
(C) 2010 Pearson Education, Inc. All rights reserved.

Assoc. Prof. Marenglen Biba

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Exception handling

 Exception — an indication of a problem that occurs
during a program’s execution.
 The name “exception” implies that the problem occurs

infrequently.

 With exception handling, a program can continue
executing (rather than terminating) after dealing with a
problem.
 Mission-critical or business-critical computing.

 Robust and fault-tolerant programs (i.e., programs that can
deal with problems as they arise and continue executing).

(C) 2010 Pearson Education, Inc. All
rights reserved.

 ArrayIndexOutOfBoundsException occurs
when an attempt is made to access an element past
either end of an array.

 ClassCastException occurs when an attempt is
made to cast an object that does not have an is-a
relationship with the type specified in the cast operator.

 A NullPointerException occurs when a null
reference is used where an object is expected.

 Only classes that extend Throwable (package
java.lang) directly or indirectly can be used with
exception handling.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Programs frequently test conditions to determine how program
execution should proceed.

 Consider the following pseudocode:
 Perform a task

If the preceding task did not execute correctly
Perform error processing

Perform next task

 If the preceding task did not execute correctly
Perform error processing

 …
 Begins by performing a task; then tests whether it executed correctly.

 If not, perform error processing.

 Otherwise, continue with the next task.

 Intermixing program and error-handling logic in this manner can
make programs difficult to read, modify, maintain and debug —
especially in large applications.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Exception handling enables you to remove error-
handling code from the “main line” of program
execution
 Improves program clarity

 Enhances modifiability

 Handle any exceptions you choose
 All exceptions

 All exceptions of a certain type

 All exceptions of a group of related types (i.e., related through
a superclass).

 Such flexibility reduces the likelihood that errors will
be overlooked, thus making programs more robust.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Exceptions are thrown (i.e., the exception occurs) when
a method detects a problem and is unable to handle it.

 Stack trace — information displayed when an
exception occurs and is not handled.

 Information includes:
 The name of the exception in a descriptive message that

indicates the problem that occurred

 The method-call stack (i.e., the call chain) at the time it
occurred. Represents the path of execution that led to the
exception method by method.

 This information helps you debug the program.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Java does not allow division by zero in integer arithmetic.
 Throws an ArithmeticException.

 Can arise from several problems, so an error message

 Java does allow division by zero with floating-point values.

 Such a calculation results in the value positive or negative infinity

 Floating-point value that displays as Infinity or -Infinity.

 If 0.0 is divided by 0.0, the result is NaN (not a number), which is

represented as a floating-point value that displays as NaN.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The application in Fig. 11.2 uses exception handling to

process any ArithmeticExceptions and

InputMistmatchExceptions that arise.

 If the user makes a mistake, the program catches and

handles (i.e., deals with) the exception — in this case,

allowing the user to try to enter the input again.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 try block encloses

 code that might throw an exception

 code that should not execute if an exception occurs.

 Consists of the keyword try followed by a block of

code enclosed in curly braces.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 catch block (also called a catch clause or exception

handler) catches and handles an exception.

 Begins with the keyword catch and is followed by an

exception parameter in parentheses and a block of code

enclosed in curly braces.

 At least one catch block or a finally block

(Section 11.7) must immediately follow the try block.

 The exception parameter identifies the exception type

the handler can process.

 The parameter’s name enables the catch block to interact

with a caught exception object.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 When an exception occurs in a try block, the catch
block that executes is the first one whose type matches

the type of the exception that occurred.

 Use the System.err (standard error stream) object

to output error messages.

 By default, displays data to the command prompt.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Uncaught exception—one for which there are no matching
catch blocks.

 Recall that previous uncaught exceptions caused the
application to terminate early.
 This does not always occur as a result of uncaught exceptions.

 Java uses a multithreaded model of program execution.
 Each thread is a parallel activity.

 One program can have many threads.

 If a program has only one thread, an uncaught exception will cause
the program to terminate.

 If a program has multiple threads, an uncaught exception will
terminate only the thread where the exception occurred.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 If an exception occurs in a try block, the try block

terminates immediately and program control transfers

to the first matching catch block.

 After the exception is handled, control resumes after

the last catch block.

 Known as the termination model of exception handling.

 Some languages use the resumption model of exception

handling, in which, after an exception is handled, control

resumes just after the throw point.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 When a try block terminates, local variables declared

in the block go out of scope.

 The local variables of a try block are not accessible in the

corresponding catch blocks.

 When a catch block terminates, local variables

declared within the catch block (including the

exception parameter) also go out of scope.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 throws clause — specifies the exceptions a method
throws.
 Appears after the method’s parameter list and before the

method’s body.

 Contains a comma-separated list of the exceptions that the
method will throw if various problems occur.

 May be thrown by statements in the method’s body or by methods
called from the body.

 Method can throw exceptions of the classes listed in its
throws clause or of their subclasses.

 Clients of a method with a throws clause are thus informed
that the method may throw exceptions.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 When a method throws an exception, the method

terminates and does not return a value, and its local

variables go out of scope.

 If the local variables were references to objects and

there were no other references to those objects, the

objects would be available for garbage collection.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Exception classes inherit directly or indirectly from
class Exception, forming an inheritance hierarchy.
 Can extend this hierarchy with your own exception classes.

 Figure 11.3 shows a small portion of the inheritance
hierarchy for class Throwable (a subclass of
Object), which is the superclass of class
Exception.
 Only Throwable objects can be used with the exception-

handling mechanism.

 Class Throwable has two subclasses: Exception
and Error.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class Exception and its subclasses represent

exceptional situations that can occur in a Java program

 These can be caught and handled by the application.

 Class Error and its subclasses represent abnormal

situations that happen in the JVM.

 Errors happen infrequently.

 These should not be caught by applications.

 Applications usually cannot recover from Errors.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Checked exceptions vs. unchecked exceptions.
 Compiler enforces a catch-or-declare requirement for checked

exceptions.

 An exception’s type determines whether it is checked or
unchecked.

 Direct or indirect subclasses of class RuntimeException
(package java.lang) are unchecked exceptions.
 Typically caused by defects in your program’s code (e.g.,
ArrayIndexOutOfBoundsExceptions).

 Subclasses of Exception but not RuntimeException are
checked exceptions.
 Caused by conditions that are not in the control of the program —e.g., in

file processing, the program can’t open a file because the file does not
exist.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Classes that inherit from class Error are considered to

be unchecked.

 The compiler checks each method call and method

declaration to determine whether the method throws

checked exceptions.

 If so, the compiler verifies that the checked exception is caught

or is declared in a throws clause.

 throws clause specifies the exceptions a method

throws.

 Such exceptions are typically not caught in the method’s body.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 To satisfy the catch part of the catch-or-declare

requirement, the code that generates the exception must be

wrapped in a try block and must provide a catch handler

for the checked-exception type (or one of its superclasses).

 To satisfy the declare part of the catch-or-declare

requirement, the method must provide a throws clause

containing the checked-exception type after its parameter

list and before its method body.

 If the catch-or-declare requirement is not satisfied, the

compiler will issue an error message indicating that the

exception must be caught or declared.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The compiler does not check the code to determine

whether an unchecked exception is caught or declared.

 These typically can be prevented by proper coding.

 For example, an ArithmeticException can be avoided if

a method ensures that the denominator is not zero before

attempting to perform the division.

 Unchecked exceptions are not required to be listed in a

method’s throws clause.

 Even if they are, it’s not required that such exceptions be

caught by an application.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A catch parameter of a superclass-type can also catch

all of that exception type’s subclass types.

 Enables catch to handle related errors with a concise

notation

 Allows for polymorphic processing of related exceptions

 Catching related exceptions in one catch block makes sense

only if the handling behavior is the same for all subclasses.

 You can also catch each subclass type individually if

those exceptions require different processing.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 If multiple catch blocks match a particular exception

type, only the first matching catch block executes.

 It’s a compilation error to catch the exact same type in

two different catch blocks associated with a

particular try block.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Programs that obtain resources must return them to the

system explicitly to avoid so-called resource leaks.

 In programming languages such as C and C++, the most

common kind of resource leak is a memory leak.

 Java automatically garbage collects memory no longer used by

programs, thus avoiding most memory leaks.

 Other types of resource leaks can occur.

 Files, database connections and network connections that are not

closed properly might not be available for use in other programs.

 The finally block is used for resource deallocation.

 Placed after the last catch block.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 finally block will execute whether or not an

exception is thrown in the corresponding try block.

 finally block will execute if a try block exits by

using a return, break or continue statement or

simply by reaching its closing right brace.

 finally block will not execute if the application

terminates immediately by calling method

System.exit.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Because a finally block almost always executes, it

typically contains resource-release code.

 Suppose a resource is allocated in a try block.

 If no exception occurs, control proceeds to the finally block,

which frees the resource. Control then proceeds to the first statement

after the finally block.

 If an exception occurs, the try block terminates. The program

catches and processes the exception in one of the corresponding

catch blocks, then the finally block releases the resource and

control proceeds to the first statement after the finally block.

 If the program doesn’t catch the exception, the finally block still

releases the resource and an attempt is made to catch the exception

in a calling method.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 If an exception that occurs in a try block cannot be caught
by one of that try block’s catch handlers, control
proceeds to the finally block.

 Then the program passes the exception to the next outer
try block — normally in the calling method—where an
associated catch block might catch it.
 This process can occur through many levels of try blocks.

 The exception could go uncaught.

 If a catch block throws an exception, the finally block
still executes.
 Then the exception is passed to the next outer try block—again,

normally in the calling method.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Both System.out and System.err are streams—a
sequence of bytes.
 System.out (the standard output stream) displays output

 System.err (the standard error stream) displays errors

 Output from these streams can be redirected (e.g., to a
file).

 Using two different streams enables you to easily
separate error messages from other output.
 Data output from System.err could be sent to a log file

 Data output from System.out can be displayed on the
screen

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Stack unwinding — When an exception is thrown but not
caught in a particular scope, the method-call stack is
“unwound”

 An attempt is made to catch the exception in the next
outer try block.

 All local variables in the unwound method go out of scope
and control returns to the statement that originally invoked
that method.

 If a try block encloses that statement, an attempt is made
to catch the exception.

 If a try block does not enclose that statement or if the
exception is not caught, stack unwinding occurs again.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Throwable method printStackTrace outputs the
stack trace to the standard error stream.
 Helpful in testing and debugging.

 Throwable method getStackTrace retrieves the
stack-trace information.

 Throwable method getMessage returns the descriptive
string stored in an exception.

 To output the stack-trace information to streams other than
the standard error stream:
 Use the information returned from getStackTrace and output it

to another stream

 Use one of the overloaded versions of method printStackTrace

(C) 2010 Pearson Education, Inc. All
rights reserved.

 An exception’s getStackTrace method obtains the

stack-trace information as an array of

StackTraceElement objects.

 StackTraceElement’s methods getClassName,

getFileName, getLineNumber and getMethodName

get the class name, file name, line number and method name,

respectively, for that StackTraceElement.

 Each StackTraceElement represents one method

call on the method-call stack.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Sometimes a method responds to an exception by throwing
a different exception type that is specific to the current
application.

 If a catch block throws a new exception, the original
exception’s information and stack trace are lost.

 Earlier Java versions provided no mechanism to wrap the
original exception information with the new exception’s
information.
 This made debugging such problems particularly difficult.

 Chained exceptions enable an exception object to maintain
the complete stack-trace information from the original
exception.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Sometimes it’s useful to declare your own exception

classes that are specific to the problems that can occur

when another programmer uses your reusable classes.

 A new exception class must extend an existing

exception class to ensure that the class can be used with

the exception-handling mechanism.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A typical new exception class contains only four

constructors:

 one that takes no arguments and passes a default error message

String to the superclass constructor;

 one that receives a customized error message as a String
and passes it to the superclass constructor;

 one that receives a customized error message as a String
and a Throwable (for chaining exceptions) and passes both

to the superclass constructor;

 and one that receives a Throwable (for chaining exceptions)

and passes it to the superclass constructor.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Use of Debug in NetBeans

 Exercises on Exceptions

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Catching Exceptions with Superclasses. Use
inheritance to create an exception superclass
(called ExceptionA) and exception subclasses
ExceptionB and ExceptionC, where ExceptionB
inherits from ExceptionA and ExceptionC
inherits from ExceptionB.

 Write a program to demonstrate that the
catch block for type ExceptionA catches
exceptions of types ExceptionB and
ExceptionC.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Catching Exceptions Using Class Exception. Write a
program that demonstrates how various exceptions
are caught with catch (Exception exception)

 This time, define classes ExceptionA (which inherits
from class Exception) and ExceptionB (which
inherits from class ExceptionA).

 In your program, create try blocks that throw
exceptions of types ExceptionA, ExceptionB,
NullPointerException and IOException.

 All exceptions should be caught with catch blocks
specifying type Exception.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Order of catch Blocks. Write a program that
shows that the order of catch blocks is
important.

 If you try to catch a superclass exception type
before a subclass type, the compiler should
generate errors.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Constructor Failure. Write a program that
shows a constructor passing information
about constructor failure to an exception
handler. Define class SomeClass, which
throws an Exception in the constructor.

 Your program should try to create an object
of type SomeClass and catch the exception
that’s thrown from the constructor.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Rethrowing Exceptions.

 Write a program that illustrates rethrowing an
exception.

 Define methods someMethod and
someMethod2. Method someMethod2 should
initially throw an exception.

 Method someMethod should call
someMethod2, catch the exception and
rethrow it. Call someMethod from method
main, and catch the rethrown exception.

 Print the stack trace of this exception.
(C) 2010 Pearson Education, Inc. All

rights reserved.

 Catching Exceptions Using Outer Scopes.

 Write a program showing that a method with
its own try block does not have to catch every
possible error generated within the try.

 Some exceptions can slip through to, and be
handled in, other scopes.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

◦ Readings

 Chapter 11

