
(C) 2010 Pearson Education, Inc. All rights reserved.

Assoc. Prof. Marenglen Biba

Up to here

Not included in program

 Java collections framework

◦ prebuilt data structures

◦ interfaces and methods for manipulating those data structures

 A collection is a data structure — actually, an object —

that can hold references to other objects.

◦ Usually, collections contain references to objects that are all of

the same type.

 Figure 20.1 lists some of the interfaces of the

collections framework.

 Package java.util.

 Each primitive type has a corresponding type-wrapper

class (in package java.lang).
◦ Boolean, Byte, Character, Double, Float,

Integer, Long and Short.

 Each type-wrapper class enables you to manipulate

primitive-type values as objects.

 Collections cannot manipulate variables of primitive

types.

◦ They can manipulate objects of the type-wrapper classes,

because every class ultimately derives from Object.

 Each of the numeric type-wrapper classes — Byte,

Short, Integer, Long, Float and Double —

extends class Number.

 The type-wrapper classes are final classes, so you

cannot extend them.

 Primitive types do not have methods, so the methods

related to a primitive type are located in the

corresponding type-wrapper class.

 A boxing conversion converts a value of a primitive type to an object of the
corresponding type-wrapper class.

 An unboxing conversion converts an object of a type-wrapper class to a
value of the corresponding primitive type.

 These conversions can be performed automatically (called autoboxing and
auto-unboxing).

 Example:

◦ // create integerArray
Integer[] integerArray = new Integer[5];

// assign Integer 10 to integerArray[0]
integerArray[0] = 10;

// get int value of Integer
◦ int value = integerArray[0];

 Interface Collection is the root interface from

which interfaces Set, Queue and List are derived.

 Interface Set defines a collection that does not

contain duplicates.

 Interface Queue defines a collection that represents a

waiting line.

 Interface Collection contains bulk operations for

adding, clearing and comparing objects in a

collection.

 A Collection can be converted to an array.

 Interface Collection provides a method that
returns an Iterator object, which allows a
program to walk through the collection and remove
elements from the collection during the iteration.

 Class Collections provides static methods
that search, sort and perform other operations on
collections.

 A List (sometimes called a sequence) is a Collection that
can contain duplicate elements.

 List indices are zero based.

 In addition to the methods inherited from Collection, List
provides methods for manipulating elements via their indices,
manipulating a specified range of elements, searching for
elements and obtaining a ListIterator to access the
elements.

 Interface List is implemented by several classes, including
ArrayList, LinkedList and Vector.

 Autoboxing occurs when you add primitive-type values to
objects of these classes, because they store only references to
objects.

 Class ArrayList and Vector are resizable-array implementations

of List.

 Inserting an element between existing elements of an ArrayList or

Vector is an inefficient operation.

 A LinkedList enables efficient insertion (or removal) of elements in

the middle of a collection.

 The primary difference between ArrayList and Vector is that

Vectors are synchronized by default, whereas ArrayLists are not.

 List method add adds an item to the end of a list.

 List method size returns the number of elements.

 List method get retrieves an individual element’s value from the specified

index.

 Collection method iterator gets an Iterator for a Collection.

 Iterator- method hasNext determines whether a Collection contains

more elements.

◦ Returns true if another element exists and false otherwise.

 Iterator method next obtains a reference to the next element.

 Collection method contains determine whether a Collection

contains a specified element.

 Iterator method remove removes the current element from a

Collection.

 Class Collections provides several high-

performance algorithms for manipulating collection

elements.

 The algorithms (Fig. 20.5) are implemented as

static methods.

 Method sort sorts the elements of a List

◦ The elements must implement the Comparable interface.

◦ The order is determined by the natural order of the elements’

type as implemented by a compareTo method.

◦ Method compareTo is declared in interface

Comparable and is sometimes called the natural

comparison method.

◦ The sort call may specify as a second argument a

Comparator object that determines an alternative ordering

of the elements.

 The Comparator interface is used for sorting a

Collection’s elements in a different order.

 The static Collections method

reverseOrder returns a Comparator object that

orders the collection’s elements in reverse order.

 Figure 20.8 creates a custom Comparator class, named

TimeComparator, that implements interface Comparator to

compare two Time2 objects.

 Class Time2, declared in Fig. 8.5, represents times with hours,

minutes and seconds.

 Class TimeComparator implements interface Comparator, a

generic type that takes one type argument.

 A class that implements Comparator must declare a compare
method that receives two arguments and returns a negative integer if

the first argument is less than the second, 0 if the arguments are

equal or a positive integer if the first argument is greater than the

second.

 Method shuffle randomly orders a List’s

elements.

 Collections method reverse reverses the order of the elements in a

List

 Method fill overwrites elements in a List with a specified value.

 Method copy takes two arguments—a destination List and a source

List.

◦ Each source List element is copied to the destination List.

◦ The destination List must be at least as long as the source List;

otherwise, an IndexOutOfBoundsException occurs.

◦ If the destination List is longer, the elements not overwritten are

unchanged.

 Methods min and max each operate on any Collection.

◦ Method min returns the smallest element in a Collection, and

method max returns the largest element in a Collection.

 Collections method addAll takes two arguments—a

Collection into which to insert the new element(s) and

an array that provides elements to be inserted.

 Collections method frequency takes two arguments

— a Collection to be searched and an Object to be

searched for in the collection.

◦ Method frequency returns the number of times that the second

argument appears in the collection.

 Collections method disjoint takes two

Collections and returns true if they have no elements

in common.

 Student Poll. Figure 7.8 contains an array of survey responses that’s
hard coded into the program.

 Suppose we wish to process survey results that are stored in a file.

 This exercise requires two separate programs. First, create an
application that prompts the user for survey responses and outputs

 each response to a file.

 Use a Formatter to create a file called numbers.txt. Each integer
should be written using method format.

 Then modify the program in Fig. 7.8 to read the survey responses
from numbers.txt.

 The responses should be read from the file by using a Scanner. Use
method nextInt to input one integer at a time from the file.

 The program should continue to read responses until it reaches the
end of the file. The results should be output to the text file
"output.txt".

 Figure 7.8 uses arrays to summarize the results of data
collected in a survey:
◦ Forty students were asked to rate the
quality of the food in the student
cafeteria on a scale of 1 to 10 (where 1
means awful and 10 means excellent). Place
the 40 responses in an integer array, and
summarize the results of the poll.

 Array responses is a 40-element int array of the
survey responses.

 11-element array frequency counts the number of
occurrences of each response (1 to 10).
◦ Each element is initialized to zero by default.
◦ We ignore frequency[0].

(C) 2010 Pearson Education, Inc. All
rights reserved.

 End of the course

 Hope you have enjoyed the course

 Good luck and have fun!

