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 Layout managers arrange GUI components in a container 

for presentation purposes

 Can use for basic layout capabilities

 Enable you to concentrate on the basic look-and-feel — the 

layout manager handles the layout details. 

 Layout managers implement interface LayoutManager

(in package java.awt). 

 Container’s setLayout method takes an object that 

implements the LayoutManager interface as an 

argument. 
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 There are three ways for you to arrange components in 

a GUI:

◦ Absolute positioning

 Greatest level of control. 

 Set Container’s layout to null. 

 Specify the absolute position of each GUI component with 

respect to the upper-left corner of the Container by using 

Component methods setSize and setLocation or 

setBounds. 

 Must specify each GUI component’s size. 
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◦ Layout managers

 Simpler and faster than absolute positioning. 

 Lose some control over the size and the precise positioning 

of GUI components. 

◦ Visual programming in an IDE

 Use tools that make it easy to create GUIs. 

 Allows you to drag and drop GUI components from a tool 

box onto a design area. 

 You can then position, size and align GUI components as 

you like.
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 FlowLayout method setAlignment changes the 

alignment for the FlowLayout. 
◦ FlowLayout.LEFT

◦ FlowLayout.CENTER

◦ FlowLayout.RIGHT

 LayoutManager interface method layoutContainer

(which is inherited by all layout managers) specifies that a 

container should be rearranged based on the adjusted 

layout. 
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 BorderLayout

◦ the default layout manager for a Jframe

◦ arranges components into five regions: NORTH, SOUTH, EAST, 

WEST and CENTER. 

◦ NORTH corresponds to the top of the container. 

 BorderLayout implements interface LayoutManager2 (a 

subinterface of LayoutManager that adds several methods for 

enhanced layout processing). 

 BorderLayout limits a Container to at most five components

— one in each region. 

◦ The component placed in each region can be a container to which 

other components are attached. 
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 GridLayout divides the container into a grid of rows and 

columns.

◦ Implements interface LayoutManager.

◦ Every Component has the same width and height. 

◦ Components are added starting at the top-left cell of the grid 

and proceeding left to right until the row is full. 

◦ Then the process continues left to right on the next row of 

the grid, and so on. 

 Container method validate recomputes the container’s 

layout based on the current layout manager and the current set 

of displayed GUI components.
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 Complex GUIs require that each component be placed in an 

exact location. 

◦ Often consist of multiple panels, with each panel’s 

components arranged in a specific layout. 

 Class JPanel extends JComponent and JComponent
extends class Container, so every JPanel is a 

Container. 

 Every JPanel may have components, including other panels, 

attached to it with Container method add. 

 JPanel can be used to create a more complex layout in 

which several components are in a specific area of another 

container.
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 A JTextArea provides an area for manipulating 

multiple lines of text. 

 JTextArea is a subclass of JTextComponent, 

which declares common methods for JTextFields, 

JTextAreas and several other text-based GUI 

components. 
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 Box is a subclass of Container that uses a BoxLayout to 

arrange the GUI components horizontally or vertically. 

 Box static method createHorizontalBox creates a Box

that arranges components left to right in the order that they are 

attached.

 JTextArea method getSelectedText (inherited from 

JTextComponent) returns the selected text from a JTextArea. 

 JTextArea method setText changes the text in a JTextArea.

 When text reaches the right edge of a JTextArea the text can 

wrap to the next line. 

◦ Referred to as line wrapping. 

◦ By default, JTextArea does not wrap lines.
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 You can set the horizontal and vertical scrollbar 

policies of a JScrollPane when it’s constructed. 

 You can also use JScrollPane methods 

setHorizontalScrollBarPolicy and 

setVerticalScrollBarPolicy to change the 

scrollbar policies.
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 Class JScrollPane declares the constants

 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS

◦ to indicate that a scrollbar should always appear, constants

 JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED
JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED

◦ to indicate that a scrollbar should appear only if necessary (the defaults) 

and constants 

 JScrollPane.VERTICAL_SCROLLBAR_NEVER
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER

◦ to indicate that a scrollbar should never appear. 

 If policy is set to HORIZONTAL_SCROLLBAR_NEVER, a JTextArea
attached to the JScrollPane will automatically wrap lines.
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 Readings
◦ Chapter 14.
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 In this chapter, we cover

◦ Additional components and layout managers and lay the 

groundwork for building more complex GUIs. 

◦ Menus that enable the user to effectively perform tasks in the 

program. 

◦ Swing’s pluggable look-and-feel (PLAF). 

◦ Multiple-document interface (MDI) — a main window (often 

called the parent window) containing other windows (often 

called child windows) to manage several open documents in 

parallel. 
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 A JFrame is a window with a title bar and a border.

 JFrame is a subclass of Frame, which is a subclass of 
Window. 
◦ These are heavyweight Swing GUI components.

 A window is provided by the local platform’s windowing 
toolkit.

 By default, when the user closes a JFrame window, it is 
hidden, but you can control this with JFrame method 
setDefaultCloseOperation.
◦ Interface WindowConstants (package javax.swing), which 

class JFrame implements, declares three constants—
DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE and 
HIDE_ON_CLOSE (the default) — for use with this method.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Class Window (an indirect superclass of JFrame) declares 

method dispose to return a window’s resources to the system.

◦ When a Window is no longer needed in an application, you 

should explicitly dispose of it.

◦ Can be done by calling the Window’s dispose method or by 

calling method setDefaultCloseOperation with the 

argument WindowConstants.DISPOSE_ON_CLOSE.

 A window is not displayed until the program invokes the 

window’s setVisible method with a true argument.

 A window’s size should be set with a call to method setSize.

 The position of a window when it appears on the screen is 
specified with method setLocation.
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 When the user manipulates the window, window events occur.

 Event listeners are registered for window events with Window method 
addWindowListener.

 Interface WindowListener provides seven window-event-handling 
methods
◦ windowActivated (called when user makes a window the active 

window)
◦ windowClosed (called after the window is closed)
◦ windowClosing (called when the user initiates closing of the 

window)
◦ windowDeactivated (called when the user makes another 

window the active window)
◦ windowDeiconified (called when window is restored from 

minimized state)
◦ windowIconified (called when window minimized)
◦ windowOpened (called when window first displayed)
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 Menus are an integral part of GUIs.

 Allow the user to perform actions without 

unnecessarily cluttering a GUI with extra components.

 In Swing GUIs, menus can be attached only to objects 

of the classes that provide method setJMenuBar.

◦ Two such classes are JFrame and JApplet.

 The classes used to declare menus are JMenuBar, 

JMenu, JMenuItem, JCheckBoxMenuItem and 

class JRadioButtonMenuItem.
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 Class JMenuBar (a subclass of JComponent) 
manages a menu bar, which is a container for menus.

 Class JMenu (a subclass of 
javax.swing.JMenuItem) — menus.
◦ Menus contain menu items and are added to menu bars or to 

other menus as submenus.

 Class JMenuItem (a subclass of 
javax.swing.AbstractButton) — menu items.
◦ A menu item causes an action event when clicked.

◦ Can also be a submenu that provides more menu items from 
which the user can select.
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 Class JCheckBoxMenuItem (a subclass of 
javax.swing.JMenuItem) — menu items that can be toggled on 
or off.

 Class JRadioButtonMenuItem (a subclass of 
javax.swing.JMenuItem) — menu items that can be toggled on 
or off like JCheckBoxMenuItems.

◦ When multiple JRadioButtonMenuItems are maintained as part 
of a ButtonGroup, only one item in the group can be selected at a 
given time.

 Mnemonics can provide quick access to a menu or menu item from the 
keyboard.

◦ Can be used with all subclasses of 
javax.swing.AbstractButton.

 JMenu method setMnemonic (inherited from class 
AbstractButton) indicates the mnemonic for a menu.
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 In most prior uses of showMessageDialog, the first 
argument was null.
◦ The first argument specifies the parent window that helps 

determine where the dialog box will be displayed.

◦ If null, the dialog box appears in the center of the screen.

◦ Otherwise, it appears centered over the specified parent 
window.

 When using the this reference in an inner class, 
specifying this by itself refers to the inner-class 
object.
◦ To reference the outer-class object’s this reference, qualify 
this with the outer-class name and a dot (.). 
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 Dialog boxes are typically modal — does not allow any 
other window in the application to be accessed until the 
dialog box is dismissed.

 Class JDialog can be used to create your own modal or 
nonmodal dialogs.

 JMenuBar method add attaches a menu to a JMenuBar.

 AbstractButton method setSelected selects the 
specified button.

 JMenu method addSeparator adds a horizontal 
separator line to a menu.

 AbstractButton method isSelected determines if a 
button is selected.
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 Context-sensitive pop-up menus are created with class JPopupMenu (a 

subclass of JComponent).

◦ Provide options that are specific to the component for which the popup 

trigger event was generated — typically occurs when the user presses 

and releases the right mouse button.

 MouseEvent method isPopupTrigger returns true if the popup 

trigger event occurred

 JPopupMenu method show displays a JPopupMenu. 

◦ The first argument specifies the origin component — helps determine 

where the JPopupMenu will appear on the screen. 

◦ The last two arguments are the x-y coordinates (measured from the 

origin component’s upper-left corner) at which the JPopupMenu is to 

appear.
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 Multiple-document interface (MDI)

◦ a main window (called the parent window) containing other 

windows (called child windows), to manage several open 

documents that are being processed in parallel.

 Swing’s JDesktopPane and JInternalFrame

classes implement multiple-document interfaces.
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 The JInternalFrame constructor used here takes five 
arguments

◦ a String for the title bar of the internal window

◦ a boolean indicating whether the internal frame can be 
resized by the user

◦ a boolean indicating whether the internal frame can be 
closed by the user

◦ a boolean indicating whether the internal frame can be 
maximized by the user 

◦ a boolean indicating whether the internal frame can be 
minimized by the user.

 For each of the boolean arguments, a true value indicates 
that the operation should be allowed (as is the case here).
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 A JInternalFrame has a content pane to which 

GUI components can be attached.

 JInternalFrame method pack sets the size of the 

child window.

◦ Uses the preferred sizes of the components to determine the 

window’s size.

 Classes JInternalFrame and JDesktopPane
provide many methods for managing child windows.
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 A JTabbedPane arranges GUI components into layers, of 

which only one is visible at a time.

 Users access each layer by clicking a tab.

 The tabs appear at the top by default but also can be positioned 

at the left, right or bottom of the JTabbedPane.

 Any component can be placed on a tab.

◦ If the component is a container, such as a panel, it can use 

any layout manager to lay out several components on the 

tab.

 Class JTabbedPane is a subclass of JComponent.
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 JTabbedPane method addTab adds a new tab. In the 

version with four arguments:

◦ The first is a String that specifies the title of the tab.

◦ The second is an Icon reference that specifies an icon 

to display on the tab — can be null

◦ The third is a Component to display when the user 

clicks the tab.

◦ The last is a String that specifies the tab’s tool tip.



 Implement the code for the following:

 Add two more colors

 Add two more fonts: Arial and Times New 
Roman
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