
Copyright © 2012 Pearson Education, Inc. 1-1

Introduction to Computer Science

Lesson 4

BSc in Computer Science

University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2012 Pearson Education, Inc. 2-2

Data Manipulation

• 2.1 Computer Architecture

• 2.2 Machine Language

• 2.3 Program Execution

• 2.4 Arithmetic/Logic Instructions

• 2.5 Communicating with Other Devices

• 2.6 Other Architectures

Copyright © 2012 Pearson Education, Inc. 2-3

Computer Hierarchy

Copyright © 2012 Pearson Education, Inc. 2-4

Computer Hierarchy

Copyright © 2012 Pearson Education, Inc. 2-5

Where are you?

Copyright © 2012 Pearson Education, Inc. 2-6

Computer Architecture

• Central Processing Unit (CPU) or
processor

– Arithmetic/Logic unit versus Control unit

– Registers

• General purpose

• Special purpose

• Bus

• Motherboard

Copyright © 2012 Pearson Education, Inc. 2-7

Computer Architecture

Copyright © 2012 Pearson Education, Inc. 2-8

Controllers and Bus

Bus

Copyright © 2012 Pearson Education, Inc. 2-9

CPU
• The circuitry in a computer that controls the manipulation of

data is called the central processing unit, or CPU (often referred

to as merely the processor).

• In the machines of the mid-twentieth century, CPUs were large

units composed of perhaps several racks of electronic circuitry

that reflected the significance of the unit.

• However, technology has shrunk these devices drastically.

• The CPUs found in today's PCs (such processors made by Intel

and processors made by AMD) are packaged as small flat

squares (approximately two inches by two inches) whose

connecting pins plug into a socket mounted on the machine's

main circuit board (called the motherboard).

Copyright © 2012 Pearson Education, Inc. 2-10

Example of processor: Pentium

Copyright © 2012 Pearson Education, Inc. 2-11

CPU

• In a PC, the central processing unit (CPU) is the primary control device for

the entire computer system.

• The CPU is technically a set of components that manages all the activities

and does much of the “heavy lifting” in a computer system.

• The CPU interfaces, or is connected, to all of the components such as memory,

storage, and input/output (I/O) through communications channels called

busses.

• The CPU performs a number of individual or discrete functions that must work

in harmony in order for the system to function.

• Additionally, the CPU is responsible for managing the activities of the entire

system.

• The CPU takes direction from internal commands that are stored in the CPU as

well as external commands that come from the operating system and other

programs.

• It is important to note that these functions occur in all CPUs regardless of

manufacturer.

Copyright © 2012 Pearson Education, Inc. 2-12

CPU: ALU and the Control Unit

• A CPU consists of two parts:

– the ALU (arithmetic/logic unit), which contains the

circuitry that performs operations on data (such as

addition and subtraction),

– the Control Unit, which contains the circuitry for

coordinating the machine's activities.

• For temporary storage of information, the CPU contains

cells, or registers, that are conceptually similar to main

memory cells.

– These registers can be classified as either general-

purpose registers or special-purpose registers.

Copyright © 2012 Pearson Education, Inc. 2-13

CPU - Central Processing Unit

Copyright © 2012 Pearson Education, Inc. 2-14

Registers

• General-purpose registers serve as temporary holding places for

data being manipulated by the CPU.

• These registers hold the inputs to the arithmetic/logic unit's circuitry

and provide storage space for results produced by that unit.

• To perform an operation on data stored in main memory, the control

unit:

– transfers the data from memory into the general-purpose

registers,

– informs the arithmetic/logic unit which registers hold the data,

– activates the appropriate circuitry within the arithmetic/logic unit,

and

– tells the arithmetic/logic unit which register should receive the

result.

Copyright © 2012 Pearson Education, Inc. 2-15

Registers, 16 bit

Copyright © 2012 Pearson Education, Inc. 2-16

Copyright © 2012 Pearson Education, Inc. 2-17

32 and 64 bit CPUs

Copyright © 2012 Pearson Education, Inc. 2-18

Floating point registers (AMD)

Copyright © 2012 Pearson Education, Inc. 2-19

Media registers (AMD)

Copyright © 2012 Pearson Education, Inc. 2-20

Bus

• For the purpose of transferring bit patterns, a machine's CPU

and main memory are connected by a collection of wires

called a bus.

• Through this bus, the CPU extracts (reads) data from main

memory by supplying the address of the pertinent memory cell

along with an electronic signal telling the memory circuitry that

it is supposed to retrieve the data in the indicated cell.

• In a similar manner, the CPU places (writes) data in memory

by providing the address of the destination cell and the data to

be stored together with the appropriate electronic signal telling

main memory that it is supposed to store the data being sent

to it.

Copyright © 2012 Pearson Education, Inc. 2-21

Figure 2.1 CPU and main memory

connected via a bus

Copyright © 2012 Pearson Education, Inc. 2-22

Bus within single computer

Copyright © 2012 Pearson Education, Inc. 2-23

Bus among systems

Copyright © 2012 Pearson Education, Inc. 2-24

Bus/Cable

Copyright © 2012 Pearson Education, Inc. 2-25

Stored Program Concept

• A program can be encoded as bit patterns

and stored in main memory.

• From there, the CPU can then extract the

instructions and execute them.

• In turn, the program to be executed can be

altered easily.

Copyright © 2012 Pearson Education, Inc. 2-26

John Von Neumann

• John von Neumann (1903 –1957) was an

Austro-Hungarian-born American

mathematician who made major contributions

to a vast range of fields, including set theory,

functional analysis, quantum mechanics,

ergodic theory, continuous geometry,

economics and game theory, computer

science, numerical analysis, hydrodynamics

(of explosions), and statistics, as well as many

other mathematical fields.

• He is generally regarded as one of the

foremost mathematicians of the 20th century.

• The IEEE John von Neumann Medal is awarded annually by the IEEE
"for outstanding achievements in computer-related science and
technology.“

• On February 15, 1956, Neumann was presented with the Presidential
Medal of Freedom by President Dwight Eisenhower

Copyright © 2012 Pearson Education, Inc. 2-27

Von Neumann Architecture

• A breakthrough came with the realization that a program,
just like data, can be encoded and stored in main
memory.

• The control unit is designed:
– to extract the program from memory,

– decode the instructions,

– and execute them,

• The program that the machine follows can be changed
merely by changing the contents of the computer's
memory instead of rewiring the control unit.

Copyright © 2012 Pearson Education, Inc. 2-28

Single-memory computer architecture

• While consulting for the Moore School of Electrical

Engineering on the EDVAC project, von Neumann wrote

an incomplete set of notes titled the First Draft of a Report

on the EDVAC.

– The paper, which was widely distributed, described a

computer architecture in which data and program

memory are mapped into the same address space.

– This architecture became the de facto standard and

can be contrasted with a so-called Harvard

architecture, which has separate program and data

memories on a separate bus.

Copyright © 2012 Pearson Education, Inc.

Who was the inventor?

• Although the single-memory architecture became

commonly known by the name von Neumann

architecture as a result of von Neumann's paper, the

architecture's description was based on the work of J.

Presper Eckert and John William Mauchly, inventors of

the ENIAC at the University of Pennsylvania.

– With very few exceptions, all present-day home

computers, microcomputers, minicomputers and

mainframe computers use this single-memory

computer architecture.

0-29

Copyright © 2012 Pearson Education, Inc. 2-30

Programs and data together

Copyright © 2012 Pearson Education, Inc. 2-31

Von Neumann Architecture

Copyright © 2012 Pearson Education, Inc. 2-32

Von Neumann bottleneck

• The separation between the CPU and memory leads to the Von Neumann

bottleneck, the limited throughput (data transfer rate) between the CPU and

memory compared to the amount of memory.

• In most modern computers, throughput is much smaller than the rate at

which the CPU can work.

– This seriously limits the effective processing speed when the CPU is

required to perform minimal processing on large amounts of data.

– The CPU is continuously forced to wait for needed data to be transferred

to or from memory.

– Since CPU speed and memory size have increased much faster than the

throughput between them, the bottleneck has become more of a

problem.

• The performance problem is reduced by a cache between the CPU and the

main memory.

Copyright © 2012 Pearson Education, Inc. 2-33

Cache memory

• It is instructive to compare the memory facilities within a

computer in relation to their functionality.

– Registers are used to hold the data immediately applicable

to the operation at hand;

– main memory is used to hold data that will be needed in the

near future;

– mass storage is used to hold data that will likely not be

needed in the immediate future.

• Many machines are designed with an additional memory level,

called cache memory.

• Cache memory is a portion (perhaps several hundred MB) of

high-speed memory located within the CPU itself.

Copyright © 2012 Pearson Education, Inc.

Cache memory

• In the cache, the machine attempts to keep a copy of that

portion of main memory that is of current interest.

• In this setting, data transfers that normally would be made

between registers and main memory are made between

registers and cache memory.

• Any changes made to cache memory are then transferred

collectively to main memory at a more opportune time.

• The result is a CPU that can execute its machine cycle more

rapidly because it is not delayed by main memory

communication.

0-34

Copyright © 2012 Pearson Education, Inc. 2-35

Caches and bus: where data stand

and go

Copyright © 2012 Pearson Education, Inc. 2-36

• The ideas present in von Neumann architecture have been

extended. (von Neumann bottleneck).

• The data bus moves data from main memory to the CPU

registers (and vice versa).

• The address bus holds the address of the data that the data

bus is currently accessing.

• The control bus carries the necessary control signals that

specify how the information transfer is to take place.

Extensions to Von Neumann

architecture

Copyright © 2012 Pearson Education, Inc. 2-37

Extensions to Von Neumann architecture

Copyright © 2012 Pearson Education, Inc. 2-38

CPU: Data bus and address bus

Copyright © 2012 Pearson Education, Inc. 2-39

Improved architecture with more registers

Other enhancements to

the von Neumann

architecture include

using index registers

for addressing, adding

floating point data,

using interrupts and

asynchronous I/O,

adding virtual memory,

and adding general

registers.

Copyright © 2012 Pearson Education, Inc. 2-40

Data Manipulation

• 2.1 Computer Architecture

• 2.2 Machine Language

• 2.3 Program Execution

• 2.4 Arithmetic/Logic Instructions

• 2.5 Communicating with Other Devices

• 2.6 Other Architectures

Copyright © 2012 Pearson Education, Inc. 2-41

Where is machine language?

Copyright © 2012 Pearson Education, Inc. 2-42

Instructions to the CPU

• To apply the stored-program concept, CPUs are

designed to recognize instructions encoded as bit

patterns.

• This collection of instructions along with the encoding

system is called the machine language.

• An instruction expressed in this language is called a

machine-level instruction or, more commonly, a machine

instruction.

Copyright © 2012 Pearson Education, Inc. 2-43

Terminology

• Machine instruction: An instruction (or

command) encoded as a bit pattern

recognizable by the CPU

• Machine language: The set of all

instructions recognized by a machine

Copyright © 2012 Pearson Education, Inc. 2-44

Machine capability

• The list of machine instructions that a typical CPU must

be able to decode and execute is quite short.

• Indeed, once a machine can perform certain elementary

but well-chosen tasks, adding more features does not

increase the machine's theoretical capabilities.

• In other words, beyond a certain point, additional features

may increase such things as convenience but add

nothing to the machine's fundamental capabilities.

Copyright © 2012 Pearson Education, Inc. 2-45

Machine Language Philosophies

• Reduced Instruction Set Computing (RISC)

– Few, simple, efficient, and fast instructions

– Examples: PowerPC from Apple/IBM/Motorola

 and SPARK from Sun Microsystems

• Complex Instruction Set Computing (CISC)

– Many, convenient, and powerful instructions

– Example: Pentium from Intel

Copyright © 2012 Pearson Education, Inc. 2-46

RISC vs. CISC

Copyright © 2012 Pearson Education, Inc. 2-47

RISC - Reduced Instruction Set

Computer
• A computer architecture that reduces chip complexity by using

simpler instructions.

• RISC compilers have to generate software routines to perform

the equivalent processing performed by more comprehensive

instructions in "complex instruction set computers" (CISC

computers).

• RISC - No Microcode

– In a RISC computer, there is no microcode layer, and the

associated overhead of that translation is eliminated.

– RISC keeps instruction size constant

– It retains only those instructions that can be overlapped

and made to execute in one machine cycle or less.

Copyright © 2012 Pearson Education, Inc. 2-48

Machine Instruction Types

• Data Transfer: copy data from one location

to another

• Arithmetic/Logic: use existing bit patterns

to compute a new bit patterns

• Control: direct the execution of the

program

Copyright © 2012 Pearson Education, Inc. 2-49

Data transfer

• The data transfer group consists of instructions that

request the movement of data from one location to

another.

– We should note that using terms such as transfer or

move to identify this group of instructions is actually a

misnomer.

– It is rare that the data being transferred is erased from

its original location.

• The process involved in a transfer instruction is more like

copying the data rather than moving it.

• Thus terms such as copy or clone better describe the

actions of this group of instructions.

Copyright © 2012 Pearson Education, Inc. 2-50

Figure 2.2 Adding values stored in

memory

Copyright © 2012 Pearson Education, Inc. 2-51

I/O instructions

• An important group of instructions within the data transfer

category consists of the commands for communicating with

devices outside the CPU - main memory context (printers,

keyboards, monitors, disk drives, etc.).

• Since these instructions handle the input/output (I/O)

activities of the machine, they are called I/O instructions

and are sometimes considered as a category in their own

right.

• The I/O activities can be handled by the same instructions

that request data transfers between the CPU and main

memory.

• Thus, we shall consider the I/O instructions to be a part of

the data transfer group.

Copyright © 2012 Pearson Education, Inc. 2-52

Arithmetic/logic Instructions

• The arithmetic/logic group consists of the instructions that tell

the control unit to request an activity within the arithmetic/logic

unit.

• The arithmetic/logic unit is capable of performing operations

other than the basic arithmetic operations.

• Some of these additional operations are the Boolean operations

AND, OR, and XOR.

• Another collection of operations available within most

arithmetic/logic units allows the contents of registers to be

moved to the right or the left within the register.

– These operations are known as either SHIFT or ROTATE

operations, depending on whether the bits that "fall off the

end" of the register are merely discarded (SHIFT) or are

used to fill the holes left at the other end (ROTATE).

Copyright © 2012 Pearson Education, Inc. 2-53

Figure 2.3 Dividing values stored in

memory

Copyright © 2012 Pearson Education, Inc. 2-54

Control Instructions

• The control group consists of those instructions that direct the

execution of the program rather than the manipulation of data.

• This group contains many of the more interesting instructions in

a machine's repertoire, such as the family of JUMP (or BRANCH)

instructions used to direct the control unit to execute an

instruction other than the next one in the list.

• These JUMP instructions appear in two varieties: unconditional

jumps and conditional jumps.

• The distinction is that a conditional jump results in a "change of

venue" only if a certain condition is satisfied.

• As an example, the sequence of instructions in Figure 2.3

represents an algorithm for dividing two values where Step 3 is a

conditional jump that protects against the possibility of division by

zero.

Copyright © 2012 Pearson Education, Inc. 2-55

Figure 2.4 The architecture of the

machine described in Appendix C

Copyright © 2012 Pearson Education, Inc. 2-56

Parts of a Machine Instruction

• Op-code: Specifies which operation to

execute

• Operand: Gives more detailed information

about the operation

– Interpretation of operand varies depending on

op-code

Copyright © 2012 Pearson Education, Inc. 2-57

Instruction fields

• The bit pattern appearing in the op-code field

indicates which of the elementary operations,

such as STORE, SHIFT, XOR, and JUMP, is

requested by the instruction.

• The bit patterns found in the operand field

provide more detailed information.

– For example, in the case of a STORE operation, the

information in the operand field indicates which register

contains the data to be stored and which memory cell

is to receive the data.

Copyright © 2012 Pearson Education, Inc. 2-58

Figure 2.6 Decoding the instruction

35A7

Copyright © 2012 Pearson Education, Inc. 2-59

Figure 2.7 An encoded version of the

instructions in Figure 2.2

Copyright © 2012 Pearson Education, Inc. 2-60

Figure 2.5 The composition of an

instruction for the machine in

Appendix C

Copyright © 2012 Pearson Education, Inc. 2-61

Assembly language
• Assembly languages are a family of low-level languages for programming

computers, microprocessors, microcontrollers, and other (usually) integrated

circuits.

• They implement a symbolic representation of the numeric machine codes and

other constants needed to program a particular CPU architecture.

• This representation is usually defined by the hardware manufacturer, and is

based on abbreviations (called mnemonics) that help the programmer

remember individual instructions, registers, etc.

• An assembly language is thus specific to a certain physical or virtual computer

architecture (as opposed to most high-level languages, which are usually

portable).

• A utility program called an assembler is used to translate assembly language

statements into the target computer's machine code.

• The assembler performs a more or less isomorphic translation (a one-to-one

mapping) from mnemonic statements into machine instructions and data.

• This is in contrast with high-level languages, in which a single statement

generally results in many machine instructions.

Copyright © 2012 Pearson Education, Inc. 2-62

Levels of programming languages

Copyright © 2012 Pearson Education, Inc. 2-63

From high level to machine code

Copyright © 2012 Pearson Education, Inc. 2-64

Assembler: from source code to machine

code

Copyright © 2012 Pearson Education, Inc. 2-65

Programming in Assembly

Registers

Memory

PC: program

counter

Copyright © 2012 Pearson Education, Inc. 2-66

Assembly: working with registers

The same program in high level language:

AX = has a certain value;

If(AX < 97 OR AX > 122) return;

else

AX = AX - 32

Copyright © 2012 Pearson Education, Inc. 2-67

Assembly is fast and fits in small

memories 

MenuetOS, a new operating

system that is built in assemby

language, not only does this OS fit

on a floppy disk but it’s incredibly

fast and efficient. No surprise

there: assembly language is

designed to work close to the

hardware.

Copyright © 2012 Pearson Education, Inc. 2-68

Example of Machine Language - 1

• The machine has 16 general-purpose registers

numbered 0 through F (in hexadecimal).

• Each register is one byte (eight bits) long.

• For identifying registers within instructions, each

register is assigned the unique four-bit pattern

that represents its register number.

• Thus register 0 is identified by 0000

(hexadecimal 0), and register 4 is identified by

0100 (hexadecimal 4).

Copyright © 2012 Pearson Education, Inc. 2-69

Example of Machine Language - 2

• There are 256 cells in the machine's main

memory. Each cell is assigned a unique address

consisting of an integer in the range of 0 to 255.

• An address can therefore be represented by a

pattern of eight bits ranging from 00000000 to

11111111 (or a hexadecimal value in the range

of 00 to FF).

Copyright © 2012 Pearson Education, Inc. 2-70

Example of Machine Language - 3

• Each machine instruction is two byte's long.

• The first 4 bits provide the op-code

• The last 12 bits make up the operand field.

• The table in next slide lists the instructions in
hexadecimal notation together with a short description of
each.

• The letters R, S, and T are used in place of hexadecimal
digits in those fields representing a register identifier (that
varies depending on the particular application of the
instruction.

• The letters X and Y are used instead of hexadecimal
digits in variable fields not representing a register.

Copyright © 2012 Pearson Education, Inc. 2-71

Instructions (Book - Appendix A)

Copyright © 2012 Pearson Education, Inc. 2-72

Instructions (Book - Appendix A)

Copyright © 2012 Pearson Education, Inc. 2-73

Instructions (Book - Appendix A)

Copyright © 2012 Pearson Education, Inc. 2-74

Variable-Length Instructions

• To simplify explanations, the machine language

described in Appendix C uses a fixed size (two bytes)

for all instructions.

• Thus, to fetch an instruction, the CPU always retrieves

the contents of two consecutive memory cells and

increments its program counter by two.

• This consistency streamlines the task of fetching

instructions and is characteristic of RISC machines.

• CISC machines, however, have machine languages

whose instructions vary in length.

Copyright © 2012 Pearson Education, Inc.

Variable-Length Instructions

• The Pentium series, for example, has instructions that

range from single-byte instructions to multiple-byte

instructions whose length depends on the exact use of

the instruction.

• CPUs with such machine languages determine the

length of the incoming instruction by the instruction's

op-code.

• That is, the CPU first fetches the op-code of the

instruction and then, based on the bit pattern received,

knows how many more bytes to fetch from memory to

obtain the rest of the instruction.

0-75

Copyright © 2012 Pearson Education, Inc. 2-76

Data Manipulation

• 2.1 Computer Architecture

• 2.2 Machine Language

• 2.3 Program Execution

• 2.4 Arithmetic/Logic Instructions

• 2.5 Communicating with Other Devices

• 2.6 Other Architectures

Copyright © 2012 Pearson Education, Inc. 2-77

Program Execution

• A computer follows a program stored in its

memory by copying the instructions from

memory into the control unit as needed.

• Once in the control unit, each instruction is

decoded and executed.

• The order in which the instructions are fetched

from memory corresponds to the order in which

the instructions are stored in memory unless

otherwise altered by a JUMP instruction.

Copyright © 2012 Pearson Education, Inc. 2-78

Program Execution

• Controlled by two special-purpose
registers

– Program counter: address of next instruction

– Instruction register: current instruction

• Machine Cycle

– Fetch

– Decode

– Execute

Copyright © 2012 Pearson Education, Inc.

Program counter and Instruction

Register

0-79

Program

counter

Instruction

register

Copyright © 2012 Pearson Education, Inc. 2-80

Figure 2.8 The machine cycle

Copyright © 2012 Pearson Education, Inc. 2-81

Control unit in the program execution: Fetch

• The control unit performs its job by continually repeating an algorithm

that guides it through a three-step process known as the machine cycle.

• During the fetch step, the control unit requests that main memory

provide it with the instruction that is stored at the address indicated by

the program counter.

– Since each instruction in our machine is two bytes long, this fetch

process involves retrieving the contents of two memory cells from

main memory.

– The control unit places the instruction received from memory in its

instruction register and then increments the program counter by two

so that the counter contains the address of the next instruction

stored in memory.

– Thus the program counter will be ready for the next fetch.

Copyright © 2012 Pearson Education, Inc. 2-82

Control unit in the program execution: Decode

• With the instruction now in the instruction

register, the control unit decodes the

instruction, which involves breaking the

operand field into its proper components

based on the instruction's op-code.

Copyright © 2012 Pearson Education, Inc. 2-83

Control unit in the program execution: Execute

• The control unit then executes the instruction by activating the

appropriate circuitry to perform the requested task.

• For example, if the instruction is a load from memory, the

control unit sends the appropriate signals to main memory,

waits for main memory to send the data, and then places the

data in the requested register;

• If the instruction is for an arithmetic operation, the control unit

activates the appropriate circuitry in the arithmetic/logic unit

with the correct registers as inputs and waits for the

arithmetic/logic unit to compute the answer and place it in the

appropriate register.

Copyright © 2012 Pearson Education, Inc. 2-84

Figure 2.9 Decoding the instruction

B258

Copyright © 2012 Pearson Education, Inc.

Illustration of machine cycles:

Program to execute

0-85

Copyright © 2012 Pearson Education, Inc. 2-86

Figure 2.10 The program from Figure 2.7

stored in main memory ready for execution

Copyright © 2012 Pearson Education, Inc. 2-87

Figure 2.11 Performing the fetch step

of the machine cycle

Copyright © 2012 Pearson Education, Inc. 2-88

Figure 2.11 Performing the fetch step of the

machine cycle (cont’d)

• Next, the control unit analyzes the instruction in its instruction

register and concludes that it is to load register 5 with the

contents of the memory cell at address 6C. This load activity is

performed during the execution step of the machine cycle, and

the control unit then begins the next cycle.

incremented to A2

Copyright © 2012 Pearson Education, Inc.

Next steps

• Program Counter: A4

• Instruction Register: 166D

• The CPU decodes the instruction 166D and determines

that it is to load register 6 with the contents of memory

address 6D. It then executes the instruction.

• It is at this time that register 6 is actually loaded.

2-89

Copyright © 2012 Pearson Education, Inc.

Next steps

• Since the program counter now contains A4, the CPU

extracts the next instruction starting at this address.

• The result is that 5056 is placed in the instruction

register, and the program counter is incremented to A6.

• The CPU now decodes the contents of its instruction

register and executes it by activating the two’s

complement addition circuitry with inputs being registers

5 and 6.

0-90

Copyright © 2012 Pearson Education, Inc.

Addition step

• During this execution step, the arithmetic/logic

unit performs the requested addition, leaves the

result in register 0 (as requested by the control

unit), and reports to the control unit that it has

finished.

• The CPU then begins another machine cycle.

0-91

Copyright © 2012 Pearson Education, Inc.

Move result into memory location

• Once again, with the aid of the program counter,

it fetches the next instruction (306E) from the two

memory cells starting at memory location A6 and

increments the program counter to A8.

• This instruction is then decoded and executed.

At this point, the sum is placed in memory

location 6E.

0-92

Copyright © 2012 Pearson Education, Inc.

Last step: stop

• The next instruction is fetched starting from

memory location A8, and the program counter is

incremented to AA.

• The contents of the instruction register (C000)

are now decoded as the halt instruction.

• Consequently, the machine stops during the

execute step of the machine cycle, and the

program is completed.

0-93

Copyright © 2012 Pearson Education, Inc. 2-94

Programs versus data

• Many programs can be stored simultaneously in a computer's

main memory, as long as they occupy different locations.

• Which program will be run when the machine is started can

then be determined merely by setting the program counter

appropriately.

• One must keep in mind, however, that because data are also

contained in main memory and encoded in terms of 0s and 1s,

the machine alone has no way of knowing what is data and

what is program.

• If the program counter were assigned the address of data

instead of the address of the desired program, the computer,

not knowing any better, would extract the data bit patterns as

though they were instructions and execute them.

– The final result would depend on the data involved!!!

Copyright © 2012 Pearson Education, Inc. 2-95

Data Manipulation

• 2.1 Computer Architecture

• 2.2 Machine Language

• 2.3 Program Execution

• 2.4 Arithmetic/Logic Instructions

• 2.5 Communicating with Other Devices

• 2.6 Other Architectures

Copyright © 2012 Pearson Education, Inc. 2-96

Arithmetic/Logic Operations

• Logic: AND, OR, XOR

– Masking

• Rotate and Shift: circular shift, logical shift,

arithmetic shift

• Arithmetic: add, subtract, multiply, divide

– Precise action depends on how the values are

encoded (two’s complement versus floating-

point).

Copyright © 2012 Pearson Education, Inc. 2-97

Logic Operations

Copyright © 2012 Pearson Education, Inc. 2-98

Complementing bit strings with XOR

• A major use of the XOR operation is in forming

the complement of a bit string.

• XORing any byte with a mask of all 1s produces

the complement of the byte.

• For example, note the relationship between the

second operand and the result in the following

example:

Copyright © 2012 Pearson Education, Inc. 2-99

Figure 2.12 Rotating the bit pattern

65 (hexadecimal) one bit to the right

Copyright © 2012 Pearson Education, Inc. 2-100

Logical Shift

Copyright © 2012 Pearson Education, Inc. 2-101

Logical shift

• Shifts to the left can be used for multiplying two's

complement representations by two.

• After all, shifting binary digits to the left corresponds to

multiplication by two, just as a similar shift of decimal

digits corresponds to multiplication by ten.

• Moreover, division by two can be accomplished by shifting

the binary string to the right.

• In either shift, care must be taken to preserve the sign bit

when using certain notational systems.

• Shifts that leave the sign bit unchanged are sometimes

called arithmetic shifts.

Copyright © 2012 Pearson Education, Inc. 2-102

Arithmetic operations

• Subtraction can be simulated by means of
addition and negation.

• Moreover, multiplication is merely repeated
addition and division is repeated subtraction.

• For this reason, some small CPUs are designed
with only the add or perhaps only the add and
subtract instructions.

Copyright © 2012 Pearson Education, Inc. 2-103

Next lesson

• 2.1 Computer Architecture

• 2.2 Machine Language

• 2.3 Program Execution

• 2.4 Arithmetic/Logic Instructions

• 2.5 Communicating with Other Devices

• 2.6 Other Architectures

Copyright © 2012 Pearson Education, Inc.

End of class

• Readings

– Book: Chapter 2

0-104

