
(C) 2010 Pearson Education, Inc. All rights reserved.

Assoc. Prof. Marenglen Biba

Up to here

Not included in program

 Java collections framework

◦ prebuilt data structures

◦ interfaces and methods for manipulating those data structures

 A collection is a data structure — actually, an object —

that can hold references to other objects.

◦ Usually, collections contain references to objects that are all of

the same type.

 Figure 20.1 lists some of the interfaces of the

collections framework.

 Package java.util.

 Each primitive type has a corresponding type-wrapper

class (in package java.lang).
◦ Boolean, Byte, Character, Double, Float,

Integer, Long and Short.

 Each type-wrapper class enables you to manipulate

primitive-type values as objects.

 Collections cannot manipulate variables of primitive

types.

◦ They can manipulate objects of the type-wrapper classes,

because every class ultimately derives from Object.

 Each of the numeric type-wrapper classes — Byte,

Short, Integer, Long, Float and Double —

extends class Number.

 The type-wrapper classes are final classes, so you

cannot extend them.

 Primitive types do not have methods, so the methods

related to a primitive type are located in the

corresponding type-wrapper class.

 A boxing conversion converts a value of a primitive type to an object of the
corresponding type-wrapper class.

 An unboxing conversion converts an object of a type-wrapper class to a
value of the corresponding primitive type.

 These conversions can be performed automatically (called autoboxing and
auto-unboxing).

 Example:

◦ // create integerArray
Integer[] integerArray = new Integer[5];

// assign Integer 10 to integerArray[0]
integerArray[0] = 10;

// get int value of Integer
◦ int value = integerArray[0];

 Interface Collection is the root interface from

which interfaces Set, Queue and List are derived.

 Interface Set defines a collection that does not

contain duplicates.

 Interface Queue defines a collection that represents a

waiting line.

 Interface Collection contains bulk operations for

adding, clearing and comparing objects in a

collection.

 A Collection can be converted to an array.

 Interface Collection provides a method that
returns an Iterator object, which allows a
program to walk through the collection and remove
elements from the collection during the iteration.

 Class Collections provides static methods
that search, sort and perform other operations on
collections.

 A List (sometimes called a sequence) is a Collection that
can contain duplicate elements.

 List indices are zero based.

 In addition to the methods inherited from Collection, List
provides methods for manipulating elements via their indices,
manipulating a specified range of elements, searching for
elements and obtaining a ListIterator to access the
elements.

 Interface List is implemented by several classes, including
ArrayList, LinkedList and Vector.

 Autoboxing occurs when you add primitive-type values to
objects of these classes, because they store only references to
objects.

 Class ArrayList and Vector are resizable-array implementations

of List.

 Inserting an element between existing elements of an ArrayList or

Vector is an inefficient operation.

 A LinkedList enables efficient insertion (or removal) of elements in

the middle of a collection.

 The primary difference between ArrayList and Vector is that

Vectors are synchronized by default, whereas ArrayLists are not.

 List method add adds an item to the end of a list.

 List method size returns the number of elements.

 List method get retrieves an individual element’s value from the specified

index.

 Collection method iterator gets an Iterator for a Collection.

 Iterator- method hasNext determines whether a Collection contains

more elements.

◦ Returns true if another element exists and false otherwise.

 Iterator method next obtains a reference to the next element.

 Collection method contains determine whether a Collection

contains a specified element.

 Iterator method remove removes the current element from a

Collection.

 Class Collections provides several high-

performance algorithms for manipulating collection

elements.

 The algorithms (Fig. 20.5) are implemented as

static methods.

 Method sort sorts the elements of a List

◦ The elements must implement the Comparable interface.

◦ The order is determined by the natural order of the elements’

type as implemented by a compareTo method.

◦ Method compareTo is declared in interface

Comparable and is sometimes called the natural

comparison method.

◦ The sort call may specify as a second argument a

Comparator object that determines an alternative ordering

of the elements.

 The Comparator interface is used for sorting a

Collection’s elements in a different order.

 The static Collections method

reverseOrder returns a Comparator object that

orders the collection’s elements in reverse order.

 Figure 20.8 creates a custom Comparator class, named

TimeComparator, that implements interface Comparator to

compare two Time2 objects.

 Class Time2, declared in Fig. 8.5, represents times with hours,

minutes and seconds.

 Class TimeComparator implements interface Comparator, a

generic type that takes one type argument.

 A class that implements Comparator must declare a compare
method that receives two arguments and returns a negative integer if

the first argument is less than the second, 0 if the arguments are

equal or a positive integer if the first argument is greater than the

second.

 Method shuffle randomly orders a List’s

elements.

 Collections method reverse reverses the order of the elements in a

List

 Method fill overwrites elements in a List with a specified value.

 Method copy takes two arguments—a destination List and a source

List.

◦ Each source List element is copied to the destination List.

◦ The destination List must be at least as long as the source List;

otherwise, an IndexOutOfBoundsException occurs.

◦ If the destination List is longer, the elements not overwritten are

unchanged.

 Methods min and max each operate on any Collection.

◦ Method min returns the smallest element in a Collection, and

method max returns the largest element in a Collection.

 Collections method addAll takes two arguments—a

Collection into which to insert the new element(s) and

an array that provides elements to be inserted.

 Collections method frequency takes two arguments

— a Collection to be searched and an Object to be

searched for in the collection.

◦ Method frequency returns the number of times that the second

argument appears in the collection.

 Collections method disjoint takes two

Collections and returns true if they have no elements

in common.

 Student Poll. Figure 7.8 contains an array of survey responses that’s
hard coded into the program.

 Suppose we wish to process survey results that are stored in a file.

 This exercise requires two separate programs. First, create an
application that prompts the user for survey responses and outputs

 each response to a file.

 Use a Formatter to create a file called numbers.txt. Each integer
should be written using method format.

 Then modify the program in Fig. 7.8 to read the survey responses
from numbers.txt.

 The responses should be read from the file by using a Scanner. Use
method nextInt to input one integer at a time from the file.

 The program should continue to read responses until it reaches the
end of the file. The results should be output to the text file
"output.txt".

 Figure 7.8 uses arrays to summarize the results of data
collected in a survey:
◦ Forty students were asked to rate the
quality of the food in the student
cafeteria on a scale of 1 to 10 (where 1
means awful and 10 means excellent). Place
the 40 responses in an integer array, and
summarize the results of the poll.

 Array responses is a 40-element int array of the
survey responses.

 11-element array frequency counts the number of
occurrences of each response (1 to 10).
◦ Each element is initialized to zero by default.
◦ We ignore frequency[0].

(C) 2010 Pearson Education, Inc. All
rights reserved.

 End of the course

 Hope you have enjoyed the course

 Good luck and have fun!

