Introduction to Computer Science
Lesson 4

BSc in Computer Science
University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2012 Pearson Education, Inc.

1-1

2.1 Computer Architecture

2.2 Machine Language

2.3 Program Execution

2.4 Arithmetic/Logic Instructions

2.5 Communicating with Other Devices
2.6 Other Architectures

Copyright © 2012 Pearson Education, Inc.

2-2

Computer Hierarchy

system and application programs

operating system

user user user user
1 2 = n
F 3 A 3
Y k 4 h 4
compiler assembler text editor database
system

computer hardware

Copyright © 2012 Pearson Education, Inc.

2-3

Banking Airline Web

: > Application programs
system | reservation | browser PP prog

. . Command
Sempliers Egliors interpreter > System
programs
Operating system
Machine language
Microarchitecture -~ Hardware

Physical devices

Copyright © 2012 Pearson Education, Inc. 2.4

Where are you?

2
(]
o

=
H
o
c

/

2
2
A

/

= s

i [s &
v [w
=

7

,_
F 1

/:

‘\‘,

Copyright © 2012 Pearson Education, Inc.

2-5

Central Processing Unit (CPU) or
processor

Arithmetic/Logic unit versus Control unit
Registers
General purpose
Special purpose
Bus
Motherboard

Copyright © 2012 Pearson Education, Inc.

2-6

Computer Architecture

CPU

disks

SIS

disk
controller

mouse

G

keyboard printer monitor
/— on-line —\
—
USB controller graphics
adapter

memory

Copyright © 2012 Pearson Education, Inc.

2-7

IVIOT HLOI

Hard
Keyboard dizllfz%e disk drive
X /1 =\ pd N\
ol (5@@@@x = noooo
CPU Memory Vigea Keybaard Fl;)iglgy l:jl?s,rlg
controller controller ——— W

Copyright © 2012 Pearson Education, Inc.

2-8

The circuitry in a computer that controls the manipulation of
data is called the central processing unit, or CPU (often referred
to as merely the processor).

In the machines of the mid-twentieth century, CPUs were large
units composed of perhaps several racks of electronic circuitry
that reflected the significance of the unit.

However, technology has shrunk these devices drastically.

The CPUs found in today's PCs (such processors made by Intel
and processors made by AMD) are packaged as small flat
squares (approximately two inches by two inches) whose
connecting pins plug into a socket mounted on the machine's
main circuit board (called the motherboard).

Copyright © 2012 Pearson Education, Inc.

2-9

Example of processor: Pentium

intale
f piﬂfﬁ'ﬁw pentium™

= intgls
Lo penifirn:

intal.

pPentium™~

intal- intals intale

pentiume pentiume pentium=

intgls
pentiume
w/ MIMX™ tach

Copyright © 2012 Pearson Education, Inc. 2.10

In a PC, the central processing unit (CPU) is the primary control device for
the entire computer system.

The CPU is technically a set of components that manages all the activities
and does much of the “heavy lifting” in a computer system.

The CPU interfaces, or is connected, to all of the components such as memory,
storage, and input/output (I/0O) through communications channels called
busses.

The CPU performs a number of individual or discrete functions that must work
in harmony in order for the system to function.

Additionally, the CPU is responsible for managing the activities of the entire
system.

The CPU takes direction from internal commands that are stored in the CPU as
well as external commands that come from the operating system and other
programs.

It is important to note that these functions occur in all CPUs regardless of
manufacturer.

Copyright © 2012 Pearson Education, Inc. 2.11

A CPU consists of two parts:

the ALU (arithmetic/logic unit), which contains the
circuitry that performs operations on data (such as
addition and subtraction),

the Control Unit, which contains the circuitry for
coordinating the machine's activities.

For temporary storage of information, the CPU contains
cells, or registers, that are conceptually similar to main
memory cells.

These registers can be classified as either general-
purpose registers or special-purpose registers.

Copyright © 2012 Pearson Education, Inc. 2.12

CPU - Central Processing Unit

CPU
Control Unit ALU
B Memory @
@
3
&
_ 11O &
Processor Bus | Registers

Copyright © 2012 Pearson Education, Inc. 2.13

General-purpose registers serve as temporary holding places for
data being manipulated by the CPU.

These registers hold the inputs to the arithmetic/logic unit's circuitry
and provide storage space for results produced by that unit.

To perform an operation on data stored in main memory, the control
unit:
transfers the data from memory into the general-purpose
registers,
iInforms the arithmetic/logic unit which registers hold the data,

activates the appropriate circuitry within the arithmetic/logic unit,
and

tells the arithmetic/logic unit which register should receive the
result.

Copyright © 2012 Pearson Education, Inc. 2.14

Registers, 16 bit

7 ACCUM.A 0|7 ACCUuM.B O
15 DOUBLE ACCUMULATOR D 0
15 INDEX REGISTER X 0
15 INDEX REGISTER Y 0
15 STACK POINTER 0
15 PROGRAM COUNTER 0
CONDITIONCODES |S X HINZ V C
REGISTER T
CARRY
—— OVERFLOW
ZERO
NEGATIVE
| - INTERRUPT MASK
HALF CARRY
X - INTERRUPT MASK
STOP DISABLE

Copyright © 2012 Pearson Education, Inc.

2-15

3-20 The 8086 Book

8086 REGISTERS AND FLAGS

The 8086 has four 16-bit general purpose registers, two 16-bit Pointer reg
two 16-bit Index registers, one 16-bil program counter, four 16-bit Segment reg

and one 16-bit Flags register. These registers may be illustrated as follows:

15 () ~g———0ne 16-bit register
7 07 O - Two B-bit registers

M

i ,ﬁ% | @ |cx (= CH, CL) Accumulatorts) and Counter

| od | bt |ox (= DH. DU Accumulator(s) and 110 Address
S ——_—

These names apply 1o 16-bit ragisters
Thase names apply to 8-bit registers

15 O -a——Bit No
Base Pointer (BP)

15 0 -—8it No Index registess
Sowrce Index (SH

Destination Index {DI)

15 O -—Bit No.
Program Counter {PC)
15 0 "—Bit No.

Codde Segment (CS)

PC

Dats Segment {DS)
Stack Segment (SS)

Segment registers

Extra Segment {ES|

15 O =a—Hit No.
Status

Copyright © 2012 Pearson Ec

2-16

32 and 64 bit CPUs

D Uit

§
i

I & oMy 2 |]

Program Gounter [FC)

[R

Registers

) & T my = o =] =

32-bit

Copyright © 2012 Pearson Education, Inc.

2-17

Floating point registers (AMD)

Basic Registers

1

is

General

Purpose
Register

63 0
1 [EE % 1
[BRRRR] % Segment
[EEEE Register
I =9
6 | G5
15 0

XMM Registers

1

is

Copyright © 2012 Pearson Ed.

127
Media Control

Iﬁl and Status Register

Floating Point Registers (FPU)

8

FERE FP Data
FPRS Register

FPRz ST(0)-
FPRLI ST(7)

79

1.

Control Register

l

Status Register

oy
L
[}

Tag Register

oy
Ln
=]

Opcode Register

[y
=]
(=]

Last Instruction
Pointer (rIP)

Last Data
Pointer [rDP)

TH

TH

MMX Registers

1)
2

1 MMO

53 0

(CRU Register

&4-Bit Mode: CPU Register is ignored,
treated as valueis O

Onby OS5 Attributes are recognized

The MMX registers are mapped onto the
FF Data Registers

0200609222
Copyright € 2005
by Stefan M. Hertweck

2-18

General-Purpose
Registers (GPRs)

RAX
RBX
RCX
RDX
RBP
RSI
RDI
RSP
Rs
R9
R10
R1
R12
R13
R14
R15

33 0

64-Bit Media and

128-Bit Media

Floating-Point Registers Registers

MMX0/FPRO

MMX1/FPR1

MMX2/FPR2

MMDX3,/FPR3

MMX4/FPR4

MMX5/FPRS

MMDX6,/FPR6

MMX7/FPR7

Flags Register

0 | EFLAGS

RFLAGS

&3 0

Instruction Pointer

RIP

EIP

B3 0

Legacy xB6 registers, supparted in all modes

Register extensions, supported in 64-bit mode

Copyright © 2012 Pearson Education, Inc.

127 0

Application-programming registers also include the
128-bit media control-and-status register and the
%87 tag-word, control-word, and status-word registers

XMMo
XMM1
XMM2
XMM3
XMM4
XMM5
XMMe6
XMM7
XMMs
XMM9
XMM10
XMMN
XMM12
XMM13
XMM14
XMM15

2-19

For the purpose of transferring bit patterns, a machine's CPU
and main memory are connected by a collection of wires
called a bus.

Through this bus, the CPU extracts (reads) data from main
memory by supplying the address of the pertinent memory cell
along with an electronic signal telling the memory circuitry that
It Is supposed to retrieve the data in the indicated cell.

In a similar manner, the CPU places (writes) data in memory
by providing the address of the destination cell and the data to
be stored together with the appropriate electronic signal telling
main memory that it is supposed to store the data being sent
to it.

Copyright © 2012 Pearson Education, Inc. 2.20

Figure 2.1 CPU and main memory
connected via a bus

Central processing unit

Arithmetic/logic
unit

Control
unit

Copyright © 2012 Pearson Education, Inc.

Register unit

100 --- 0000

_[

Registers

Bus

Main memory

2-21

CPU Memory Disk I/F Comms VGA I/O I/O

Copyright © 2012 Pearson Education, Inc. 2.22

Bus among systems

Host CPU

BTl m VGA LAN SCSI
PCI

hridge

|
|
|
|
|
|
|
|
| to PCT bridge
|
|
|
|
|
|
|
|
|

System 2 System 3 System 4 System 5 System 6 System 7 System 8

Copyright © 2012 Pearson Education, Inc. 2.23

Bus/Cable

l‘“"""‘ ik

M

Copyright © 2012 Pearson Education, Inc. 2.24

Stored Program Concept

- A program can be encoded as bit patterns
and stored in main memory.

- From there, the CPU can then extract the
Instructions and execute them.

* In turn, the program to be executed can be
altered easily.

Copyright © 2012 Pearson Education, Inc. 2.95

John von Neumann (1903 —1957) was an
Austro-Hungarian-born American
mathematician who made major contributions
to a vast range of fields, including set theory,
functional analysis, quantum mechanics,
ergodic theory, continuous geometry,
economics and game theory, computer
science, numerical analysis, hydrodynamics
(of explosions), and statistics, as well as many
other mathematical fields.

He is generally regarded as one of the
foremost mathematicians of the 20th century.

The IEEE John von Neumann Medal is awarded annually by the IEEE
"for outstanding achievements in computer-related science and
technology.”

On February 15, 1956, Neumann was presented with the Presidential
Medal of Freedom by President Dwight Eisenhower

Copyright © 2012 Pearson Education, Inc. 2.26

A breakthrough came with the realization that a program,
just like data, can be encoded and stored in main
memory.

The control unit is designed:
to extract the program from memory,
decode the instructions,
and execute them,

The program that the machine follows can be changed
merely by changing the contents of the computer's
memory instead of rewiring the control unit.

Copyright © 2012 Pearson Education, Inc. 2.27

While consulting for the Moore School of Electrical
Engineering on the EDVAC project, von Neumann wrote

an incomplete set of notes titled the First Draft of a Report
on the EDVAC.

The paper, which was widely distributed, described a
computer architecture in which data and program
memory are mapped into the same address space.

This architecture became the de facto standard and
can be contrasted with a so-called Harvard
architecture, which has separate program and data
memories on a separate bus.

Copyright © 2012 Pearson Education, Inc. 2.28

Although the single-memory architecture became
commonly known by the name von Neumann
architecture as a result of von Neumann's paper, the
architecture's description was based on the work of J.
Presper Eckert and John William Mauchly, inventors of
the ENIAC at the University of Pennsylvania.

With very few exceptions, all present-day home
computers, microcomputers, minicomputers and

mainframe computers use this single-memory
computer architecture.

Copyright © 2012 Pearson Education, Inc. 0-29

Programs and data together

CPU

-+

Data &8-bits
,.F

>

Address 12-bits

The given bus widths are examples only!

Program
and
Data

Memory

Copyright © 2012 Pearson Education, Inc.

2-30

Von Neumann Architecture

Central Processing Unit

€ 36)
{] Registers
n AN

AV

Input/Cutput
System

Copyright © 2012 Pearson Education, Inc.

Main
Memory

2-31

The separation between the CPU and memory leads to the Von Neumann
bottleneck, the limited throughput (data transfer rate) between the CPU and
memory compared to the amount of memory.

In most modern computers, throughput is much smaller than the rate at
which the CPU can work.

This seriously limits the effective processing speed when the CPU is
required to perform minimal processing on large amounts of data.

The CPU is continuously forced to wait for needed data to be transferred
to or from memory.

Since CPU speed and memory size have increased much faster than the
throughput between them, the bottleneck has become more of a
problem.

The performance problem is reduced by a cache between the CPU and the
main memory.

Copyright © 2012 Pearson Education, Inc. 2.32

It is instructive to compare the memory facilities within a
computer in relation to their functionality.

Registers are used to hold the data immediately applicable
to the operation at hand;

main memory Is used to hold data that will be needed in the
near future;

mass storage is used to hold data that will likely not be
needed in the immediate future.

Many machines are designed with an additional memory level,
called cache memory.

Cache memory is a portion (perhaps several hundred MB) of
high-speed memory located within the CPU itself.

Copyright © 2012 Pearson Education, Inc. 2.33

In the cache, the machine attempts to keep a copy of that
portion of main memory that is of current interest.

In this setting, data transfers that normally would be made
between registers and main memory are made between
registers and cache memory.

Any changes made to cache memory are then transferred
collectively to main memory at a more opportune time.

The result is a CPU that can execute its machine cycle more
rapidly because it is not delayed by main memory
communication.

Copyright © 2012 Pearson Education, Inc. 0-34

Caches and bus: where data stand
and go

Processor unit Execution unit
(1P and registers

MIFS Rd=00;
Ra000, RE000 or B Q000

Copyright © 2012 Pearson Education, Inc. 2.35

Extensions to Von Neumann
architecture

The ideas present in von Neumann architecture have been
extended. (von Neumann bottleneck).

The data bus moves data from main memory to the CPU
registers (and vice versa).

The address bus holds the address of the data that the data
bus is currently accessing.

The control bus carries the necessary control signals that
specify how the information transfer is to take place.

Copyright © 2012 Pearson Education, Inc. 2.36

Extensions to Von Neumann architecture

e = fo = o ™~
CPU Input
; Memory and
(ALU, Registers,
and Control) Output

\ddress Bus v " v v /

-ontrol Bus (

Copyright © 2012 Pearson Education, Inc. 2.37

CPU: Data bus and address bus

Copyright © 2012 Pearson Education, Inc. 2.38

CPU Main Memory

- 0
Syste .
e : : Other enhancements to
PC MAR Instruction ¢
e the von Neumann
IR MBR Instruction architecture include
: using index registers
I/O AR * . .
Data for addressing, adding
Data . -
/O BR Data floating point data,
= using interrupts and
1/0 Module . . asynchronous 1/0,

ml adding virtual memory,
and adding general
registers.

. PC = Program counter
Buffers IR = Instruction register
MAR = Memory address register

Memory buffer register
I/O AR = Input/output address register
I/O BR = Input/output buffer register

Figure 1.1 Computer Components: Top-Level View
Copyr _ , 2-39

2.1 Computer Architecture

2.2 Machine Language

2.3 Program Execution

2.4 Arithmetic/Logic Instructions

2.5 Communicating with Other Devices
2.6 Other Architectures

Copyright © 2012 Pearson Education, Inc. 2.40

Banking Airline Web

: > Application programs
system reservation browser PP Prog

. . Command
Cempllsrs Edltors interpreter A System
programs
Operating system
Machine language N
Microarchitecture » Mardware

Physical devices

Copyright © 2012 Pearson Education, Inc. 2.41

To apply the stored-program concept, CPUs are
designed to recognize instructions encoded as bit
patterns.

This collection of instructions along with the encoding
system is called the machine language.

An instruction expressed in this language is called a
machine-level instruction or, more commonly, a machine
Instruction.

Copyright © 2012 Pearson Education, Inc. 2.42

Machine instruction: An instruction (or
command) encoded as a bit pattern
recognizable by the CPU

Machine language: The set of all
Instructions recognized by a machine

Copyright © 2012 Pearson Education, Inc. 2.43

The list of machine instructions that a typical CPU must
be able to decode and execute is quite short.

Indeed, once a machine can perform certain elementary
but well-chosen tasks, adding more features does not
Increase the machine's theoretical capabillities.

In other words, beyond a certain point, additional features
may increase such things as convenience but add
nothing to the machine's fundamental capabillities.

Copyright © 2012 Pearson Education, Inc. 2.44

Reduced Instruction Set Computing (RISC)
Few, simple, efficient, and fast instructions
Examples: PowerPC from Apple/IBM/Motorola

and SPARK from Sun Microsystems

Complex Instruction Set Computing (CISC)
Many, convenient, and powerful instructions
Example: Pentium from Intel

Copyright © 2012 Pearson Education, Inc. 2.45

RISC

From Computer Desktop Encyclopedia —
= 1998 The Computer Language Co. Inc.

CISC

Machine instructions

Instruction
execLtion

P

Copyright © 2012 Pearson Education, Inc.

Machine instructions

5

Microcode corversion

Microinstructions

Microinstruction
execution

2-46

A computer architecture that reduces chip complexity by using
simpler instructions.

RISC compilers have to generate software routines to perform
the equivalent processing performed by more comprehensive
Instructions in "complex instruction set computers" (CISC
computers).

RISC - No Microcode

In a RISC computer, there is no microcode layer, and the
associated overhead of that translation is eliminated.

RISC keeps instruction size constant

It retains only those instructions that can be overlapped
and made to execute in one machine cycle or less.

Copyright © 2012 Pearson Education, Inc. 2.47

Data Transfer: copy data from one location
to another

Arithmetic/Logic: use existing bit patterns
to compute a new bit patterns

Control: direct the execution of the
program

Copyright © 2012 Pearson Education, Inc. 2.48

The data transfer group consists of instructions that
request the movement of data from one location to
another.

We should note that using terms such as transfer or

move to identify this group of instructions is actually a
misnomer.

It is rare that the data being transferred is erased from
its original location.

The process involved in a transfer instruction is more like
copying the data rather than moving it.

Thus terms such as copy or clone better describe the
actions of this group of instructions.

Copyright © 2012 Pearson Education, Inc. 2.49

Step 1. Get one of the values to be
added from memory and
place it in a register.

Step 2. Get the other value to be
added from memory and
place it in another register.

Step 3. Activate the addition circuitry
with the registers used in
Steps 1 and 2 as inputs and
another register designated
to hold the result.

Step 4. Store the result in memory.

Step 5. Stop.

Copyright © 2012 Pearson Education, Inc. 2.50

An important group of instructions within the data transfer
category consists of the commands for communicating with
devices outside the CPU - main memory context (printers,
keyboards, monitors, disk drives, etc.).

Since these instructions handle the input/output (1/O)
activities of the machine, they are called I/O instructions
and are sometimes considered as a category in their own
right.

The I/O activities can be handled by the same instructions
that request data transfers between the CPU and main
memory.

Thus, we shall consider the 1/O instructions to be a part of
the data transfer group.

Copyright © 2012 Pearson Education, Inc. 2.51

The arithmetic/logic group consists of the instructions that tell
the control unit to request an activity within the arithmetic/logic
unit.

The arithmetic/logic unit is capable of performing operations
other than the basic arithmetic operations.

Some of these additional operations are the Boolean operations
AND, OR, and XOR.

Another collection of operations available within most
arithmetic/logic units allows the contents of registers to be
moved to the right or the left within the register.

These operations are known as either SHIFT or ROTATE
operations, depending on whether the bits that "fall off the
end" of the register are merely discarded (SHIFT) or are
used to fill the holes left at the other end (ROTATE).

Copyright © 2012 Pearson Education, Inc. 2.52

Step 1. LOAD a register with a value
from memory.

Step 2. LOAD another register with
another value from memory.

Step 3. If this second value is zero,
JUMP to Step 6.

Step 4. Divide the contents of the
first register by the second
register and leave the result
in a third register.

Step 5. STORE the contents of the
third register in memory.

Step 6. STOP.

Copyright © 2012 Pearson Education, Inc. 2.53

The control group consists of those instructions that direct the
execution of the program rather than the manipulation of data.

This group contains many of the more interesting instructions in
a machine's repertoire, such as the family of JUMP (or BRANCH)
Instructions used to direct the control unit to execute an
Instruction other than the next one in the list.

These JUMP instructions appear in two varieties: unconditional
jumps and conditional jumps.

The distinction is that a conditional jump results in a "change of
venue" only if a certain condition is satisfied.

As an example, the sequence of instructions in Figure 2.3
represents an algorithm for dividing two values where Step 3 is a
conditional jJump that protects against the possibility of division by
Zero.

Copyright © 2012 Pearson Education, Inc. 2.54

Figure 2.4 The architecture of the
machine described in Appendix C

Central processing unit Main memory
: Address Cell
Registers
] 0 Program counter 00]
1 Bus 01]
02]
[12 Instruction register
: 03 []
F L :
— I —

Copyright © 2012 Pearson Education, Inc. 2.55

Op-code: Specifies which operation to
execute

Operand: Gives more detailed information
about the operation

Interpretation of operand varies depending on
op-code

Copyright © 2012 Pearson Education, Inc. 2.56

The bit pattern appearing in the op-code field
Indicates which of the elementary operations,
such as STORE, SHIFT, XOR, and JUMP, is
requested by the instruction.

The bit patterns found in the operand field
provide more detailed information.

For example, in the case of a STORE operation, the
iInformation in the operand field indicates which register
contains the data to be stored and which memory cell
IS to receive the data.

Copyright © 2012 Pearson Education, Inc. 2.57

Figure 2.6 Decoding the instruction
35A7

Instruction{ 3 5 A 7
/ I \I

Op-code 3 means

to store the contents This part of the operand identifies
of a registerin a the address of the memory cell
memory cell. that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

Copyright © 2012 Pearson Education, Inc. 2.58

Figure 2.7 An encoded version of the

Instructions in Figure 2.2

Encoded
instructions

Translation

156C

166D

5056

306E

Cco000

Copyright © 2012 Pearson Education, Inc.

Load register 5 with the bit pattern
found in the memory cell at
address 6C.

Load register 6 with the bit pattern
found in the memory cell at
address 6D.

Add the contents of register 5 and
6 as though they were two's
complement representation and
leave the result in register 0.

Store the contents of register 0
in the memory cell at address 6E.

Halt.

2-59

Figure 2.5 The composition of an
Instruction for the machine In
Appendix C

Op-code Operand

0011 0101 1010 0111 Actual bit pattern (16 bits)

3 5 A 7 Hexadecimal form (4 digits)

Copyright © 2012 Pearson Education, Inc. 2.60

Assembly languages are a family of low-level languages for programming
computers, microprocessors, microcontrollers, and other (usually) integrated
circuits.

They implement a symbolic representation of the numeric machine codes and
other constants needed to program a particular CPU architecture.

This representation is usually defined by the hardware manufacturer, and is
based on abbreviations (called mnemonics) that help the programmer
remember individual instructions, registers, etc.

An assembly language is thus specific to a certain physical or virtual computer
architecture (as opposed to most high-level languages, which are usually
portable).

A utility program called an assembler is used to translate assembly language
statements into the target computer's machine code.

The assembler performs a more or less isomorphic translation (a one-to-one
mapping) from mnemonic statements into machine instructions and data.

This is in contrast with high-level languages, in which a single statement
generally results in many machine instructions.

Copyright © 2012 Pearson Education, Inc. 2.61

Levels of programming languages

[3

Assembly Language

|

tdachine Language

ﬁ Lowes Love

a higrarchy of levels of computer language

Copyright © 2012 Pearson Education, Inc.

2-62

High-Level Language
Source File
(e.g C, C+h)

Aszembler (e.g. using as)
and linker (e.g. using ld)

Copyright © 2012 Pearson Education, Inc.

Compilation
{e.g. using gcc)

Assembly Language
Source File

Executable

2-63

. CN)

Source Code

; Example
PCETA equ
org
DATA zrmb
CNT rmb
org

$0000
$0800
100

1
SFO000

Start lds #30CO00

Rep ldaa
staa
ldx

Inp ldaa
staa
dec
bne
bra
fce
fcb
org
fdb

Copyright © 2012 Pearson Education, Inc.

Object Code

-1 Lad

B T =N o = Y o

(e T v T

N L B2 O T

i R W o Y
[Iy

[
-1 o

L A A 0 0 A 0 A 0 0)
[}
T R
o

e e e N W I I W

€

m

[]

= =

Lo (O

(a3 W]
|

SE
SFO1A 64
SFFFE FO
SFFFF Q0

I4 71 S

Simulated
Microcomputer

Simulated
processor

Simulated
RAM

Simulated
(PYROM

Simulated

External iii :

Devices [FSu
devices

2-64

-1] | PRt = PC: proaram
File Run View Control Preferences Help . " p g
Group: all — P
(R T L = i I ———— ————
* (WL (it ‘ H) r@ 'h' & g oM *A ‘ [Filrodls Zero 8x0 r16 B8xzdeadbeef pc 1= Counter
|test.5 | |main =] SOURCE 7| at Bxdeadbeef ri17 Bxdeadbeef status
- — - o r2 8x1000004 r18 Oxdeadbeef estatu
1 .include *“nios_macros.s —
2 .equ ADDR_7SEG, BxFf1180 r3 Bxdeadbeef r19 Bxdeadbeef bstatu
3 rh Bxdeadbeef r28 oxdeadbeef ienabl
:3' a;"iy=1 r5 @2deadbeef r21 @xdeadbeef ipendi
.byte s -
p “bute 2 ré Oxdeadbeef K22 oxdeadbeef cpuid Re |Ste rS
7 .byte 3 r7 Bxdeadbeef 123 Bxdeadbeef /
8 .byte 4] @xdeadbeef et 8x18000898
9) re @xdeadbeef bt OxfrEFFFes
1:’ I;g}ﬂ'fal main r10 oxdeadbeef | gp 0x1008090
— 12 movia r4,ADDR_7SEG ri1 Bxdeadbeef sp Bx17FFf80
- 13 movia r2,array F12 @xdeadbeef fp Oxdeadbeef
- ::;' 22:1: :g'g r13 Oxdeadbeef ea Oxdeadbeef
_ 16 novia 6,8 r14 Bxdeadbeef ba BFFFFFFef
- 17 movia ¢5,4 r15 Bxdeadbeef ra Bx1000094 =
18 - = —
19 LOOP: 4 | o
- 2@ bge ré,r5,main /* test for end of stringx/ 74Memory =]
21 . Addresses
- 22 1db ¢7,8{r2) f#* load byte from string =/ -))
- 23 or r3,r3,r7 /= add character to string = Address |$pc z’ Targetis LITTLE endian
- 2y stwio r3,8{r4) /* Write to 7-segment displa 0 y 8 C SCI
- 25 addi ¢2,r2,1 f# increment address =f .
- s s11i r3.r3.h /% scroll string to the left 8x01000004 | 0x 01003 FF4 | 821844014 [8x088 04834 | 0x10880014 [146
27 Bx 01008814 | Bx08cB003Y | Bx18c 00014 | Bx 01800634 | Bx318600014 | .4, el I Iory
- ;g addi ré,ré,1 Bx 01008824 | B 01800034 | Bx31800014 | Bx 01400634 | Bx29400114 |14,
_ P movia r9,10080888 /* set starting point For del Bx 01008834 | Bx317FF30e | Bx11cO0007 | Bx19c6bB3a | Bx20cBO035 | .-,
21 001000044 | 6x1080004% | 0:18086913a | Bx3180084% | BX02402634 | .D.
32 DELAY: 0201000054 | 0x4a65a014 | Ox4a7fffch | Bx483ffete | BxBO3FFU06 | J. .
- 33 subi r9.r9.1 /= subtract 1 from delau =/ =ll 0x01000064 [0x06c0603% | DxdeFFe 0Dk | 0xdef6203a | Oxdecooids | =
+ | —'I 0x 01088074 | Bxdef6303a | BxB68 04074 | Bxd6aB2L 04 | Dx 06004034 | ¢
|Program stopped at line 12 | 100000x] 12 | []

Copyright © 2012 Pearson Education, Inc. 2.65

; Example of IBM PC assembly language

; Accepts a number in register AX;

; subtracts 32 if it is in the range 97-122;
; otherwise leaves it unchanged.

sUB32 PROC ; procedure begins here
CMP AX,OT ; compare AX to 97
JL DONE ; if less, jump to DONE
CMP AX,122 ; compare AX to 122
JG DONE ; 1f greater, jump to DONE
0B AX,32 ; subtract 32 from AX
DONE: RET ; return to main program
SUBE32 ENDP ; procedure ends here

FIGURE 17. Assembly language

The same program in high level language:

AX = has a certain value;

If(AX <97 OR AX > 122) return;
else

AX =AX -32

Copyright © 2012 Pearson Education, Inc. 2.66

Assembly Is fast and fits in small
memories ©

Copyright © 2012 Pearson Education, Inc.

MenuetOS, a new operating
system that is built in assemby
language, not only does this OS fit
on a floppy disk but it’s incredibly
fast and efficient. No surprise
there: assembly language is
designed to work close to the

hardware.

2-67

The machine has 16 general-purpose registers
numbered O through F (in hexadecimal).

Each register is one byte (eight bits) long.

For identifying registers within instructions, each
register Is assigned the unique four-bit pattern
that represents its register number.

Thus register O is identified by 0000
(hexadecimal 0), and reqgister 4 is identified by
0100 (hexadecimal 4).

Copyright © 2012 Pearson Education, Inc. 2.68

There are 256 cells in the machine's main
memory. Each cell is assigned a unique address
consisting of an integer in the range of 0 to 255.

An address can therefore be represented by a
pattern of eight bits ranging from 00000000 to
11111111 (or a hexadecimal value in the range
of 00 to FF).

Copyright © 2012 Pearson Education, Inc. 2.69

Each machine instruction is two byte's long.
The first 4 bits provide the op-code
The last 12 bits make up the operand field.

The table in next slide lists the instructions in
hexadecimal notation together with a short description of
each.

The letters R, S, and T are used in place of hexadecimal
digits in those fields representing a register identifier (that
varies depending on the particular application of the
Instruction.

The letters X and Y are used instead of hexadecimal
digits in variable fields not representing a register.

Copyright © 2012 Pearson Education, Inc. 2.70

Instructions (Book - Appendix A)

Op-code Operand Description

1 RXY LOAD the register R with the bit pattern found in the memory cell
whose address is XY.
Example: 14A3 would cause the contents of the memory cell
located at address A3 to be placed in register 4.

2 RXY LOAD the register R with the bit pattern XY.

Example: 20A3 would cause the value A3 to be placed in register 0.

Copyright © 2012 Pearson Education, Inc.

2-71

Instructions (Book - Appendix A)

3 RXY
4 ORS
5 RST
6 RST
7 RST

STORE the bit pattern found in register R in the memory cell whose
address is XY.

Example: 35B1 would cause the contents of register 5 to be placed
in the memory cell whose address is B1.

MOVE the bit pattern found in register R to register S.
Example: 40A4 would cause the contents of register A to be copied
into register 4.

ADD the bit patterns in registers S and T as though they were two’s
complement representations and leave the result in register R.
Example: 5726 would cause the binary values in registers 2 and 6
to be added and the sum placed in register 7.

ADD the bit patterns in registers S and T as though they repre-
sented values in floating-point notation and leave the floating-
point result in register R.

Example: 634E would cause the values in registers 4 and E to be
added as floating-point values and the result to be placed in
register 3.

OR the bit patterns in registers S and T and place the result in
register R.

Example: 7CB4 would cause the result of ORing the contents of
registers B and 4 to be placed in register C.

Copyright © 2012 Pearson Education, Inc. 2.72

Instructions (Book - Appendix A)

Copyright © 2012 F

8

C

RST

RST

ROX

RXY

000

AND the bit patterns in registers S and T and place the result in
register R.

Example: 8045 would cause the result of ANDing the contents of
registers 4 and 5 to be placed in register 0.

EXCLUSIVE OR the bit patterns in registers S and T and place the
result in register R.

Example: 95F3 would cause the result of EXCLUSIVE ORing the
contents of registers F and 3 to be placed in register 5.

ROTATE the bit pattern in register R one bit to the right X times.
Each time place the bit that started at the low-order end at the
high-order end.

Example: A403 would cause the contents of register 4 to be
rotated 3 bits to the right in a circular fashion.

JUMP to the instruction located in the memory cell at address XY if
the bit pattern in register R is equal to the bit pattern in register
number 0. Otherwise, continue with the normal sequence of exe-
cution. (The jump is implemented by copying XY into the program
counter during the execute phase.)

Example: B43Cwould first compare the contents of register 4 with
the contents of register 0. If the two were equal, the pattern 3C
would be placed in the program counter so that the next instruc-
tion executed would be the one located at that memory address.
Otherwise, nothing would be done and program execution would
continue in its normal sequence.

HALT execution.
Example: CO00 would cause program execution to stop.

2-73

To simplify explanations, the machine language
described in Appendix C uses a fixed size (two bytes)
for all instructions.

Thus, to fetch an instruction, the CPU always retrieves
the contents of two consecutive memory cells and
Increments its program counter by two.

This consistency streamlines the task of fetching
Instructions and is characteristic of RISC machines.

CISC machines, however, have machine languages
whose instructions vary in length.

Copyright © 2012 Pearson Education, Inc. 2.74

The Pentium series, for example, has instructions that
range from single-byte instructions to multiple-byte
Instructions whose length depends on the exact use of
the instruction.

CPUs with such machine languages determine the
length of the incoming instruction by the instruction's
op-code.

That Is, the CPU first fetches the op-code of the
Instruction and then, based on the bit pattern received,
knows how many more bytes to fetch from memory to
obtain the rest of the instruction.

Copyright © 2012 Pearson Education, Inc. 0-75

2.1 Computer Architecture

2.2 Machine Language

2.3 Program Execution

2.4 Arithmetic/Logic Instructions

2.5 Communicating with Other Devices
2.6 Other Architectures

Copyright © 2012 Pearson Education, Inc. 2.76

A computer follows a program stored in its
memory by copying the instructions from
memory into the control unit as needed.

Once In the control unit, each instruction iIs
decoded and executed.

The order in which the instructions are fetched
from memory corresponds to the order in which
the instructions are stored in memory unless
otherwise altered by a JUMP Instruction.

Copyright © 2012 Pearson Education, Inc. 2.77

Controlled by two special-purpose
registers

Program counter: address of next instruction

Instruction register: current instruction
Machine Cycle

Fetch

Decode

Execute

Copyright © 2012 Pearson Education, Inc. 2.78

Program counter and Instruction
Register

CPU Main Memory
. 0
System . 1
B . 2
l PC | | MAR | ‘S Instruction :
17 Instruction .
| MBR | Instn:ctmn
Executlm:l x:
“‘“‘ I/O BR Do
Program L5G
counter 1/0 Module : n-2
n-1
I nStrU Ct|0n E PC = Program counter
- Buffers IR = Instruction register
MAR = Memory address register
re g I Ste r MBR = Memory buffer register

I/O AR = Input/output address register
I/O BR = Input/output buffer register

Figure 1.1 Computer Components: Top-Level View

Copyright © 2012 Pearson Education, Inc. 0-79

Figure 2.8 The machine cycle

1. Retrieve the next
instruction from
memory (as indicated
by the program
counter) and then
increment the
program counter.

2. Decode the bit pattern
in the instruction register.

3. Perform the action
required by the
instruction in the
instruction register.

Copyright © 2012 Pearson Education, Inc. 2.80

The control unit performs its job by continually repeating an algorithm
that guides it through a three-step process known as the machine cycle.

During the fetch step, the control unit requests that main memory
provide it with the instruction that is stored at the address indicated by
the program counter.

Since each instruction in our machine is two bytes long, this fetch
process involves retrieving the contents of two memory cells from
main memory.

The control unit places the instruction received from memory in its
Instruction register and then increments the program counter by two
so that the counter contains the address of the next instruction
stored in memory.

Thus the program counter will be ready for the next fetch.

Copyright © 2012 Pearson Education, Inc. 2.81

With the instruction now in the instruction
register, the control unit decodes the
Instruction, which involves breaking the
operand field into its proper components
based on the instruction's op-code.

Copyright © 2012 Pearson Education, Inc. 2.82

The control unit then executes the instruction by activating the
appropriate circuitry to perform the requested task.

For example, if the instruction is a load from memory, the
control unit sends the appropriate signals to main memory,
waits for main memory to send the data, and then places the
data in the requested register,

If the Instruction is for an arithmetic operation, the control unit
activates the appropriate circuitry in the arithmetic/logic unit
with the correct registers as inputs and waits for the
arithmetic/logic unit to compute the answer and place it in the
appropriate register.

Copyright © 2012 Pearson Education, Inc. 2.83

Instruction{ B

/

Op-code B means to
change the value of
the program counter
if the contents of the
indicated register is
the same as that in
register 0.

Copyright © 2012 Pearson Education, Inc.

This part of the operand is the
address to be placed in the
program counter.

This part of the operand identifies
the register to be compared to
register 0.

2-84

lllustration of machine cycles:

Program to execute

Encoded

instructions

Translation

156C

166D

5056

306E

C000

Copyright © 2012 Pearson Education, Inc.

Load register 5 with the bit pattern
found in the memory cell at
address 6C.

Load register 6 with the bit pattern
found in the memory cell at
address 6D.

Add the contents of register 5 and
6 as though they were two’s
complement representation and
leave the result in register 0.

Store the contents of register 0
in the memory cell at address 6E.

Halt.

0-85

Figure 2.10 The program from Figure 2.7
stored in main memory ready for execution

Program counter contains
address of first instructions.

CPU Main memory
Address Cells
Registers
Program counter A0
o [
0 s A
I - A2 —Program is
6D | stored in
1 A2 main memory
? - A4 beginning at
address AO0.
A5 |56 |
Instruction register A6
A7
A8
F [
A9 a

Copyright © 2012 Pearson Education, Inc. 2.86

Figure 2.11 Performing the fetch step
of the machine cycle

CPU Main memory

Program counter
Address Cells

A0
Bus AL
/
)) Al
Instruction register
156C A2
A3

a. At the beginning of the fetch step the instruction starting at address A0 is
retrieved from memory and placed in the instruction register.

Copyright © 2012 Pearson Education, Inc. 2.87

incremented to A2

CPU/ Main memory
Program counter Address Cells
A2 _
A0 15
Bus | '
, : Al ' 6C |

Instruction register

156C A2
A3

b. Then the program counter is incremented so that it points to the next instruction.

Next, the control unit analyzes the instruction in its instruction
register and concludes that it is to load register 5 with the
contents of the memory cell at address 6C. This load activity Is
performed during the execution step of the machine cycle, and

the control unit then begins the next cycle.
Copyright © 2012 Pearson Education, Inc. 2.88

Program Counter: A4
Instruction Register: 166D

The CPU decodes the instruction 166D and determines
that it is to load register 6 with the contents of memory
address 6D. It then executes the instruction.

It is at this time that register 6 is actually loaded.

Copyright © 2012 Pearson Education, Inc. 2.89

Since the program counter now contains A4, the CPU
extracts the next instruction starting at this address.

The result is that 5056 is placed in the instruction
register, and the program counter is incremented to A6.

The CPU now decodes the contents of its instruction
register and executes it by activating the two’s
complement addition circuitry with inputs being registers
5 and 6.

Copyright © 2012 Pearson Education, Inc. 0-90

During this execution step, the arithmetic/logic
unit performs the requested addition, leaves the
result in register O (as requested by the control
unit), and reports to the control unit that it has

finished.
The CPU then begins another machine cycle.

Copyright © 2012 Pearson Education, Inc. 0-91

Once again, with the aid of the program counter,

It fetches the next instruction (306E) from the two
memory cells starting at memory location A6 and
iIncrements the program counter to A8.

This instruction Is then decoded and executed.
At this point, the sum is placed in memory
location 6E.

Copyright © 2012 Pearson Education, Inc. 0-92

The next instruction is fetched starting from
memory location A8, and the program counter Is
Incremented to AA.

The contents of the instruction register (C000)
are now decoded as the halt instruction.

Consequently, the machine stops during the
execute step of the machine cycle, and the
program is completed.

Copyright © 2012 Pearson Education, Inc. 0-93

Many programs can be stored simultaneously in a computer's
main memory, as long as they occupy different locations.

Which program will be run when the machine is started can
then be determined merely by setting the program counter
appropriately.

One must keep in mind, however, that because data are also
contained in main memory and encoded in terms of Os and 1s,
the machine alone has no way of knowing what is data and
what is program.

If the program counter were assigned the address of data
Instead of the address of the desired program, the computer,
not knowing any better, would extract the data bit patterns as
though they were instructions and execute them.

The final result would depend on the data involved!!!

Copyright © 2012 Pearson Education, Inc. 2.94

2.1 Computer Architecture

2.2 Machine Language

2.3 Program Execution

2.4 Arithmetic/Logic Instructions

2.5 Communicating with Other Devices
2.6 Other Architectures

Copyright © 2012 Pearson Education, Inc. 2.95

Logic: AND, OR, XOR

Masking
Rotate and Shift: circular shift, logical shift,
arithmetic shift

Arithmetic: add, subtract, multiply, divide

Precise action depends on how the values are
encoded (two’s complement versus floating-

point).

Copyright © 2012 Pearson Education, Inc. 2.96

Logic Operations

10011010 10011010
AND 11001001 OF_ 11001001
10001000 110110112
00001111
AND 107101010
00001010

Copyright © 2012 Pearson Education, Inc.

XOR

131001001

10011010

01010011

2-97

A major use of the XOR operation is in forming
the complement of a bit string.

XORIng any byte with a mask of all 1s produces
the complement of the byte.

For example, note the relationship between the
second operand and the result in the following
example:

11111111

XOR 10101010
01010101

Copyright © 2012 Pearson Education, Inc. 2.98

Figure 2.12 Rotating the bit pattern
65 (hexadecimal) one bit to the right

The original bit pattern

The bits move one position
to the right. The rightmost
bit “falls off” the end and

is placed in the hole at the
other end.

The final bit pattern

Copyright © 2012 Pearson Education, Inc.

2-99

Logical Shift

o o0
w
= 4
T 6 5 4 3 &2 T 0
010]|0 111
0P 0 111
Logical right shift one bit &
e m
w
= 5
7 6 38 49 2 T 0
010 1
0«40
Logical left shift one bit &

Copyright © 2012 Pearson Education, Inc. 2.100

Shifts to the left can be used for multiplying two's
complement representations by two.

After all, shifting binary digits to the left corresponds to
multiplication by two, just as a similar shift of decimal
digits corresponds to multiplication by ten.

Moreover, division by two can be accomplished by shifting
the binary string to the right.

In either shift, care must be taken to preserve the sign bit
when using certain notational systems.

Shifts that leave the sign bit unchanged are sometimes
called arithmetic shifts.

Copyright © 2012 Pearson Education, Inc. 2101

Subtraction can be simulated by means of
addition and negation.

Moreover, multiplication is merely repeated
addition and division is repeated subtraction.

For this reason, some small CPUs are designed
with only the add or perhaps only the add and
subtract instructions.

Copyright © 2012 Pearson Education, Inc. 2.102

2.1 Computer Architecture

2.2 Machine Language

2.3 Program Execution

2.4 Arithmetic/Logic Instructions

2.5 Communicating with Other Devices
2.6 Other Architectures

Copyright © 2012 Pearson Education, Inc. 2.103

Readings
Book: Chapter 2

Copyright © 2012 Pearson Education, Inc. 0-104

