

01101011 represents 2 3/4.

• Had the pattern been 11101011 (which is the same as before except for the sign bit),

the value represented would have been -2 3/4.

Copyright © 2012 Pearson Education, Inc. 1-23

Truncation error

• The significance of such errors can be reduced by using a longer

mantissa field.

• In fact, most computers manufactured today use at least 32 bits for

storing values in floating-point notation instead of the 8 bits we have

used here.

Truncation error

Copyright © 2012 Pearson Education, Inc. 1-24

IEEE Floating point representation

Copyright © 2012 Pearson Education, Inc. 1-25

Data compression

• Data compression schemes fall into two categories.

• Some are lossless, others are lossy.

• Lossless schemes are those that do not loose information in the

compression process.

• Lossy schemes are those that may lead to the loss of information.

– Lossy techniques often provide more compression than lossless

ones and are therefore popular in settings in which minor errors

can be tolerated, as in the case of images and audio.

Copyright © 2012 Pearson Education, Inc. 1-26

Data compression

• Purpose: reduce the data size so that data

can be stored and transmitted efficiently.

• For example,

– 00000000011111111 can be compressed as

(0,9,1,8)

– 123456789 can be compressed as (1,1,9)

– AABAAAABAAC can be compressed as

11011111011100, where A, B, C are encoded

as 1, 01, and 00 respectively.

2016/3/9 26 CS135601 Introduction to Information Engineering

Copyright © 2012 Pearson Education, Inc. 1-27

Run-length encoding

• In cases where the data being compressed consist of long

sequences of the same value,

– the compression technique called run-length encoding, which is

a lossless method, is popular.

• It is the process of replacing sequences of identical data

elements with a code indicating the element that is repeated and

the number of times it occurs in the sequence.

– For example, less space is required to indicate that a bit pattern

consists of 253 ones, followed by 118 zeros, followed by 87 ones

than to actually list all 458 bits.

Copyright © 2012 Pearson Education, Inc. 1-28

Frequency-dependent encoding

• Another lossless data compression technique is frequency-

dependent encoding

– A system in which the length of the bit pattern used to represent a

data item is inversely related to the frequency of the item's

use.

– Such codes are examples of variable-length codes, meaning that

items are represented by patterns of different lengths as opposed

to codes such as Unicode, in which all symbols are represented

by 16 bits.

– David Huffman is credited with discovering an algorithm that is

commonly used for developing frequency-dependent codes,

and it is common practice to refer to codes developed in this

manner as Huffman codes.

– In turn, most frequency-dependent codes in use today are

Huffman codes.

Copyright © 2012 Pearson Education, Inc. 1-29

Huffman Code

• As an example of frequency-dependent encoding, consider the task

of encoded English language text.

• In the English language the letters e, t, a, and i are used more

frequently than the letters z, q, and x.

– So, when constructing a code for text in the English language, space can

be saved by using short bit patterns to represent the former letters

and longer bit patterns to represent the latter ones.

• The result would be a code in which English text would have

shorter representations than would be obtained with uniform-

length codes.

Copyright © 2012 Pearson Education, Inc. 1-30

Differential Encoding

• In some cases, the stream of data to be compressed consists of units, each

of which differs only slightly from the preceding one.

• An example would be consecutive frames of a motion picture. In these

cases, techniques using relative encoding, also known as differential

encoding, are helpful.

• These techniques record the differences between consecutive data units

rather than entire units;

– that is, each unit is encoded in terms of its relationship to the previous

unit.

• Relative encoding can be implemented in either lossless or lossy form

depending on whether the differences between consecutive data units are

encoded precisely or approximated.

Copyright © 2012 Pearson Education, Inc. 1-31

Dictionary encoding

• Still other popular compression systems are based on dictionary

encoding techniques.

• Here the term dictionary refers to a collection of building blocks from

which the message being compressed is constructed, and the

message itself is encoded as a sequence of references to the

dictionary.

• We normally think of dictionary encoding systems as lossless

systems,

– but there are times when the entries in the dictionary are only

approximations of the correct data elements, resulting in a

lossy compression system.

Copyright © 2012 Pearson Education, Inc. 1-32

Lempel-Ziv-Welsh (LZW) encoding

• A variation of dictionary encoding is adaptive dictionary encoding (also
known as dynamic dictionary encoding).

• In an adaptive dictionary encoding system, the dictionary is allowed to
change during the encoding process.

• A popular example is Lempel-Ziv-Welsh (LZW) encoding (named after
its creators, Abraham Lempel, Jacob Ziv, and Terry Welsh).

• To encode a message using LZW; one starts with a dictionary containing
the basic building blocks from which the message is constructed, but as
larger units are found in the message, they are added to the dictionary-
meaning that future occurrences of those units can be encoded as single,
rather than multiple, dictionary references.

Copyright © 2012 Pearson Education, Inc. 1-33

Compressing Images

• GIF: Good for cartoons

• JPEG: Good for photographs

• TIFF: Good for image archiving

Copyright © 2012 Pearson Education, Inc.

GIF
• One system known as GIF (short for Graphic Interchange Format

and pronounced “Giff” by some and “Jiff” by others) is a dictionary

encoding system that was developed by CompuServe.

• It approaches the compression problem by reducing the number of

colors that can be assigned to a pixel to only 256.

• The red-green-blue combination for each of these colors is encoded

using three bytes, and these 256 encodings are stored in a table (a

dictionary) called the palette.

• Each pixel in an image can then be represented by a single byte

whose value indicates which of the 256 palette entries represents the

pixel’s color. (Recall that a single byte can contain any one of 256

different bit patterns.)

• Note that GIF is a lossy compression system when applied to

arbitrary images because the colors in the palette may not be

identical to the colors in the original image.

0-34

Copyright © 2012 Pearson Education, Inc.

JPEG

• Another popular compression system for images is JPEG (pronounced

“JAYpeg”).

• It is a standard developed by the Joint Photographic Experts Group

(hence the standard’s name) within ISO.

• JPEG has proved to be an effective standard for compressing color

photographs and is widely used in the photography industry, as witnessed

by the fact that most digital cameras use JPEG as their default compression

technique.

0-35

Copyright © 2012 Pearson Education, Inc.

JPEG standard

• The JPEG standard actually encompasses several methods of image

compression, each with its own goals.

• In those situations that require the utmost in precision, JPEG

provides a lossless mode.

• However, JPEG’s lossless mode does not produce high levels of

compression when compared to other JPEG options.

• Moreover, other JPEG options have proven very successful, meaning

that JPEG’s lossless mode is rarely used.

• Instead, the option known as JPEG’s baseline standard (also known

as JPEG’s lossy sequential mode) has become the standard of choice

in many applications.

0-36

Copyright © 2012 Pearson Education, Inc.

JPEG – Step 1

• Image compression using the JPEG baseline standard requires a

sequence of steps, some of which are designed to take advantage of a

human eye’s limitations.

• In particular, the human eye is more sensitive to changes in

brightness than to changes in color.

• So, starting from an image that is encoded in terms of luminance and

chrominance components, the first step is to average the

chrominance values over two-by-two pixel squares.

• This reduces the size of the chrominance information by a factor of

four while preserving all the original brightness information.

• The result of step 1 is a significant degree of compression without a

noticeable loss of image quality.

0-37

Copyright © 2012 Pearson Education, Inc.

JPEG – Step 2

• The next step is to divide the image into eight-by-eight pixel blocks

and to compress the information in each block as a unit.

• This is done by applying a mathematical technique known as the

discrete cosine transform, whose details need not concern us here.

• The important point is that this transformation converts the original

eight-by-eight block into another block whose entries reflect how the

pixels in the original block relate to each other rather than the actual

pixel values.

• Within this new block, values below a predetermined threshold are

then replaced by zeros, reflecting the fact that the changes

represented by these values are too subtle to be detected by the

human eye.

0-38

Copyright © 2012 Pearson Education, Inc.

JPEG – Step 3

• At this point, more traditional run-length encoding, relative

encoding, and variable-length encoding techniques are applied

to obtain additional compression.

• All together, JPEG’s baseline standard normally compresses

color images by a factor of at least 10, and often by as much as

30, without noticeable loss of quality.

0-39

Copyright © 2012 Pearson Education, Inc.

TIFF

• Another data compression system associated with images is

TIFF (short for Tagged Image File Format).

• However, the most popular use of TIFF is not as a means of

data compression but instead as a standardized format for

storing photographs along with related information such as

date, time, and camera settings.

• In this context, the image itself is normally stored as red, green,

and blue pixel components without compression.

0-40

Copyright © 2012 Pearson Education, Inc.

TIFF

• The TIFF collection of standards does include data compression

techniques, most of which are designed for compressing images of

text documents in facsimile applications.

• These use variations of run-length encoding to take advantage of the

fact that text documents consist of long strings of white pixels.

• The color image compression option included in the TIFF standards

is based on techniques similar to those used by GIF, and are

therefore not widely used in the photography community.

0-41

Copyright © 2012 Pearson Education, Inc. 1-42

Compressing Audio and Video

• MPEG

– High definition television broadcast

– Video conferencing

• MP3

– Temporal masking

– Frequency masking

Copyright © 2012 Pearson Education, Inc.

MPEG

• The most commonly used standards for encoding and compressing

audio and video were developed by the Motion Picture Experts

Group (MPEG) under the leadership of ISO.

• In turn, these standards themselves are called MPEG.

• MPEG encompasses a variety of standards for different applications.

• For example, the demands for high definition television (HDTV)

broadcast are distinct from those for video conferencing in which the

broadcast signal must find its way over a variety of communication

paths that may have limited capabilities.

• And, both of these applications differ from that of storing video in

such a manner that sections can be replayed or skipped over.

0-43

Copyright © 2012 Pearson Education, Inc.

MPEG

• The techniques employed by MPEG are well beyond the scope of

this course, but in general, video compression techniques are based

on video being constructed as a sequence of pictures in much the

same way that motion pictures are recorded on film.

• To compress such sequences, only some of the pictures, called I-

frames, are encoded in their entirety.

• The pictures between the I-frames are encoded using relative

encoding techniques.

• That is, rather than encode the entire picture, only its distinctions

from the prior image are recorded.

• The I-frames themselves are usually compressed with techniques

similar to JPEG.

0-44

Copyright © 2012 Pearson Education, Inc.

MP3
• The best known system for compressing audio is MP3, which was

developed within the MPEG standards.

• In fact, the acronym MP3 is short for MPEG layer 3.

• Among other compression techniques, MP3 takes advantage of the

properties of the human ear, removing those details that the human ear

cannot perceive.

• One such property, called temporal masking:

– is that for a short period after a loud sound, the human ear cannot detect

softer sounds that would otherwise be audible.

• Another, called frequency masking:

– is that a sound at one frequency tends to mask softer sounds at nearby

frequencies.

• By taking advantage of such characteristics, MP3 can be used to obtain

significant compression of audio while maintaining near CD quality sound.

0-45

Copyright © 2012 Pearson Education, Inc.

MPEG and MP3

• Using MPEG and MP3 compression techniques, video cameras are

able to record as much as an hour’s worth of video within 128MB of

storage and portable music players can store as many as 400 popular

songs in a single GB.

• But, in contrast to the goals of compression in other settings, the goal

of compressing audio and video is not necessarily to save storage

space.

• Just as important is the goal of obtaining encodings that allow

information to be transmitted over today’s communication systems

fast enough to provide timely presentation.

0-46

Copyright © 2012 Pearson Education, Inc.

Speed of communication

• If each video frame required a MB of storage and the frames had to be

transmitted over a communication path that could relay only one KB per

second, there would be no hope of successful video conferencing.

• Thus, in addition to the quality of reproduction allowed, audio and video

compression systems are often judged by the transmission speeds

required for timely data communication.

• These speeds are normally measured in bits per second (bps).

• Common units include Kbps (kilo-bps, equal to one thousand bps),

Mbps (mega-bps, equal to one million bps), and Gbps (gigabps, equal to

one billion bps).

• Using MPEG techniques, video presentations can be successfully

relayed over communication paths that provide transfer rates of 40

Mbps.

• MP3 recordings generally require transfer rates of no more than 64

Kbps.

0-47

Copyright © 2012 Pearson Education, Inc. 1-48

Communication Errors

• When information is transferred back and forth among the various
parts of a computer, or transmitted from the earth to the moon and
back, or, for that matter, merely left in storage, a chance exists that the
bit pattern ultimately retrieved may not be identical to the
original one.

• Particles of dirt or grease on a magnetic recording surface or a
malfunctioning circuit may cause data to be incorrectly recorded or
read.

• Pressure or forces on a transmission path may corrupt portions of the
data.

• And, in the case of some technologies, normal background radiation
can alter patterns stored in a machine's main memory.

Copyright © 2012 Pearson Education, Inc. 1-49

Communication Errors

• To resolve such problems, a variety of encoding techniques have

been developed to allow the detection and even the correction of

errors.

• Today, because these techniques are largely built into the internal

components of a computer system, they are not apparent to the

personnel using the machine.

– Nonetheless, their presence is important and represents a

significant contribution to scientific research.

Copyright © 2012 Pearson Education, Inc. 1-50

Parity bit
• A simple method of detecting errors is based on the principle that if each

bit pattern being manipulated has an odd number of 1s and if a pattern

with an even number of 1s is encountered, an error must have

occurred.

• To use this principle, we need an encoding system in which each pattern

contains an odd number of 1s. This is easily obtained by first adding an

additional bit, called a parity bit, to each pattern in an encoding system

already available (perhaps at the high-order end).

• In each case, we assign the value 1 or 0 to this new bit so that the entire

resulting pattern has an odd number of 1s.

• Once our encoding system has been modified in this way, a pattern with

an even number of 1s indicates that an error has occurred and that

the pattern being manipulated is incorrect.

Copyright © 2012 Pearson Education, Inc. 1-51

Error detection

• During transmission, error could happen.

– For example, bit 0 1 or bit 1 0.

• How could we know there is an error?

– Adding a parity bit (even versus odd)

51

Copyright © 2012 Pearson Education, Inc. 1-52

Checkbyte

• The straightforward use of parity bits is simple but it has its

limitations.

• If a pattern originally has an odd number of 1s and suffers two

errors, it will still have an odd number of 1s, and thus the parity

system will not detect the errors.

• In fact, straightforward applications of parity bits fail to detect any

even number of errors within a pattern.

• One means of minimizing this problem is sometimes applied to long

bit patterns, such as the string of bits recorded in a sector on a

magnetic disk.

• In this case the pattern is accompanied by a collection of parity bits

making up a checkbyte.

– Each bit within the checkbyte is a parity bit associated with a

particular collection of bits scattered throughout the pattern.

Copyright © 2012 Pearson Education, Inc. 1-53

Checkbyte

• For instance, one parity bit may be associated with every eighth bit in

the pattern starting with the first bit, while another may be associated

with every eighth bit starting with the second bit.

• In this manner, a collection of errors concentrated in one area of the

original pattern is more likely to be detected, since it will be in the

scope of several parity bits.

• Variations of this checkbyte concept lead to error detection

schemes known as checksums and cyclic redundancy checks

(CRC).

Copyright © 2012 Pearson Education, Inc. 1-54

Parity bits in memory

• Today it is not unusual to find parity bits being used in a computer's main

memory.

• Although we envision these machines as having memory cells of eight-bit

capacity, in reality each has a capacity of nine bits, one bit of which is used

as a parity bit.

• Each time an eight-bit pattern is given to the memory circuitry for storage,

the circuitry adds a parity bit and stores the resulting nine-bit pattern.

• When the pattern is later retrieved, the circuitry checks the parity of the

nine-bit pattern.

– If this does not indicate an error, then the memory removes the parity bit

and confidently returns the remaining eight-bit pattern.

– Otherwise, the memory returns the eight data bits with a warning that the

pattern being returned may not be the same pattern that was originally

entrusted to memory.

Copyright © 2012 Pearson Education, Inc. 1-55

Error Correction Codes (Figure 1.29)

• Although the use of a parity bit allows the detection of an error, it

does not provide the information needed to correct the error.

• Error-correcting codes can be designed so that errors can be not

only detected but also corrected.

• After all, intuition says that we cannot correct errors in a received

message unless we already know the information in the message.

• However, a simple code with such a corrective property is:

Copyright © 2012 Pearson Education, Inc. 1-56

Hamming distance

• Hamming distance (named after R W Hamming, who pioneered the

search for error-correcting codes after becoming frustrated with the

lack of reliability of the early relay machines of the1940s) between

two patterns is the number of bits in which the patterns differ.

• For example, the Hamming distance between the patterns

representing A and B in the code in Figure 1.29 is four, and the

Hamming distance between B and C is three.

• The important feature of the code in Figure 1.29 is that any two

patterns are separated by Hamming distance of at least three.

Copyright © 2012 Pearson Education, Inc. 1-57

Hamming Distance

• If a single bit is modified in a pattern from Figure 1.29, the error
can be detected since the result will not be a legal pattern.

– We must change at least three bits in any pattern before
it will look like another legal pattern.

• Moreover, we can also figure out what the original pattern was.

– After all, the modified pattern will be a Hamming
distance of only one from its original form but at least
two from any of the other legal patterns.

Copyright © 2012 Pearson Education, Inc. 1-58

Error correction with Hamming distance
• Thus, to decode a message that was originally encoded using Figure

1.29, we simply compare each received pattern with the patterns in
the code until we find one that is within a distance of one from the
received pattern.

• We consider this to be the correct symbol for decoding. For example,
if we received the bit pattern 010100 and compared this pattern to
the patterns in the code, we would obtain the table in Figure1.30.
Thus, we would conclude that the character transmitted must have
been a D because this is the closest match.

58

Copyright © 2012 Pearson Education, Inc.

End of class

• Readings

– Book: Chapter 1

0-59

