
(C) 2010 Pearson Education, Inc. All rights reserved.

Assoc. Prof. Marenglen Biba

(C) 2010 Pearson Education, Inc. All
rights reserved.

today

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Layout managers arrange GUI components in a container

for presentation purposes

 Can use for basic layout capabilities

 Enable you to concentrate on the basic look-and-feel — the

layout manager handles the layout details.

 Layout managers implement interface LayoutManager

(in package java.awt).

 Container’s setLayout method takes an object that

implements the LayoutManager interface as an

argument.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 There are three ways for you to arrange components in

a GUI:

◦ Absolute positioning

 Greatest level of control.

 Set Container’s layout to null.

 Specify the absolute position of each GUI component with

respect to the upper-left corner of the Container by using

Component methods setSize and setLocation or

setBounds.

 Must specify each GUI component’s size.

(C) 2010 Pearson Education, Inc. All
rights reserved.

◦ Layout managers

 Simpler and faster than absolute positioning.

 Lose some control over the size and the precise positioning

of GUI components.

◦ Visual programming in an IDE

 Use tools that make it easy to create GUIs.

 Allows you to drag and drop GUI components from a tool

box onto a design area.

 You can then position, size and align GUI components as

you like.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 FlowLayout method setAlignment changes the

alignment for the FlowLayout.
◦ FlowLayout.LEFT

◦ FlowLayout.CENTER

◦ FlowLayout.RIGHT

 LayoutManager interface method layoutContainer

(which is inherited by all layout managers) specifies that a

container should be rearranged based on the adjusted

layout.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 BorderLayout

◦ the default layout manager for a Jframe

◦ arranges components into five regions: NORTH, SOUTH, EAST,

WEST and CENTER.

◦ NORTH corresponds to the top of the container.

 BorderLayout implements interface LayoutManager2 (a

subinterface of LayoutManager that adds several methods for

enhanced layout processing).

 BorderLayout limits a Container to at most five components

— one in each region.

◦ The component placed in each region can be a container to which

other components are attached.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 GridLayout divides the container into a grid of rows and

columns.

◦ Implements interface LayoutManager.

◦ Every Component has the same width and height.

◦ Components are added starting at the top-left cell of the grid

and proceeding left to right until the row is full.

◦ Then the process continues left to right on the next row of

the grid, and so on.

 Container method validate recomputes the container’s

layout based on the current layout manager and the current set

of displayed GUI components.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Complex GUIs require that each component be placed in an

exact location.

◦ Often consist of multiple panels, with each panel’s

components arranged in a specific layout.

 Class JPanel extends JComponent and JComponent
extends class Container, so every JPanel is a

Container.

 Every JPanel may have components, including other panels,

attached to it with Container method add.

 JPanel can be used to create a more complex layout in

which several components are in a specific area of another

container.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A JTextArea provides an area for manipulating

multiple lines of text.

 JTextArea is a subclass of JTextComponent,

which declares common methods for JTextFields,

JTextAreas and several other text-based GUI

components.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Box is a subclass of Container that uses a BoxLayout to

arrange the GUI components horizontally or vertically.

 Box static method createHorizontalBox creates a Box

that arranges components left to right in the order that they are

attached.

 JTextArea method getSelectedText (inherited from

JTextComponent) returns the selected text from a JTextArea.

 JTextArea method setText changes the text in a JTextArea.

 When text reaches the right edge of a JTextArea the text can

wrap to the next line.

◦ Referred to as line wrapping.

◦ By default, JTextArea does not wrap lines.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 You can set the horizontal and vertical scrollbar

policies of a JScrollPane when it’s constructed.

 You can also use JScrollPane methods

setHorizontalScrollBarPolicy and

setVerticalScrollBarPolicy to change the

scrollbar policies.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class JScrollPane declares the constants

 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS

◦ to indicate that a scrollbar should always appear, constants

 JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED
JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED

◦ to indicate that a scrollbar should appear only if necessary (the defaults)

and constants

 JScrollPane.VERTICAL_SCROLLBAR_NEVER
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER

◦ to indicate that a scrollbar should never appear.

 If policy is set to HORIZONTAL_SCROLLBAR_NEVER, a JTextArea
attached to the JScrollPane will automatically wrap lines.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Readings
◦ Chapter 14.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 In this chapter, we cover

◦ Additional components and layout managers and lay the

groundwork for building more complex GUIs.

◦ Menus that enable the user to effectively perform tasks in the

program.

◦ Swing’s pluggable look-and-feel (PLAF).

◦ Multiple-document interface (MDI) — a main window (often

called the parent window) containing other windows (often

called child windows) to manage several open documents in

parallel.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A JFrame is a window with a title bar and a border.

 JFrame is a subclass of Frame, which is a subclass of
Window.
◦ These are heavyweight Swing GUI components.

 A window is provided by the local platform’s windowing
toolkit.

 By default, when the user closes a JFrame window, it is
hidden, but you can control this with JFrame method
setDefaultCloseOperation.
◦ Interface WindowConstants (package javax.swing), which

class JFrame implements, declares three constants—
DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE and
HIDE_ON_CLOSE (the default) — for use with this method.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class Window (an indirect superclass of JFrame) declares

method dispose to return a window’s resources to the system.

◦ When a Window is no longer needed in an application, you

should explicitly dispose of it.

◦ Can be done by calling the Window’s dispose method or by

calling method setDefaultCloseOperation with the

argument WindowConstants.DISPOSE_ON_CLOSE.

 A window is not displayed until the program invokes the

window’s setVisible method with a true argument.

 A window’s size should be set with a call to method setSize.

 The position of a window when it appears on the screen is
specified with method setLocation.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 When the user manipulates the window, window events occur.

 Event listeners are registered for window events with Window method
addWindowListener.

 Interface WindowListener provides seven window-event-handling
methods
◦ windowActivated (called when user makes a window the active

window)
◦ windowClosed (called after the window is closed)
◦ windowClosing (called when the user initiates closing of the

window)
◦ windowDeactivated (called when the user makes another

window the active window)
◦ windowDeiconified (called when window is restored from

minimized state)
◦ windowIconified (called when window minimized)
◦ windowOpened (called when window first displayed)

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Menus are an integral part of GUIs.

 Allow the user to perform actions without

unnecessarily cluttering a GUI with extra components.

 In Swing GUIs, menus can be attached only to objects

of the classes that provide method setJMenuBar.

◦ Two such classes are JFrame and JApplet.

 The classes used to declare menus are JMenuBar,

JMenu, JMenuItem, JCheckBoxMenuItem and

class JRadioButtonMenuItem.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class JMenuBar (a subclass of JComponent)
manages a menu bar, which is a container for menus.

 Class JMenu (a subclass of
javax.swing.JMenuItem) — menus.
◦ Menus contain menu items and are added to menu bars or to

other menus as submenus.

 Class JMenuItem (a subclass of
javax.swing.AbstractButton) — menu items.
◦ A menu item causes an action event when clicked.

◦ Can also be a submenu that provides more menu items from
which the user can select.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class JCheckBoxMenuItem (a subclass of
javax.swing.JMenuItem) — menu items that can be toggled on
or off.

 Class JRadioButtonMenuItem (a subclass of
javax.swing.JMenuItem) — menu items that can be toggled on
or off like JCheckBoxMenuItems.

◦ When multiple JRadioButtonMenuItems are maintained as part
of a ButtonGroup, only one item in the group can be selected at a
given time.

 Mnemonics can provide quick access to a menu or menu item from the
keyboard.

◦ Can be used with all subclasses of
javax.swing.AbstractButton.

 JMenu method setMnemonic (inherited from class
AbstractButton) indicates the mnemonic for a menu.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 In most prior uses of showMessageDialog, the first
argument was null.
◦ The first argument specifies the parent window that helps

determine where the dialog box will be displayed.

◦ If null, the dialog box appears in the center of the screen.

◦ Otherwise, it appears centered over the specified parent
window.

 When using the this reference in an inner class,
specifying this by itself refers to the inner-class
object.
◦ To reference the outer-class object’s this reference, qualify
this with the outer-class name and a dot (.).

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Dialog boxes are typically modal — does not allow any
other window in the application to be accessed until the
dialog box is dismissed.

 Class JDialog can be used to create your own modal or
nonmodal dialogs.

 JMenuBar method add attaches a menu to a JMenuBar.

 AbstractButton method setSelected selects the
specified button.

 JMenu method addSeparator adds a horizontal
separator line to a menu.

 AbstractButton method isSelected determines if a
button is selected.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Context-sensitive pop-up menus are created with class JPopupMenu (a

subclass of JComponent).

◦ Provide options that are specific to the component for which the popup

trigger event was generated — typically occurs when the user presses

and releases the right mouse button.

 MouseEvent method isPopupTrigger returns true if the popup

trigger event occurred

 JPopupMenu method show displays a JPopupMenu.

◦ The first argument specifies the origin component — helps determine

where the JPopupMenu will appear on the screen.

◦ The last two arguments are the x-y coordinates (measured from the

origin component’s upper-left corner) at which the JPopupMenu is to

appear.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Multiple-document interface (MDI)

◦ a main window (called the parent window) containing other

windows (called child windows), to manage several open

documents that are being processed in parallel.

 Swing’s JDesktopPane and JInternalFrame

classes implement multiple-document interfaces.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The JInternalFrame constructor used here takes five
arguments

◦ a String for the title bar of the internal window

◦ a boolean indicating whether the internal frame can be
resized by the user

◦ a boolean indicating whether the internal frame can be
closed by the user

◦ a boolean indicating whether the internal frame can be
maximized by the user

◦ a boolean indicating whether the internal frame can be
minimized by the user.

 For each of the boolean arguments, a true value indicates
that the operation should be allowed (as is the case here).

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A JInternalFrame has a content pane to which

GUI components can be attached.

 JInternalFrame method pack sets the size of the

child window.

◦ Uses the preferred sizes of the components to determine the

window’s size.

 Classes JInternalFrame and JDesktopPane
provide many methods for managing child windows.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A JTabbedPane arranges GUI components into layers, of

which only one is visible at a time.

 Users access each layer by clicking a tab.

 The tabs appear at the top by default but also can be positioned

at the left, right or bottom of the JTabbedPane.

 Any component can be placed on a tab.

◦ If the component is a container, such as a panel, it can use

any layout manager to lay out several components on the

tab.

 Class JTabbedPane is a subclass of JComponent.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 JTabbedPane method addTab adds a new tab. In the

version with four arguments:

◦ The first is a String that specifies the title of the tab.

◦ The second is an Icon reference that specifies an icon

to display on the tab — can be null

◦ The third is a Component to display when the user

clicks the tab.

◦ The last is a String that specifies the tab’s tool tip.

 Implement the code for the following:

 Add two more colors

 Add two more fonts: Arial and Times New
Roman

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

