
(C) 2010 Pearson Education, Inc.  All rights reserved.

Assoc. Prof. Marenglen Biba



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

Next class



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

Next class



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 A graphical user interface (GUI) presents a user-

friendly mechanism for interacting with an application. 

◦ Pronounced “GOO-ee”

◦ Gives an application a distinctive “look” and “feel.” 

◦ Consistent, intuitive user-interface components give users a 

sense of familiarity 

◦ Learn new applications more quickly and use them more 

productively. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Built from GUI components. 

◦ Sometimes called controls or widgets — short for window 

gadgets. 

 User interacts via the mouse, the keyboard or another 

form of input, such as voice recognition. 

 IDEs 

◦ Provide GUI design tools to specify a component’s exact size 

and location in a visual manner by using the mouse. 

◦ Generates the GUI code for you. 

◦ Greatly simplifies creating GUIs, but each IDE has different 

capabilities and generates different code. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Most applications use windows or dialog boxes (also called 

dialogs) to interact with the user. 

 JOptionPane (package javax.swing) provides 

prebuilt dialog boxes for input and output

◦ Displayed via static JOptionPane methods. 

 Figure 14.2 uses two input dialogs to obtain integers from 

the user and a message dialog to display the sum of the 

integers the user enters. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Swing GUI components located in package 
javax.swing. 

 Most are pure Java components
◦ Written, manipulated and displayed completely in Java.

◦ Part of the Java Foundation Classes (JFC) for cross-platform GUI 
development. 

◦ JFC and Java desktop technologies



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Abstract Window Toolkit (AWT) in package java.awt is 

another set of GUI components in Java.

◦ When a Java application with an AWT GUI executes on different Java 

platforms, the application’s GUI components display differently on each 

platform. 

 Together, the appearance and the way in which the user interacts 

with the application are known as that application’s look-and-

feel. 

 Swing GUI components allow you to specify a uniform look-

and-feel for your application across all platforms or to use each 

platform’s custom look-and-feel. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Most Swing components are not tied to actual GUI 
components of the underlying platform. 
◦ Known as lightweight components. 

 AWT components are tied to the local platform and are 
called heavyweight components, because they rely on the 
local platform’s windowing system to determine their 
functionality and their look-and-feel. 

 Several Swing components are heavyweight components.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Class Component (package java.awt) declares many of 

the attributes and behaviors common to the GUI components 

in packages java.awt and javax.swing. 

 Most GUI components extend class Component directly or 

indirectly. 

 Online documentation:

◦ http://docs.oracle.com/javase/8/docs/api
/java/awt/Component.html



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Class Container (package java.awt) is a subclass of 

Component. 

 Components are attached to Containers so that they can be 

organized and displayed on the screen. 

 Any object that is a Container can be used to organize other 

Components in a GUI. 

 Because a Container is a Component, you can place 

Containers in other Containers to help organize a GUI.

 Online documentation: 

◦ http://docs.oracle.com/javase/8/docs/api/java/aw
t/Component.html



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Class JComponent (package javax.swing) is a 

subclass of Container. 

 JComponent is the superclass of all lightweight 

Swing components, all of which are also 

Containers. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Some common lightweight component features supported 
by JComponent include:

 Pluggable look-and-feel

 Shortcut keys (called mnemonics)

 Common event-handling capabilities for components that initiate 
the same actions in an application.

 tool tips or info tip used in conjunction with a cursor, usually a 
pointer 

 Support for accessibility

 Support for user-interface localization

 Online documentation: 
◦ http://docs.oracle.com/javase/8/docs/api/javax
/swing/JComponent.html



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Most windows that can contain Swing GUI components are 

instances of class JFrame or a subclass of JFrame. 

 JFrame is an indirect subclass of class 

java.awt.Window

 Provides the basic attributes and behaviors of a window

◦ a title bar at the top

◦ buttons to minimize, maximize and close the window

 Most of our examples will consist of two classes

◦ a subclass of JFrame that demonstrates new GUI concepts

◦ an application class in which main creates and displays the 

application’s primary window.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 JFrame’s constructor uses its String argument as the 
text in the window’s title bar. 

 Must attach each GUI component to a container, such as a 
JFrame. 

 You typically must decide where to position each GUI 
component. 

◦ Known as specifying the layout of the GUI 
components. 

◦ Java provides several layout managers that can help you 
position components.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Many IDEs provide GUI design tools in which you can 
specify the exact size and location of a component

 IDE generates the GUI code for you

 Greatly simplifies GUI creation

 To ensure that the examples can be used with any IDE, we 
will not use an IDE to create the GUI code
◦ We will create the code ourselves
◦ This way you also learn better each component

 We will use Java’s layout managers in our GUI examples



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 FlowLayout

◦ GUI components are placed on a container from left to right

in the order in which the program attaches them to the 

container. 

◦ When there is no more room to fit components left to right, 

components continue to display left to right on the next line. 

◦ If the container is resized, a FlowLayout reflows the 

components to accommodate the new width of the container, 

possibly with fewer or more rows of GUI components. 

 Method setLayout is inherited from class Container. 

◦ argument must be an object of a class that implements the 

LayoutManager interface (e.g., FlowLayout). 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 A JLabel can display an Icon. 

 JLabel constructor can receive text and an Icon. 

◦ The last constructor argument indicates the justification of the label’s 

contents.

◦ Interface SwingConstants (package javax.swing) declares a 

set of common integer constants (such as 

SwingConstants.LEFT) that are used with many Swing 

components. 

◦ By default, the text appears to the right of the image when a label 

contains both text and an image. 

◦ The horizontal and vertical alignments of a JLabel can be set with 

methods setHorizontalAlignment and 

setVerticalAlignment, respectively. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 By default, closing a window simply hides the window. 

 Calling method setDefaultCloseOperation (inherited 
from class JFrame) with the argument 
JFrame.EXIT_ON_CLOSE indicates that the program 
should terminate when the window is closed by the user. 

 Method setSize specifies the width and height of the 
window in pixels. 

 Method setVisible with the argument true displays the 
window on the screen.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 GUIs are event driven. 

 When the user interacts with a GUI component, the 

interaction — known as an event — drives the program 

to perform a task. 

 The code that performs a task in response to an event is 

called an event handler, and the overall process of 

responding to events is known as event handling.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 JTextFields and JPasswordFields (package 

javax.swing). 

 JTextField extends class JTextComponent (package 

javax.swing.text), which provides many features 

common to Swing’s text-based components. 

 Class JPasswordField extends JTextField and 

adds methods that are specific to processing passwords. 

 JPasswordField shows that characters are being typed 

as the user enters them, but hides the actual characters with 

an echo character. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 When the user types data into a JTextField or a 

JPasswordField, then presses Enter, an event 

occurs. 

 You can type only in the text field that is “in focus.” 

 A component receives the focus when the user clicks 

the component. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Before an application can respond to an event for a 

particular GUI component, you must perform several 

coding steps:

 Create a class that represents the event handler.

 Implement an appropriate interface, known as an 

event-listener interface, in the class from Step 1. 

 Indicate that an object of the class from Steps 1 

and 2 should be notified when the event occurs. 

This is known as registering the event handler.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 All the classes discussed so far were so-called top-level 

classes — that is, they were not declared inside another 

class. 

 Java allows you to declare classes inside other classes

— these are called nested classes. 

◦ Can be static or non-static. 

◦ Non-static nested classes are called inner classes and are 

frequently used to implement event handlers. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Before an object of an inner class can be created, there must first
be an object of the top-level class that contains the inner class. 

 This is required because an inner-class object implicitly has a 
reference to an object of its top-level class. 

 There is also a special relationship between these objects — the 
inner-class object is allowed to directly access all the variables 
and methods of the outer class. 

 A nested class that is static does not require an object of its 
top-level class and does not implicitly have a reference to an 
object of the top-level class. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Inner classes can be declared public, protected
or private. 

 Since event handlers tend to be specific to the 

application in which they are defined, they are often 

implemented as private inner classes.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 GUI components can generate many events in response 

to user interactions. 

 Each event is represented by a class and can be 

processed only by the appropriate type of event 

handler.

 Normally, a component’s supported events are 

described in the Java API documentation for that 

component’s class and its superclasses. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 When the user presses Enter in a JTextField or 

JPasswordField, an ActionEvent (package 

java.awt.event) occurs. 

 Processed by an object that implements the interface 

ActionListener (package java.awt.event). 

 To handle ActionEvents, a class must implement interface

ActionListener and declare method

actionPerformed. 

◦ This method specifies the tasks to perform when an 

ActionEvent occurs. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Must register an object as the event handler for each 

text field. 

 addActionListener registers an 

ActionListener object to handle 

ActionEvents. 

 After an event handler is registered the object listens 

for events. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 The GUI component with which the user interacts is the 

event source. 

 ActionEvent method getSource (inherited from class 

EventObject) returns a reference to the event source. 

 ActionEvent method getActionCommand obtains 

the text the user typed in the text field that generated the 

event. 

 JPasswordField method getPassword returns the 

password’s characters as an array of type char. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Figure 14.11 illustrates a hierarchy containing many 

event classes from the package java.awt.event. 

 Used with both AWT and Swing components. 

 Additional event types that are specific to Swing GUI 

components are declared in package 
javax.swing.event.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Delegation event model — an event’s processing is 

delegated to an object (the event listener) in the application.

 For each event-object type, there is typically a 

corresponding event-listener interface. 

 Many event-listener types are common to both Swing and 

AWT components. 

◦ Such types are declared in package java.awt.event, 

and some of them are shown in Fig. 14.12. 

 Additional event-listener types that are specific to Swing

components are declared in package 

javax.swing.event. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Each event-listener interface specifies one or more 

event-handling methods that must be declared in the 

class that implements the interface. 

 When an event occurs, the GUI component with which 

the user interacted notifies its registered listeners by 

calling each listener’s appropriate event-handling 

method. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 How the event-handling mechanism works:

 Every JComponent has a variable listenerList that 

refers to an EventListenerList (package 

javax.swing.event). 

 Maintains references to registered listeners in the 

listenerList. 

 When a listener is registered, a new entry is placed in the 

component’s listenerList. 

 Every entry also includes the listener’s type. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 How does the GUI component know to call 

actionPerformed rather than another method? 

◦ Every GUI component supports several event types, including mouse 

events, key events and others. 

◦ When an event occurs, the event is dispatched only to the event 

listeners of the appropriate type. 

◦ Dispatching is simply the process by which the GUI component calls 

an event-handling method on each of its listeners that are registered 

for the event type that occurred. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Each event type has one or more corresponding event-listener 

interfaces. 

◦ ActionEvents are handled by ActionListeners

◦ MouseEvents are handled by MouseListeners and 

MouseMotionListeners

◦ KeyEvents are handled by KeyListeners

 When an event occurs, the GUI component receives (from the 

JVM) a unique event ID specifying the event type. 

◦ The component uses the event ID to decide the listener type to which the 

event should be dispatched and to decide which method to call on each 

listener object. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 For an ActionEvent, the event is dispatched to every 

registered ActionListener’s actionPerformed
method. 

 For a MouseEvent, the event is dispatched to every 

registered MouseListener or 

MouseMotionListener, depending on the mouse event 

that occurs. 

◦ The MouseEvent’s event ID determines which of the 

several mouse event-handling methods are called. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 A button is a component the user clicks to trigger a specific 

action. 

 Several types of buttons

◦ command buttons

◦ checkboxes

◦ toggle buttons

◦ radio buttons

 Button types are subclasses of AbstractButton

(package javax.swing), which declares the common 

features of Swing buttons. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 A command button generates an ActionEvent
when the user clicks it. 

 Command buttons are created with class 
JButton. 

 The text on the face of a JButton is called a 

button label. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Three types of state buttons — JToggleButton, 
JCheckBox and JRadioButton — that have 
on/off or true/false values. 

 Classes JCheckBox and JRadioButton are 
subclasses of JToggleButton. 

 JRadioButtons are grouped together and are 
mutually exclusive — only one in the group can be 
selected at any time 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 JTextField method setFont (inherited by JTextField

indirectly from class Component) sets the font of the 

JTextField to a new Font (package java.awt).

 String passed to the JCheckBox constructor is the checkbox 

label that appears to the right of the JCheckBox by default. 

 When the user clicks a JCheckBox, an ItemEvent occurs. 

◦ Handled by an ItemListener object, which must implement 

method itemStateChanged. 

 An ItemListener is registered with method 

addItemListener.

 JCheckBox method isSelected returns true if a 

JCheckBox is selected.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Radio buttons (declared with class JRadioButton) are 
similar to checkboxes in that they have two states — selected 
and not selected (also called deselected). 

 Radio buttons normally appear as a group in which only one 
button can be selected at a time. 

◦ Selecting a different radio button forces all others to be 
deselected. 

 Used to represent mutually exclusive options. 

 The logical relationship between radio buttons is maintained 
by a ButtonGroup object (package javax.swing), 
which organizes a group of buttons and is not itself displayed 
in a user interface.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 A combo box (or drop-down list) enables the user to 

select one item from a list. 

 Combo boxes are implemented with class 
JComboBox, which extends class JComponent. 

 JComboBoxes generate ItemEvents.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 An anonymous inner class is an inner class that is declared 

without a name and typically appears inside a method 

declaration.

 As with other inner classes, an anonymous inner class can 

access its top-level class’s members. 

 Since an anonymous inner class has no name, one object of 

the anonymous inner class must be created at the point 

where the class is declared. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 A list displays a series of items from which the user 
may select one or more items. 

 Lists are created with class JList, which directly 
extends class JComponent.

 Supports single-selection lists (only one item to be 
selected at a time) and multiple-selection lists (any 
number of items to be selected). 

 JLists generate ListSelectionEvents in 
single-selection lists. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 setVisibleRowCount specifies the number of items visible 
in the list. 

 setSelectionMode specifies the list’s selection mode. 
 Class ListSelectionModel (of package javax.swing) 

declares selection-mode constants
◦ SINGLE_SELECTION (only one item to be selected at a time)
◦ SINGLE_INTERVAL_SELECTION (allows selection of several 

contiguous items) 
◦ MULTIPLE_INTERVAL_SELECTION (does not restrict the items that 

can be selected).



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Unlike a JComboBox, a JList does not provide a 
scrollbar if there are more items in the list than the 
number of visible rows. 
◦ A JScrollPane object is used to provide the scrolling 

capability. 

 addListSelectionListener registers a 
ListSelectionListener (package 
javax.swing.event) as the listener for aJList’s 
selection events. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Each JFrame actually consists of three layers — the background, 

the content pane and the glass pane. 

 The content pane appears in front of the background and is where 

the GUI components in the JFrame are displayed. 

 The glass pane displays tool tips and other items that should appear 

in front of the GUI components on the screen. 

◦ The content pane completely hides the background of the 

JFrame.

◦ To change the background color behind the GUI components, 

you must change the content pane’s background color. 

 Method getContentPane returns a reference to the JFrame’s 

content pane (an object of class Container). 

 List method getSelectedIndex returns the selected item’s 

index. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 A multiple-selection list enables the user to select many items from a 

JList. 

 A SINGLE_INTERVAL_SELECTION list allows selecting a contiguous 

range of items. 

◦ To do so, click the first item, then press and hold the Shift key while 

clicking the last item in the range. 

 A MULTIPLE_INTERVAL_SELECTION list (the default) allows 

continuous range selection as described for a 

SINGLE_INTERVAL_SELECTION list and allows miscellaneous items

to be selected by pressing and holding the Ctrl key while clicking each 

item to select. 

◦ To deselect an item, press and hold the Ctrl key while clicking the item a 

second time.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 If a JList does not contain items it will not diplay in a 

FlowLayout. 

◦ use JList methods setFixedCellWidth and 

setFixedCellHeight to set the item width and height

 There are no events to indicate that a user has made multiple 

selections in a multiple-selection list. 

◦ An event generated by another GUI component (known as 

an external event) specifies when the multiple selections in a 

JList should be processed. 

 Method setListData sets the items displayed in a JList. 

 Method getSelectedValues returns an array of Objects 

representing the selected items in a JList.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 MouseListener and MouseMotionListener event-

listener interfaces for handling mouse events. 

◦ Any GUI component

 Package javax.swing.event contains interface 

MouseInputListener, which extends interfaces 

MouseListener and MouseMotionListener to create 

a single interface containing all the methods. 

 MouseListener and MouseMotionListener methods 

are called when the mouse interacts with a Component if 

appropriate event-listener objects are registered for that 

Component.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Each mouse event-handling method receives a MouseEvent

object that contains information about the mouse event that 

occurred, including the x- and y-coordinates of the location 

where the event occurred. 

 Coordinates are measured from the upper-left corner of the GUI 

component on which the event occurred. 

 The x-coordinates start at 0 and increase from left to right. The y-

coordinates start at 0 and increase from top to bottom. 

 The methods and constants of class InputEvent (Mouse-

Event’s superclass) enable you to determine which mouse 

button the user clicked. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Interface MouseWheelListener enables 
applications to respond to the rotation of a mouse 
wheel. 

 Method mouseWheelMoved receives a 
MouseWheelEvent as its argument. 

 Class MouseWheelEvent (a subclass of Mouse-
Event) contains methods that enable the event handler 
to obtain information about the amount of wheel 
rotation.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 BorderLayout arranges components into five regions: 
NORTH, SOUTH, EAST, WEST and CENTER. 

 BorderLayout sizes the component in the CENTER to use all 
available space that is not occupied 

 Methods addMouseListener and 
addMouseMotionListener register MouseListeners 
and MouseMotionListeners, respectively. 

 MouseEvent methods getX and getY return the x- and y-
coordinates of the mouse at the time the event occurred.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Many event-listener interfaces contain multiple methods. 

 An adapter class implements an interface and provides a 

default implementation (with an empty method body) of 

each method in the interface.

 You extend an adapter class to inherit the default 

implementation of every method and override only the 

method(s) you need for event handling. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 KeyListener interface for handling key events. 

 Key events are generated when keys on the keyboard are pressed and 

released. 

 A KeyListener must define methods keyPressed, keyReleased

and keyTyped

◦ each receives a KeyEvent as its argument

 Class KeyEvent is a subclass of InputEvent. 

 Method keyPressed is called in response to pressing any key. 

 Method keyTyped is called in response to pressing any key that is not an 

action key (ex. copy, paste, or F1, F2, etc) 

 Method keyReleased is called when the key is released after any 

keyPressed or keyTyped event.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Registers key event handlers with method addKeyListener from 

class Component.

 KeyEvent method getKeyCode gets the virtual key code of the 

pressed key. 

 KeyEvent contains virtual key-code constants that represents every 

key on the keyboard. 

 Value returned by getKeyCode can be passed to static
KeyEvent method getKeyText to get a string containing the name 

of the key that was pressed. 

 KeyEvent method getKeyChar (which returns a char) gets the 

Unicode value of the character typed.

 KeyEvent method isActionKey determines whether the key in the 

event was an action key. 



(C) 2010 Pearson Education, Inc.  All 
rights reserved.

 Method getModifiers determines whether any modifier 

keys (such as Shift, Alt and Ctrl) were pressed when the key 

event occurred. 

◦ Result can be passed to static KeyEvent method 

getKeyModifiersText to get a string containing the 

names of the pressed modifier keys. 

 InputEvent methods isAltDown, isControlDown, 

isMetaDown and isShiftDown each return a boolean

indicating whether the particular key was pressed during the 

key event.



 Ex. 1. Temperature Conversion). Write a 
temperature-conversion application that 
converts from Fahrenheit to Celsius. 

 The Fahrenheit temperature should be 
entered from the keyboard (via a JTextField). 

 A JLabel should be used to display the 
converted temperature. Use the following 
formula for the conversion:

 Celsius = 5/9 × ( Fahrenheit – 32 )

(C) 2010 Pearson Education, Inc.  All 
rights reserved.



 Temperature-Conversion Modification. 
Enhance the temperature-conversion 
application of Exercise 1 by adding the Kelvin 
temperature scale. 

 The application should also allow the user to 
make conversions between any two scales. 

 Use the following formula for the conversion 
between Kelvin and Celsius (in addition to the 
formula in Exercise 1):

 Kelvin = Celsius + 273.15

(C) 2010 Pearson Education, Inc.  All 
rights reserved.



 Guess-the-Number Game). 

 Write an application that plays “guess the number” as follows:

 Your application chooses the number to be guessed by selecting an 
integer at random in the range 1–1000. The application then displays 
the following in a label:

 I have a number between 1 and 1000. Can you guess my number?

 Please enter your first guess.

 A JTextField should be used to input the guess. 

 As each guess is input, the background color should change to either 
red or blue. Red indicates that the user is getting “warmer,” and blue, 
“colder.” A JLabel should display either "Too High" or "Too Low" to 
help the user zero in. 

 When the user gets the correct answer, "Correct!" should be displayed, 
and the JTextField used for input should be changed to be uneditable.

 A JButton should be provided to allow the user to play the game 
again. 

 When the JButton is clicked, a new random number should be 
generated and the input JTextField changed to be editable.

(C) 2010 Pearson Education, Inc.  All 
rights reserved.



(C) 2010 Pearson Education, Inc.  All 
rights reserved.


