Lesson 10
Exception Handling

Assoc. Prof. Marenglen Biba

OBJECTIVES
In this Chapter you'll learn:

m What exceptions are.

m How exception and error handling works.

m To use try, throw and catch to detect, indicate and handle exceptions, respectively.

m To use the finally block to release resources.

m How stack unwinding enables exceptions not caught in one scope to be caught in another.
m How stack traces help in debugging.

How exceptions are arranged in an exception-class hierarchy.

m To declare new exception classes.

m To create chained exceptions that maintain complete stack-trace information.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.1 Introduction

» Exception handling

» Exception — an indication of a problem that occurs
during a program’s execution.

* The name “exception” implies that the problem occurs
Infrequently.

» With exception handling, a program can continue
executing (rather than terminating) after dealing with a
problem.
= Mission-critical or business-critical computing.

= Robust and fault-tolerant programs (i.e., programs that can
deal with problems as they arise and continue executing).

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.1 Introduction (Cont.)

» ArrayIndexOutOfBoundsException occurs
when an attempt i1s made to access an element past
either end of an array.

» ClassCastException occurs when an attempt is
made to cast an object that does not have an is-a
relationship with the type specified in the cast operator.

» ANul 1Pointerexceptionoccurswhenanull
reference Is used where an object Is expected.

» Only classes that extend Throwab 1 e (package

java. lang) directly or indirectly can be used with
exception handling.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.2 Error-Handling Overview

» Programs frequently test conditions to determine how program
execution should proceed.

» Consider the following pseudocode:

= Perform a task

If the preceding task did not execute correctly
Perform error processing

Perform next task
“ If the preceding task did not execute correctly

Perform error processing

- Begins by performing a task; then tests whether it executed correctly.

- If not, perform error processing.
- Otherwise, continue with the next task.

» Intermixing program and error-handling logic in this manner can
make programs difficult to read, modify, maintain and debug —

especially in large applications.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Performance

w5 Performance Tip I 1.1

w22 [fthe potential problems occur infrequently, intermixing
program and error-handling logic can degrade program

performance, because the program must perform poten-

tially frequent tests to determine whether the task execut-
ed correctly and the next task can be performed.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.2 Error-Handling Overview (Cont.)

» Exception handling enables you to remove error-
handling code from the “main line” of program
execution
= Improves program clarity
= Enhances modifiability

» Handle any exceptions you choose
= All exceptions
= All exceptions of a certain type
= All exceptions of a group of related types (i.e., related through
a superclass).
» Such flexibility reduces the likelihood that errors will
be overlooked, thus making programs more robust.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.3 Example: Divide by Zero without
Exception Handling

» EXxceptions are thrown (i.e., the exception occurs) when
a method detects a problem and is unable to handle it.

» Stack trace — information displayed when an
exception occurs and is not handled.

» Information includes:

= The name of the exception in a descriptive message that
Indicates the problem that occurred
= The method-call stack (i.e., the call chain) at the time it

occurred. Represents the path of execution that led to the
exception method by method.

» This information helps you debug the program.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.3 Example: Divide by Zero without
Exception Handling (Cont.)

» Java does not allow division by zero In integer arithmetic.
= Throws an ArithmeticException.

= Can arise from several problems, so an error message

- Java does allow division by zero with floating-point values.
= Such a calculation results in the value positive or negative infinity
= Floating-point value that displays as Infinity or -Infinity.

= If 0.0 is divided by 0.0, the result is NaN (not a number), which is
represented as a floating-point value that displays as NaN.

(C) 2010 Pearson Education, Inc. All
rights reserved.

JVM throws exception
if denominatoris 0

User could type invalid
input

User could type invalid
input (including 0)

1 // Fig. 11.1: DivideByZeroNoExceptionHandling.java

2 // Integer division without exception handling.

3 import java.util.Scanner;

4

5 public class DivideByZeroNoExceptionHandling

6 {

7 // demonstrates throwing an exception when a divide-by-zero occurs
8 pubTic static int quotient(int numerator, int denominator)

9 {

10 return numerator / denominator; // possible division by zero «——
11 } // end method quotient

12

13 public static void main(String[] args)

14 {

15 Scanner scanner = new Scanner(System.in); // scanner for input
16

17 System.out.print("Please enter an integer numerator: ");

18 int numerator = scanner.nextInt(); =

19 System.out.print("Please enter an integer denominator: ");
20 int denominator = scanner.nextInt();
21 \
22 int result = quotient(numerator, denominator);

Fig. 11.1 | Integer division without exception handling. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23 System.out.printf(

24 "\nResult: %d / %d = %d\n", numerator, denominator, result);
25 } // end main

26 } // end class DivideByZeroNoExceptionHandling

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: 0 =
Exception in thread "main" java.lang.ArithmeticException: / by zero

Causes division by 0; stack trace
shows what led to the exception

at DivideByZeroNoExceptionHandling.quotient(
DivideByZeroNoExceptionHandling.java:10)

at DivideByZeroNoExceptionHandling.main(
DivideByZeroNoExceptionHandling.java:22)

Fig. 11.1 | Integer division without exception handling. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

Please enter an integer numerator: 100
Please enter an integer denominator: hello «
Exception in thread "main" java.util.InputMismatchException

User typed non-integer value; stack
trace shows what led to the exception

at java.util.Scanner.throwFor(Unknown Source)

at java.util.Scanner.next(Unknown Source)

at java.util.Scanner.nextInt(Unknown Source)

at java.util.Scanner.nextInt(Unknown Source)

at DivideByZeroNoExceptionHandling.main(
DivideByZeroNoExceptionHandling.java:20)

Fig. 11.1 | Integer division without exception handling. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.4 Example: Handling ArithmeticExceptions
and InputMismatchExceptions

» The application in Fig. 11.2 uses exception handling to
process any ArithmeticExceptionsand
TnputMistmatchExceptions that arise.

» If the user makes a mistake, the program catches and
handles (i.e., deals with) the exception — In this case,
allowing the user to try to enter the input again.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.4 Example: Handling ArithmeticExceptions
and InputMismatchExceptions (Cont.)

» try block encloses

= code that might throw an exception
= code that should not execute If an exception occurs.

» Consists of the keyword try followed by a block of
code enclosed In curly braces.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 11.2: DivideByZeroWithExceptionHandling.java

2 // Handling ArithmeticExceptions and InputMismatchExceptions. . tion tvoe th b |
3 import java.util.InputMismatchException; = ni(cfhp :jon ryp]e rSown v severa
4 import java.util.Scanner; ethods of €1ass >canner

5

6 public class DivideByZeroWithExceptionHandling

7 {

8 // demonstrates throwing an exception when a divide-by-zero occurs

9 public static int quotient(int numerator, int denominator) ; - ;
10 throws ArithmeticException = Indicates tha_t this m_ethod mlght
I { throw an ArithmeticException
12 return numerator / denominator; // possible division by zero

13 } // end method quotient

14

15 public static void main(String[] args)

16 {

17 Scanner scanner = new Scanner(System.in); // scanner for input

18 boolean continuelLoop = true; // determines if more input is needed

19

Fig. 11.2 | Handling ArithmeticExceptions and InputMismatchExceptions.
(Part | of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

do
{

try // read two numbers and calculate quotient =

{

System.out.print("Please enter an integer numerator: ");
int numerator = scanner.nextInt();

System.out.print("Please enter an integer denominator: ");
int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);

System.out.printf("\nResult: %d / %d = %d\n", numerator,
denominator, result);

continuelLoop = false; // input successful; end Tooping

¥} // end try

catch (InputMismatchException inputMismatchException) =

{

Starts a block of code
in which an exception
might occur; block also
contains code that
should not execute if
an exception occurs

System.err.printf("\nException: %s\n",
inputMismatchException);
scanner.nextLine(); // discard input so user can try again
System.out.printin(
"You must enter integers. Please try again.\n");

} // end catch

Catches and processes
InputMismatch-
Exceptions

Fig. 11.2 | Handling ArithmeticExceptions and InputMismatchExceptions.

(Part 2 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

42
43
44
45
46
47
48
49
50

catch (ArithmeticException arithmeticException)

{ o

System.err.printf("\nException: %s\n", arithmeticException);

Catches and processes
Arithmetic-
Exceptions

System.out.printin(
"Zero is an invalid denominator. Please try again.\n");
} // end catch
} while (continuelLoop); // end do...while
} // end main
} // end class DivideByZeroWithExceptionHandling

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Fig. 11.2 | Handling ArithmeticExceptions and InputMismatchExceptions.
(Part 3 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

Please enter an integer numerator: 100
Please enter an integer denominator: 0

We purposely displayed the

Exception: java.lang.ArithmeticException: / by zero = T
exception’s error message

Zero is an invalid denominator. Please try again.

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: hello

We purposely displayed the

Exception: java.util.InputMismatchException - T
exception’s error message

You must enter integers. Please try again.

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Fig. 11.2 | Handling ArithmeticExceptions and InputMismatchExceptions.
(Part 4 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.4 Example: Handling ArithmeticExceptions
and InputMismatchExceptions (Cont.)

» catch block (also called a catch clause or exception

handler) catches and handles an exception.

= Begins with the keyword catch and is followed by an
exception parameter in parentheses and a block of code
enclosed in curly braces.

» At least one catch block ora £inally block
(Section 11.7) must immediately follow the try block.

» The exception parameter identifies the exception type
the handler can process.

= The parameter’s name enables the catch block to interact
with a caught exception object.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.4 Example: Handling ArithmeticExceptions
and InputMismatchExceptions (Cont.)

» When an exception occurs in a try block, the catch
block that executes is the first one whose type matches
the type of the exception that occurred.

» Use the System.err (standard error stream) object

(0] output error messages.
= By default, displays data to the command prompt.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Common Programming Error 11.1
It’s a syntax error to place code between a try block and
its corresponding catch blocks.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.4 Example: Handling ArithmeticExceptions
and InputMismatchExceptions (Cont.)

» Uncaught exception—one for which there are no matching
catch blocks.

» Recall that previous uncaught exceptions caused the

application to terminate early.
= This does not always occur as a result of uncaught exceptions.

» Java uses a multithreaded model of program execution.

= Each thread is a parallel activity.

= One program can have many threads.

= |f a program has only one thread, an uncaught exception will cause
the program to terminate.

= |f a program has multiple threads, an uncaught exception will
terminate only the thread where the exception occurred.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.4 Example: Handling ArithmeticExceptions
and InputMismatchExceptions (Cont.)

» If an exception occurs in a try block, the try block
terminates immediately and program control transfers
to the first matching catch block.

» After the exception is handled, control resumes after
the last catch block.

» Known as the termination model of exception handling.

= Some languages use the resumption model of exception
handling, in which, after an exception is handled, control
resumes just after the throw point.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.4 Example: Handling ArithmeticExceptions
and InputMismatchExceptions (Cont.)

» When a try block terminates, local variables declared

In the block go out of scope.

= The local variables of a try block are not accessible in the
corresponding catch blocks.

» When a catch block terminates, local variables
declared within the catch block (including the
exception parameter) also go out of scope.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.4 Example: Handling ArithmeticExceptions
and InputMismatchExceptions (Cont.)

» throws clause — specifies the exceptions a method
throws.
= Appears after the method’s parameter list and before the
method’s body.

= Contains a comma-separated list of the exceptions that the
method will throw if various problems occur.

- May be thrown by statements in the method’s body or by methods
called from the body.

= Method can throw exceptions of the classes listed in its
throws clause or of their subclasses.

= Clients of a method with a throws clause are thus informed
that the method may throw exceptions.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.4 Example: Handling ArithmeticExceptions
and InputMismatchExceptions (Cont.)

» When a method throws an exception, the method
terminates and does not return a value, and its local
variables go out of scope.

= If the local variables were references to objects and
there were no other references to those objects, the
objects would be available for garbage collection.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.6 Java Exception Hierarchy

» EXception classes inherit directly or indirectly from
class Exception, forming an inheritance hierarchy.
= Can extend this hierarchy with your own exception classes.

» Figure 11.3 shows a small portion of the inheritance
hierarchy for class Throwable (a subclass of
Object), which is the superclass of class
Exception.

= Only Throwab 1 e objects can be used with the exception-
handling mechanism.

» Class Throwab 1e has two subclasses: Exception
and Error.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.6 Java Exception Hierarchy (Cont.)

» Class Exception and its subclasses represent
exceptional situations that can occur in a Java program
= These can be caught and handled by the application.

» Class Error and its subclasses represent abnormal
situations that happen in the JVM.
= Errors happen infrequently.

= These should not be caught by applications.
= Applications usually cannot recover from Errors.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Throwable

Exception Error

RuntimeException IOException I AWTErrorI ThreadDeath I VirtualMachineErrorI

ClassCastException I NullPointerException I ArithmeticException I

IndexOutOfBoundsException NoSuchElementException

ArraylndexOutOfBoundsException I InputMismatchException I

Fig. 11.3 | Portion of class Throwab1e’s inheritance hierarchy.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.6 Java Exception Hierarchy (Cont.)

» Checked exceptions vs. unchecked exceptions.

= Compiler enforces a catch-or-declare requirement for checked
exceptions.

An exception’s type determines whether 1t 1s checked or
unchecked.

Direct or indirect subclasses of class RuntimeException
(package java. lang) are unchecked exceptions.

= Typically caused by defects in your program’s code (e.g.,
ArrayIndexOutOfBoundsExceptions).

» Subclasses of Exception but not RuntimeException are
checked exceptions.

= Caused by conditions that are not in the control of the program —e.g., In

file processing, the program can’t open a file because the file does not
exist.

>

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.6 Java Exception Hierarchy (Cont.)

» Classes that inherit from class Error are considered to
be unchecked.

» The compiler checks each method call and method
declaration to determine whether the method throws
checked exceptions.

= If so, the compiler verifies that the checked exception is caught
or is declared in a throws clause.

» throws clause specifies the exceptions a method
throws.
= Such exceptions are typically not caught in the method’s body.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.6 Java Exception Hierarchy (Cont.)

» To satisfy the catch part of the catch-or-declare
requirement, the code that generates the exception must be
wrapped in a try block and must provide a catch handler
for the checked-exception type (or one of its superclasses).

» To satisfy the declare part of the catch-or-declare
requirement, the method must provide a throws clause
containing the checked-exception type after its parameter
list and before its method body.

» If the catch-or-declare requirement is not satisfied, the
compiler will issue an error message indicating that the
exception must be caught or declared.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Exceptions not listed

Common Programming Error 11.3

A compilation error occurs if a method explicitly at-
tempts to throw a checked exception (or calls another
method that throws a checked exception) and that excep-
tion is not listed in that method’s throws clause.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Exceptions in subclasses

Common Programming Error 11.4
% If a subclass method overrides a superclass method, it's an
error for the subclass method to list more exceptions in its
throws clause than the overridden superclass method
does. However, a subclass’s throws clause can contain a
subset of a superclass’s throws list.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.6 Java Exception Hierarchy (Cont.)

» The compiler does not check the code to determine
whether an unchecked exception is caught or declared.

= These typically can be prevented by proper coding.
= For example, an ArithmeticException can be avoided if
a method ensures that the denominator is not zero before
attempting to perform the division.
» Unchecked exceptions are not required to be listed in a
method’s throws clause.

= Even if they are, it’s not required that such exceptions be
caught by an application.

(C) 2010 Pearson Education, Inc. All
rights reserved.

«#z Software Engineering Observation 11.7
Although the compiler does not enforce the catch-or-
declare requirement for unchecked exceptions, provide
appropriate exception-handling code when it's known
that such exceptions might occur. For example, a
program should process the NumberFormatException
from Integer method parselnt, even though
NumberFormatException (an indirect subclass of
RuntimeException) is an unchecked exception type.
This makes your programs more robust.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.6 Java Exception Hierarchy (Cont.)

» A catch parameter of a superclass-type can also catch

all of that exception type’s subclass types.

= Enables catch to handle related errors with a concise
notation

= Allows for polymorphic processing of related exceptions
= Catching related exceptions in one catch block makes sense
only if the handling behavior is the same for all subclasses.
» You can also catch each subclass type individually if
those exceptions require different processing.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.6 Java Exception Hierarchy (Cont.)

» If multiple catch blocks match a particular exception
type, only the first matching catch block executes.

» It’s a compilation error to catch the exact same type In
two different catch blocks associated with a
particular try block.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Catching subclass types

% Error-Prevention Tip 11.3

Catching subclass types individually is subject to error if
you forget to test for one or more of the subclass types ex-
plicitly; catching the superclass guarantees that objects of
all subclasses will be caught. Positioning a catch block
for the superclass type after all other subclass catch
blocks for subclasses of that superclass ensures that all
subclass exceptions are eventually caught.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Common Programming Error 11.5

Placing a catch block for a superclass exception type be-
fore other catch blocks that catch subclass exception
types would prevent those catch blocks from executing,
s0 a compilation error occurs.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.7 finally Block

» Programs that obtain resources must return them to the
system explicitly to avoid so-called resource leaks.

= In programming languages such as C and C++, the most
common kind of resource leak is a memory leak.

= Java automatically garbage collects memory no longer used by
programs, thus avoiding most memory leaks.

= Other types of resource leaks can occur.

- Files, database connections and network connections that are not
closed properly might not be available for use in other programs.

» The f1nally block is used for resource deallocation.
= Placed after the last catch block.

(C) 2010 Pearson Education, Inc. All
rights reserved.

<z, Error-Prevention Tip 11.4
A subtle issue is that Java does not entirely eliminate
memory leaks. Java will not garbage-collect an object
until there are no remaining references to it. Thus, if
programmers erroneously keep references to unwanted
objects, memory leaks can occur. To help avoid this prob-
lem, set reference-type variables to null, when they are
no longer needed.

(C) 2010 Pearson Education, Inc. All
rights reserved.

try
{
statements
resource-acquisition statements
} // end try
catch (AKindOfException exceptionl)

{
exception-handling statements
} // end catch

catch (AnotherKindOfException exception2)
{

exception-handling statements
} // end catch
finally
{
statements
resource-release statements
} // end finally

Fig. 11.4 | A try statement with a finally block.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.7 finally Block (Cont.)

» f1nally block will execute whether or not an
exception Is thrown in the corresponding try block.

» Tinal ly block will execute if a try block exits by
using a return, break or continue statement or
simply by reaching its closing right brace.

» Tinal ly block will not execute if the application

terminates immediately by calling method
System.exit.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.7 finally Block (Cont.)

» Because a final 1y block almost always executes, it
typically contains resource-release code.

» Suppose a resource is allocated in a try block.

= If no exception occurs, control proceeds to the final Ty block,
which frees the resource. Control then proceeds to the first statement
after the finally block.

= |f an exception occurs, the try block terminates. The program
catches and processes the exception in one of the corresponding
catch blocks, then the final 1y block releases the resource and
control proceeds to the first statement after the finally block.

= If the program doesn’t catch the exception, the finally block still

releases the resource and an attempt is made to catch the exception
in a calling method.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.7 finally Block (Cont.)

» If an exception that occurs in a try block cannot be caught
by one of that try block’s catch handlers, control
proceeds to the T1nally block.

» Then the program passes the exception to the next outer
try block — normally in the calling method—where an
associated catch block might catch it.
= This process can occur through many levels of try blocks.
= The exception could go uncaught.

» If a catch block throws an exception, the Tinally block
still executes.

= Then the exception is passed to the next outer try block—again,
normally in the calling method.

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Fig. 11.5: UsingExceptions.java

2 // try...catch...finally exception handling mechanism.

3

4 public class UsingExceptions

5 {

6 public static void main(String[] args)

7 {

8 try

9 { . . Starts a call chain in which an
10 throwException(); // call method throwException ‘______emmpﬂonuMlbeﬂwown
11 } // end try
12 catch (Exception exception) // exception thrown by throwException
13 {
14 System.err.println("Exception handled in main™);
15 } // end catch
16 — :
17 doesNotThrowException(); = Starts a call chain in which no
I8 } // end main o exceptions occur
19

Fig. 11.5 | try..catch..finally exception-handling mechanism. (Part | of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

20 // demonstrate try...catch...finally Thi g

21 public static void throwException() throws Exception «—— 'S method might throw an

22 { Exception (this is a checked type)
23 try // throw an exception and immediately catch it

24 { Th E ion that i

25 System.out.printin("Method throwException”); rop/salr'lewzgxcegtaon atis
26 throw new Exception(); // generate exceptic#— — — Faug tat ine 28 and thrown again at
27 } // end try Ine 32

28 catch (Exception exception) // catch exception thrown in try

29 {

30 System.err.printin(Rethrowing th - -
31 "Exception handled in method throwException"); .e_t rowing t'eexceptlr:)n means that
32 throw exception; // rethrow for further processing «— it is not considered to have been

33 handled

34 // code here would not be reached; would cause compilation errors

35

36 } // end catch This block "
37 finally // executes regardless of what occurs in try...catch «— | 'S block executes
38 { even though line 32 in
39 System.err.printin("Finally executed in throwException"); the catch hand!er
40 } // end finally threw an exception;
41 then the method

42 // code here would not be reached; would cause compilation errors LSS

43

44 } // end method throwException

Fig. 11.5 | try...catch...finally exception-handling mechanism. (Part 2 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

45

46 // demonstrate finally when no exception occurs :

47 pubTlic static void doesNotThrowException() Thmrjﬁhoddoesnotﬂnowany
48 { exceptions

:z Ery // try block does not throw an exception ‘ﬁ_“&gkﬁﬁhﬁ&‘ T i el i | e Al o) 15
51 System.out.printin("Method doesNotThrowException”); statements correctly

52 } // end try : . . 3
53 catch (Exception exception) // does not execute e———-] Tmscgtchhandkrwnﬂbeshpped,no
54 { exceptions occur

55 System.err.printin(exception);

56 } // end catch This finallv block
37 finally // executes regardless of what occurs in try...catch «—— s Tinally bloc
58 { still executes

59 System.err.printin(

60 "Finally executed in doesNotThrowException");

61 } // end finally

62 p trol
63 System.out.println("End of method doesNotThrowException"); «—— lo%mnncipro

64 } // end method doesNotThrowException continues nhere

65 1} // end class UsingExceptions

Fig. 11.5 | try..catch...finally exception-handling mechanism. (Part 3 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

Method throwException

Exception handled in method throwException
Finally executed in throwException
Exception handled in main

Method doesNotThrowException

Finally executed in doesNotThrowException
End of method doesNotThrowException

Fig. 11.5 | try..catch..finally exception-handling mechanism. (Part 4 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.7 finally Block (Cont.)

» Both System.out and System.err are streams—a
sequence of bytes.
= System.out (the standard output stream) displays output
= System. err (the standard error stream) displays errors

» Output from these streams can be redirected (e.g., to a
file).

» Using two different streams enables you to easily
separate error messages from other output.

= Data output from System. err could be sent to a log file

= Data output from System. out can be displayed on the
screen

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.8 Stack Unwinding

» Stack unwinding — When an exception is thrown but not
caught in a particular scope, the method-call stack is
“unwound”

» An attempt is made to catch the exception in the next
outer try block.

» All local variables in the unwound method go out of scope
and control returns to the statement that originally invoked
that method.

» If a try block encloses that statement, an attempt is made
to catch the exception.

» If a try block does not enclose that statement or if the
exception is not caught, stack unwinding occurs again.

(C) 2010 Pearson Education, Inc. All
rights reserved.

// Fig. 11.6: UsingExceptions.java
// Stack unwinding.

public class UsingExceptions

{

public static void main(String[] args)

{

try // call throwException to demonstrate stack unwinding

ooo~NONGKNbD WN =—

{ .
10 throwException(); - | exception

Calls a method that might throw an

11 } // end try

12 catch (Exception exception) // exception thrown in throwException
13 {

14 System.err.println("Exception handled in main™);

15 } // end catch

16 } // end main

17

Catches the exception
and displays a message

Fig. 11.6 | Stack unwinding. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

8
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

// throwException throws exception that is not caught in this method

{

public static void throwException() throws Exception .\\\\H\\\

This method might throw an
Exception (this is a checked type)

try // throw an exception and catch it in main

{
System.out.printin("Method throwException");
throw new Exception(); // generate exception «———

} // end try

Throws a new Exception that is not
caught by an exception handler in this
method’s scope

catch (RuntimeException runtimeException) // catch incorrect type

{

System.err.printin(

"Exception handled in method throwException");
} // end catch

finally // finally block always executes =
{

System.err.printin("Finally 1is always executed"”);
} // end finally

} // end method throwException

} // end class UsingExceptions

The finally block executes before
the method terminates (stack
unwinding) and the exception is
returned to the caller

Method throwException
Finally is always executed
Exception handled in main

Fig. 11.6 | Stack unwinding. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc.

All

rights reserved.

11.9 printStackTrace,
getStackTrace and getMessage

» Throwab1le method printStackTrace outputs the
stack trace to the standard error stream.
= Helpful in testing and debugging.

» Throwable method getStackTrace retrieves the
stack-trace information.

» Throwab1e method getMessage returns the descriptive
string stored in an exception.

» To output the stack-trace information to streams other than
the standard error stream:

= Use the information returned from getStackTrace and output it
to another stream

= Use one of the overloaded versions of method printStackTrace

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.9 printStackTrace,
getStackTrace and getMessage (Cont.)

» An exception’s getStackTrace method obtains the
stack-trace information as an array of
StackTraceElement objects.

= StackTraceElement’s methods getClassName,
getFileName, getLineNumber and getMethodName
get the class name, file name, line number and method name,
respectively, for that StackTraceElement.
» Each StackTraceElement represents one method

call on the method-call stack.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 11.7: UsingExceptions.java
2 // Throwable methods getMessage, getStackTrace and printStackTrace.
3
4 public class UsingExceptions
5 {
6 public static void main(String[] args)
7 {
g 'Ery Starts the call chain that will lead to an
10 methodl(); // call methodl -/ exception in this program
11 } // end try
. . . : None of the other
12 h (E h h hodl =
2 cEatc (Exception exception) // catch exception thrown in method o sthodsicatahithe
14 System.err.printf("%s\n\n", exception.getMessage()); gxceptlon:jotréetsﬁack
15 exception.printStackTrace(); // print exception stack trace IS unwound and the
16 exception is caught
17 // obtain the stack-trace information here
:: StackTraceElement[] traceElements = exception.getStackTrace(); -~
20 System.out.printin("\nStack trace from getStackTrace:"); SRR RS
21 System.out.printin("Class\t\tFile\t\t\tLine\tMethod");
22

Fig. 11.7 | Throwable methods getMessage, getStackTrace and
printStackTrace. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23 // loop through traceElements to get exception description

24 for (StackTraceElement element : traceElements)

25 { StackTraceElement
26 System.out.printf("%s\t", element.getClassName()); methods returns the
27 System.out.printf("%s\t", element.getFileName()); class name, file name,
28 System.out.printf("%s\t", element.getLineNumber()); line number and

29 System.out.printf("%s\n", element.getMethodName()); method name for a
30 } // end for particular stack frame
31 } // end catch

32 } // end main

33 X ;

34 // call method2; throw exceptions back to main Ehls mtho?trﬁ.lghtthrswkarét)
35 pubTic static void methodl() throws Exception / xception (this I a checked type
36 {

37 method2(); = Continues the call chain to method2
38 } // end method methodl

39 ; ,

40 // call method3; throw exceptions back to methodl Ehls mtho?trrT‘lghtthrswkarzit)
41 pubTic static void method2() throws Exception / xception (this I a checked type
42 {

43 method3(); = Continues the call chain to method3
4 } // end method method?2

Fig. 11.7 | Throwable methods getMessage, getStackTrace and
printStackTrace. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All

rights reserved.

45

This method might throw an
Exception (this is a checked type)

46 // throw Exception back to method2

47 pubTic static void method3() throws Exception =

48 {

49 throw new Exception("Exception thrown in method3"); ‘\\\\
50 } // end method method3

51 1} // end class UsingExceptions

Throws a new Exception and begins
stack unwinding

Exception thrown in method3

java.lang.Exception: Exception thrown in method3

at UsingExceptions.method3(UsingExceptions
at UsingExceptions.
at UsingExceptions.

at UsingExceptions.

Stack trace from getStackTrace: =

Class File
UsingExceptions
UsingExceptions
UsingExceptions

UsingExceptions

-

L

method2 (UsingExceptions.java:43)
methodl(UsingExceptions.java:37)
main(UsingExceptions.java:10)

Shows just the error message that was
stored in the Exception object

W

Shows the complete error message and
stack trace

UsingExceptions.java
UsingExceptions.java
UsingExceptions.java
UsingExceptions.java

Line
49
43
37
10

Method
method3
method2
methodl
main

Shows the stack trace information
obtained from StackTraceElements

Fig. 11.7 | Throwable methods getMessage, getStackTrace and

printStackTrace. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc. All

rights reserved.

7 Software Engineering Observation 11.11

‘..;..; Never ignore an exception you catch. At least use
printStackTrace to output an error message. 1his
will inform users that a problem exists, so that they can
take appropriate actions.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.10 Chained Exceptions

» Sometimes a method responds to an exception by throwing
a different exception type that is specific to the current
application.

» If a catch block throws a new exception, the original
exception’s information and stack trace are lost.

» Earlier Java versions provided no mechanism to wrap the
original exception information with the new exception’s
Information.
= This made debugging such problems particularly difficult.

» Chained exceptions enable an exception object to maintain
the complete stack-trace information from the original
exception.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Catches the chained
exception and displays
the stack trace

I // Fig. 11.8: UsingChainedExceptions.java
2 // Chained exceptions.

3

4 public class UsingChainedExceptions

5 {

6 public static void main(String[] args)
7 {

8 try

9 {

10 methodl(); // call methodl

11 } // end try

12 catch (Exception exception) // exceptions thrown from methodl «—
13 {

14 exception.printStackTrace();

15 } // end catch

16 } // end main

17

Fig. 11.8 | Chained exceptions. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// call method2; throw exceptions back to main
public static void methodl() throws Exception
{
try
{
method2(); // call method2
} // end try
catch (Exception exception) // exception thrown from method2
{
throw new Exception("Exception thrown in methodl"™, exception);
} // end catch
} // end method methodl

// call method3; throw exceptions back to methodl
public static void method2() throws Exception

{
try

{
method3(); // call method3

} // end try
catch (Exception exception) // exception thrown from method3

{
throw new Exception("Exception thrown in method2", exception);
} // end catch
} // end method method?2

Fig. 11.8 | Chained exceptions. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

-

Creates a new
exception with a
custom message;
chains the exception
thrown by method?2

-

Creates a new
exception with a
custom message;
chains the exception
thrown by method3

43

44 // throw Exception back to method2

45 pubTlic static void method3() throws Exception

46 {

47 throw new Exception("Exception thrown in method3"); - Original exception
48 } // end method method3

49 1} // end class UsingChainedExceptions

java.lang.Exception: Exception thrown in methodl
at UsingChainedExceptions.methodl(UsingChainedExceptions.java:27)
at UsingChainedExceptions.main(UsingChainedExceptions.java:10)

Caused by: java.lang.Exception: Exception thrown in method2 Notice that the
at UsingChainedExceptions.method2(UsingChainedExceptions.java:40) chained exceptions
at UsingChainedExceptions.methodl(UsingChainedExceptions.java:23) appear in the stack
... 1 more ‘#ﬂf#ﬂgfﬁ_d,,_~a-‘”“tmceinkwmaﬁon

Caused by: java.lang.Exception: Exception thrown in method3

at UsingChainedExceptions.method3(UsingChainedExceptions.java:47)
at UsingChainedExceptions.method2(UsingChainedExceptions.java:36)
. 2 more

Fig. 11.8 | Chained exceptions. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.11 Declaring New Exception Types

» Sometimes it’s useful to declare your own exception
classes that are specific to the problems that can occur
when another programmer uses your reusable classes.

» A new exception class must extend an existing
exception class to ensure that the class can be used with
the exception-handling mechanism.

(C) 2010 Pearson Education, Inc. All
rights reserved.

11.11 Declaring New Exception Types

» Atypical new exception class contains only four

constructors:

= one that takes no arguments and passes a default error message
String to the superclass constructor;

= one that receives a customized error message as a String
and passes It to the superclass constructor;

= one that receives a customized error message as a String
and a Throwab1e (for chaining exceptions) and passes both
to the superclass constructor,

= and one that receives a Throwab 1 e (for chaining exceptions)
and passes It to the superclass constructor.

(C) 2010 Pearson Education, Inc. All
rights reserved.

If possible, indicate exceptions from your methods by

using existing exception classes, rather than creating new
ones. The Java API contains many exception classes that
might be suitable for the type of problems your methods

need to indicate.

& Software Engineering Observation 11.12

(C) 2010 Pearson Education, Inc. All
rights reserved.

, Good Programming Practice 11.4
By convention, all exception-class names should end with
the word Exception.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Lab Session

» Use of Debug in NetBeans

» Exercises on Exceptions

(C) 2010 Pearson Education, Inc. All
rights reserved.

Exercise 1

» Catching Exceptions with Superclasses. Use
inheritance to create an exception superclass
(called ExceptionA) and exception subclasses
ExceptionB and ExceptionC, where ExceptionB
inherits from ExceptionA and ExceptionC
inherits from ExceptionB.

» Write a program to demonstrate that the
catch block for type ExceptionA catches
exceptions of types ExceptionB and
ExceptionC.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Exercise 2

» Catching Exceptions Using Class Exception. Write a
program that demonstrates how various exceptions
are caught with catch (Exception exception)

» This time, define classes ExceptionA (which inherits
from class Exception) and ExceptionB (which
inherits from class ExceptionA).

» In your program, create try blocks that throw
exceptions of types ExceptionA, ExceptionB,
NullPointerException and IOException.

» All exceptions should be caught with catch blocks
specifying type Exception.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Exercise 3

» Order of catch Blocks. Write a program that
shows that the order of catch blocks is
Important.

» If you try to catch a superclass exception type
before a subclass type, the compiler should
generate errors.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Exercise 4

» Constructor Failure. Write a program that
shows a constructor passing information
about constructor failure to an exception
handler. Define class SomeClass, which
throws an Exception in the constructor.

» Your program should try to create an object
of type SomeClass and catch the exception
that’s thrown from the constructor.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Exercise 5

» Rethrowing Exceptions.

» Write a program that illustrates rethrowing an
exception.

» Define methods someMethod and
someMethod?2. Method someMethod2 should
initially throw an exception.

» Method someMethod should call
someMethod?2, catch the exception and
rethrow it. Call someMethod from method
main, and catch the rethrown exception.

» Print the stack trace of this exception.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Exercise 6

» Catching Exceptions Using Outer Scopes.

» Write a program showing that a method with
its own try block does not have to catch every
possible error generated within the try.

» Some exceptions can slip through to, and be
handled in, other scopes.

(C) 2010 Pearson Education, Inc. All
rights reserved.

End of class

- Readings
« Chapter 11

(C) 2010 Pearson Education, Inc. All
rights reserved.

