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 Data stored in variables and arrays is temporary
 It’s lost when a local variable goes out of scope or when the 

program terminates

 For long-term retention of data, computers use files. 

 Computers store files on secondary storage devices
 hard disks, optical disks, flash drives and magnetic tapes. 

 Data maintained in files is persistent data because it 
exists beyond the duration of program execution. 



 Programmers prefer to work with decimal digits (0–9), 
letters (A–Z and a–z), and special symbols (e.g., $, @, 
%, &, *, (, ), –, +, ", :, ? and / ). 
 Known as characters. 

 Character set — the set of all the characters used to 
write programs and represent data items. 

 Java uses Unicode characters that are composed of two 
bytes, each composed of eight bits

 Java type byte can be used to represent byte data. 

 Unicode contains characters for many of the world’s 
languages. 



 Fields are composed of characters or bytes. 

 A field is a group of characters or bytes that conveys 

meaning. 

 Data items processed by computers form a data 

hierarchy that becomes larger and more complex in 

structure as we progress from bits to characters to 

fields, and so on.



 Typically, several fields compose a record

(implemented as a class in Java). 

 A record is a group of related fields. 

 A file is a group of related records. 





 Java views each file as a sequential stream of bytes

(Fig. 17.2). 

 Every operating system provides a mechanism to 

determine the end of a file, such as an end-of-file 

marker or a count of the total bytes in the file that is 

recorded in a system-maintained administrative data 

structure. 

 A Java program simply receives an indication from the 

operating system when it reaches the end of the stream





 File streams can be used to input and output data as bytes 

or characters. 

 Streams that input and output bytes are known as byte-

based streams, representing data in its binary format. 

 Streams that input and output characters are known as 

character-based streams, representing data as a sequence 

of characters. 



 Files that are created using byte-based streams are referred 

to as binary files.

 Files created using character-based streams are referred to 

as text files. Text files can be read by text editors. 

 Binary files are read by programs that understand the 

specific content of the file and the ordering of that content.



 A Java program opens a file by creating an object and associating a 
stream of bytes or characters with it.

 Java creates three stream objects when a program begins executing

 System.in (the standard input stream object) normally inputs 
bytes from the keyboard

 System.out (the standard output stream object) normally 
outputs character data to the screen

 System.err (the standard error stream object) normally 
outputs character-based error messages to the screen. 

 Class System provides methods setIn, setOut and setErr to 
redirect the standard input, output and error streams, respectively.



 Java programs perform file processing by using classes 
from package java.io. 

 Includes definitions for stream classes
 FileInputStream (for byte-based input from a file) 

 FileOutputStream (for byte-based output to a file) 

 FileReader (for character-based input from a file)

 FileWriter (for character-based output to a file)

 You open a file by creating an object of one these 
stream classes. The object’s constructor opens the file. 



 Java can perform input and output of objects or variables of 
primitive data types without having to worry about the details of 
converting such values to byte format. 

 To perform such input and output, objects of classes 
ObjectInputStream and ObjectOutputStream can be 
used together with the byte-based file stream classes 
FileInputStream and FileOutputStream. 

 The complete hierarchy of classes in package java.io can be 
viewed in the online documentation at 

◦ http://docs.oracle.com/javase/8/docs/api/java/i
o/package-tree.html

http://docs.oracle.com/javase/8/docs/api/java/io/package-tree.html


 Class File provides information about files and 

directories. 

 Character-based input and output can be performed 

with classes Scanner and Formatter. 

 Class Scanner is used extensively to input data from the 

keyboard. This class can also read data from a file. 

 Class Formatter enables formatted data to be output to any 

text-based stream in a manner similar to method 

System.out.printf.



 Class File provides four constructors. 

 The one with a String argument specifies the name of a file or 

directory to associate with the File object. 

 The name can contain path information as well as a file or 

directory name. 

 A file or directory’s path specifies its location on disk.

 An absolute path contains all the directories, starting with 

the root directory, that lead to a specific file or directory. 

 A relative path normally starts from the directory in which 

the application began executing and is therefore “relative” to 

the current directory.



 The constructor with two String arguments specifies an absolute 
or relative path and the file or directory to associate with the File
object. 

 The constructor with File and String arguments uses an 
existing File object that specifies the parent directory of the file or 
directory specified by the String argument. 

 The fourth constructor uses a URI object to locate the file. 

 A Uniform Resource Identifier (URI) is a more general form of 
the Uniform Resource Locators (URLs) that are used to locate 
websites. 

 Figure 17.3 lists some common File methods. 
 http://docs.oracle.com/javase/8/docs/api/java/io/File
.html

http://docs.oracle.com/javase/8/docs/api/java/io/File.html
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 A separator character is used to separate directories 
and files in the path. 

 On Windows, the separator character is a backslash (\). 

 On Linux/UNIX, it’s a forward slash (/). 

 Java processes both characters identically in a path 
name. 

 When building Strings that represent path 
information, use File.separator to obtain the 
local computer’s proper separator.
 This constant returns a String consisting of one character —

the proper separator for the system.





 Sequential-access files store records in order by the 

record-key field. 

 Text files are human-readable files. 



 Java imposes no structure on a file

 Notions such as records do not exist as part of the Java 

language. 











 Formatter outputs formatted Strings to the 
specified stream. 

 The constructor with one String argument receives 
the name of the file, including its path. 
 If a path is not specified, the JVM assumes that the file is in 

the directory from which the program was executed. 

 If the file does not exist, it will be created. 

 If an existing file is opened, its contents are truncated.  



















 A SecurityException occurs if the user does not 

have permission to write data to the file. 

 A FileNotFoundException occurs if the file 

does not exist and a new file cannot be created. 

 static method System.exit terminates an 

application. 

 An argument of 0 indicates successful program termination. 

 A nonzero value, normally indicates that an error has occurred. 

 The argument is useful if the program is executed from a batch 

file on Windows or a shell script on UNIX/Linux/Mac OS X. 





 Scanner method hasNext determines whether the end-
of-file key combination has been entered. 

 A NoSuchElementException occurs if the data being 
read by a Scanner method is in the wrong format or if 
there is no more data to input. 

 Formatter method format works like 
System.out.printf

 A FormatterClosedException occurs if the 
Formatter is closed when you attempt to output. 

 Formatter method close closes the file.
 If method close is not called explicitly, the operating system 

normally will close the file when program execution terminates.



 Different platforms use different line-separator characters. 

 On UNIX/Linux-/Mac OS X, the line-separator is a newline 

(\n). 

 On Windows, it is a combination of a carriage return and a line 

feed — represented as \r\n. 

 You can use the %n format specifier in a format control string 

to output a platform-specific line separator. 

 Method System.out.println outputs a platform-

specific line separator after its argument. 

 Regardless of the line separator used in a text file, a Java 

program can still recognize the lines of text and read them.



 The application in Figs. 17.10 and 17.11 reads records 

from the file "clients.txt" created by the 

application of Section 17.5.1 and displays the record 

contents. 
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 If a Scanner is closed before data is input, an 

IllegalStateException occurs. 



 To retrieve data sequentially from a file, programs start 
from the beginning of the file and read all the data 
consecutively until the desired information is found. 

 It might be necessary to process the file sequentially 
several times (from the beginning of the file) during 
the execution of a program. 

 Class Scanner does not allow repositioning to the 
beginning of the file. 
 The program must close the file and reopen it.























 The data in many sequential files cannot be modified 

without the risk of destroying other data in the file. 

 If the name “White” needed to be changed to 

“Worthington,” the old name cannot simply be 

overwritten, because the new name requires more space.

 Fields in a text file—and hence records—can vary in size. 

 Records in a sequential-access file are not usually updated 

in place. Instead, the entire file is usually rewritten.

 Rewriting the entire file is uneconomical to update just one 

record, but reasonable if a substantial number of records 

need to be updated.



 To read an entire object from or write an entire object 

to a file, Java provides object serialization. 

 A serialized object is represented as a sequence of 

bytes that includes the object’s data and its type 

information. 

 After a serialized object has been written into a file, it 

can be read from the file and deserialized to recreate 

the object in memory. 





 Classes ObjectInputStream and 

ObjectOutputStream, which respectively 

implement the ObjectInput and ObjectOutput

interfaces, enable entire objects to be read from or 

written to a stream.

 To use serialization with files, initialize 

ObjectInputStream and 

ObjectOutputStream objects with 

FileInputStream and FileOutputStream
objects. 



 ObjectOutput interface method writeObject takes 

an Object as an argument and writes its information to an 

OutputStream. 

 A class that implements ObjectOutput (such as 

ObjectOutputStream) declares this method and 

ensures that the object being output implements 

Serializable. 

 ObjectInput interface method readObject reads and 

returns a reference to an Object from an InputStream. 

 After an object has been read, its reference can be cast to the 

object’s actual type. 



 Objects of classes that implement interface Serializable

can be serialized and deserialized with 

ObjectOutputStreams and ObjectInputStreams.

 Interface Serializable is a tagging interface. 

 It does not contain methods.

 A class that implements Serializable is tagged as being a 

Serializable object. 

 An ObjectOutputStream will not output an object unless

it is a Serializable object.











 In a class that implements Serializable, every 
variable must be Serializable.

 Any one that is not must be declared transient so it 
will be ignored during the serialization process.

 All primitive-type variables are serializable.

 For reference-type variables, check the class’s 
documentation (and possibly its superclasses) to ensure 
that the type is Serializable. 



















 The program in Figs. 17.19–17.20 reads records from a 

file created by the program in Section 17.6.1 and 

displays the contents. 













 ObjectInputStream method readObject reads 

an Object from a file. 

 Method readObject throws an EOFException if 

an attempt is made to read beyond the end of the file. 

 Method readObject throws a 

ClassNotFoundException if the class for the 

object being read cannot be located. 



 Class JFileChooser displays a dialog that enables 

the user to easily select files or directories. 



















 JFile-Chooser method setFileSelectionMode specifies 
what the user can select from the fileChooser. 

 JFileChooser static constant 
FILES_AND_DIRECTORIES indicates that files and directories 
can be selected. 

 Other static constants include FILES_ONLY (the default) and
DIRECTORIES_ONLY.

 Method showOpenDialog displays a JFileChooser dialog 
titled Open. 

 A JFileChooser dialog is a modal dialog.

 Method showOpenDialog returns an integer specifying which 
button (Open or Cancel) the user clicked to close the dialog. 

 JFileChooser method getSelectedFile returns the 
selected file as a File object. 



 Reading
◦ Chapter 17


