Lesson 11 - Part ||
Generic Collections

Assoc. Prof. Marenglen Biba

In this Chapter you'll learn:

m What collections are.

m To use class Arrays for array manipulations.

m To form linked data structures using references, self-referential classes and recursion.

m The type-wrapper classes that enable programs to process primitive data values as objects.
m To use the collections framework (prebuilt data structure) implementations.

m To use collections framework methods (such as search, sort and fi11) to manipulate
collections.

m To use the collections framework interfaces to program with collections polymorphically.
m To use iterators to “walk through™ a collection.
m To use persistent hash tables manipulated with objects of class Properties.

m To use synchronization and modifiability wrappers.

20.1 Introduction

20.2 Collections Overview

20.3 Type-Wrapper Classes for Primitive Types

20.4 Autoboxing and Auto-Unboxing

20.5 Interface ColTlection and Class Collections
20.6 Lists

20.6.1 ArrayList and Iterator
20.6.7Z LinkedList

20.7 Collections Methods

20.7.1 Method sort

20.7.2 Method shuffle

20.7.3 Methods reverse, fill, copy, max and min
20.7.4 Method binarySearch

20.7.5 Methods addA11. frequency and disjoint

Up to here

20.8 Stack Class of Package java.utiT

20.9 Class PriorityQueue and Interface Queue
20.10 Sets

20.11 Maps

20.12Properties Class

20.13 Synchronized Collections

20.14 Unmodifiable Collections

20.15 Abstract Implementations

20.16 Wrap-Up \

Not included in program

20.1 Introduction

» Java collections framework
o prebuilt data structures
> Interfaces and methods for manipulating those data structures

20.2 Collections Overview

» A collection iIs a data structure — actually, an object —

that can hold references to other objects.
> Usually, collections contain references to objects that are all of

the same type.
» Figure 20.1 lists some of the interfaces of the

collections framework.
» Package java.util.

Interface

Description

Collection

Set
List
Map

Queue

The root interface in the collections hierarchy from which interfaces Set,
Queue and List are derived.

A collection that does not contain duplicates.
An ordered collection that can contain duplicate elements.
Associates keys to values and cannot contain duplicate keys.

Typically a first-in, first-out collection that models a waiting line; other
orders can be specified.

Fig. 20.1 | Some collections framework interfaces.

20.3 Type-Wrapper Classes for Primitive
Types

» Each primitive type has a corresponding type-wrapper

class (in package java. lang).

° Boolean, Byte, Character, Double, Float,
Integer, Long and Short.

» Each type-wrapper class enables you to manipulate
primitive-type values as objects.

» Collections cannot manipulate variables of primitive
types.

> They can manipulate objects of the type-wrapper classes,
because every class ultimately derives from Object.

20.3 Type-Wrapper Classes for Primitive
Types (cont.)
» Each of the numeric type-wrapper classes — By te,

Short, Integer, Long, Float and Double
extends class Number.

» The type-wrapper classes are final classes, so you
cannot extend them.

» Primitive types do not have methods, so the methods
related to a primitive type are located in the
corresponding type-wrapper class.

20.4 Autoboxing and Auto-Unboxing

» A boxing conversion converts a value of a primitive type to an object of the
corresponding type-wrapper class.

» An unboxing conversion converts an object of a type-wrapper class to a
value of the corresponding primitive type.

» These conversions can be performed automatically (called autoboxing and
auto-unboxing).

» Example:

- // create integerArray
Integer[] integerArray = new Integer[5];

// assign Integer 10 to integerArray[O]
integerArray[0] = 10;

// get int value of Integer
> int value = integerArray[O];

20.5 Interface Col lection and Class
Collections

» Interface Collection IS the root interface from
which interfaces Set, Queue and L1st are derived.

» Interface Set defines a collection that does not
contain duplicates.

» Interface Queue defines a collection that represents a
waiting line.

» Interface Col 1ection contains bulk operations for

adding, clearing and comparing objects in a
collection.

20.5 Interface Col lection and Class
Collections
» ACol lection can be converted to an array.

» Interface Col lection provides a method that
returns an Iterator object, which allows a
program to walk through the collection and remove
elements from the collection during the iteration.

» Class Collections provides static methods
that search, sort and perform other operations on

collections.

20.6 Lists

» AL1st (sometimes called a sequence) isa Col lection that
can contain duplicate elements.

» Li1st indices are zero based.

» In addition to the methods inherited from Col lection, L1st
provides methods for manipulating elements via their indices,
manipulating a specified range of elements, searching for
elements and obtaininga ListIterator to access the
elements.

» Interface L1st is implemented by several classes, including
ArrayList, LinkedList and Vector.

» Autoboxing occurs when you add primitive-type values to
objects of these classes, because they store only references to
objects.

20.6 Lists (cont.)

» Class ArrayList and Vector are resizable-array implementations
of L1st.

» Inserting an element between existing elements of an ArrayList or
Vector is an inefficient operation.

» ALinkedL1st enables efficient insertion (or removal) of elements in
the middle of a collection.

» The primary difference between ArrayList and Vector is that
Vectors are synchronized by default, whereas ArrayL1sts are not.

20.6.1 ArrayList and Iterator

» List method add adds an item to the end of a list.
» List method size returns the number of elements.

» List method get retrieves an individual element’s value from the specified
Index.

» Collectionmethod iterator getsan Iterator foraCollection.

» Iterator- method hasNext determines whether a Col1lection contains
more elements.

> Returns true if another element exists and false otherwise.
» Iterator method next obtains a reference to the next element.

» Collection method contains determine whethera Collection
contains a specified element.

» Iterator method remove removes the current element from a
collection.

ooo~NONGKNbD WN =—

// Fig. 20.2: CollectionTest.java

// Collection interface demonstrated via an ArraylList object.
import
import
import
import

public

{

java.util.List;
java.util.ArraylList;
java.util.Collection;
java.util.Iterator;

class CollectionTest

pubTic static void main(String[] args)

{

// add elements in colors array to 1list

String[] colors = { "MAGENTA", "RED", "WHITE"™, "BLUE", "CYAN" };

List< String > list = new ArraylList< String >(); =

for (String color : colors)
list.add(color); // adds color to end of list

// add elements in removeColors array to removelList
String[] removeColors = { "RED", "WHITE", "BLUE" };
List< String > removelList = new ArraylList< String >();

Good practice to
reference a collection
via an interface-type
variable—easier to
change the collection
later

Fig. 20.2 | Collection interface demonstrated via an ArrayList object. (Part | of

3.)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

for (String color : removeColors)
removelList.add(color);

// output Tist contents
System.out.printin("ArraylList: ");

for (int count = 0; count < list.size(); count++)
System.out.printf("%s ", Tist.get(count));

// remove from Tist the colors contained in removelList
removeColors(1ist, removelList);

// output Tist contents

System.out.printin("\n\nArrayList after calling removeColors:

for (String color : Tist)
System.out.printf("%s "
} // end main

, color);

Fig. 20.2 | Collection interface demonstrated via an ArrayList object. (Part 2 of

3)

Method works with
any Collection

42 // remove colors specified in collection2 from collectionl
43 private static void removeColors(Collection< String > collectionl, «—
44 Collection< String > collection2)

45 {

46 // get 1iterator

47 Iterator< String > iterator = collectionl.iterator();
48

49 // loop while collection has items

50 while (iterator.hasNext())

51 {

52 if (collection2.contains(iterator.next()))

53 iterator.remove(); // remove current Color

54 } // end while

55 } // end method removeColors

56 } // end class CollectionTest

ArraylList:

MAGENTA RED WHITE BLUE CYAN

ArraylList after calling removeColors:
MAGENTA CYAN

Fig. 20.2 | Collection interface demonstrated via an ArrayList object. (Part 3 of

3)

a4

Common Programming Error 20.1

If a collection is modified by one of its methods after an
iterator is created for that collection, the iterator imme-
diately becomes invalid—operations performed with the
iterator after this point throw ConcurrentModifica-
tionExceptions. For this reason, iterators are said to

be “fail fast.”

20.7 Collections Methods

» Class Collections provides several high-
performance algorithms for manipulating collection
elements.

» The algorithms (Fig. 20.5) are implemented as
static methods.

sort Sorts the elements of a List.

binarySearch Locates an object in a List.

reverse Reverses the elements of a List.

shuffle Randomly orders a List’s elements.

fi17 Sets every List element to refer to a specified object.

copy Copies references from one List into another.

min Returns the smallest element in a Collection.

max Returns the largest element in a Collection.

addA1l Appends all elements in an array to a Collection.

frequency Calculates how many collection elements are equal to the specified ele-
ment.

disjoint Determines whether two collections have no elements in common.

Fig. 20.5 | Collections methods.

Software Engineering Observation 20.4
The collections framework methods are polymorphic.
That is, each can operate on objects that implement
specific interfaces, regardless of the underlying

implementations.

e
e
Il X

Ny

E S

=

20.7.1 Method sort

» Method sort sorts the elementsof a List
> The elements must implement the Comparable interface.
> The order 1s determined by the natural order of the elements’
type as implemented by a compareTo method.

> Method compareTo is declared in interface
Comparable and is sometimes called the natural
comparison method.

> The sort call may specify as a second argument a
Comparator object that determines an alternative ordering
of the elements.

1 // Fig. 20.6: Sortl.java

2 // Collections method sort.

3 import java.util.List;

4 import java.util.Arrays;

5 dmport java.util.Collections;

6

7 public class Sortl

8 {

9 public static void main(String[] args)

10 {

11 String[] suits = { "Hearts", "Diamonds™, "Clubs™, "Spades" };
12

13 // Create and display a 1ist containing the suits array elements
14 List< String > list = Arrays.aslList(suits); // create List
15 System.out.printf("Unsorted array elements: %s\n", Tist);
16

17 Collections.sort(Tist); // sort ArrayList =

18

19 // output list
20 System.out.printf("Sorted array elements: %s\n", list);
21 } // end main

22 } // end class Sortl

1ist elements must be
Comparable

Fig. 20.6 | Collections method sort. (Part | of 2.)

Unsorted array elements: [Hearts, Diamonds, Clubs, Spades]
Sorted array elements: [Clubs, Diamonds, Hearts, Spades]

Fig. 20.6 | Collections method sort. (Part 2 of 2.)

20.7.1 Method sort (cont.)

» The Comparator interface iIs used for sorting a
Collection’s elements in a different order.

» The static Collections method
reverseOrder returns a Comparator object that

orders the collection’s elements 1n reverse order.

ooo~NONGKNbD WN =—

23

// Fig. 20.7: Sort2.java

// Using a Comparator object with method sort.
import java.util.List;

import java.util.Arrays;

import java.util.Collections;

public class Sort2

{

public static void main(String[] args)

{

String[] suits = { "Hearts", "Diamonds™, "Clubs™, "Spades" };

// Create and display a 1ist containing the suits array elements
List< String > list = Arrays.aslList(suits); // create List
System.out.printf("Unsorted array elements: %s\n", Tist);

// sort in descending order using a comparator
Collections.sort(list, Collections.reverseOrder()); =

// output List elements
System.out.printf("Sorted Tist elements: %s\n", Tist);

} // end main
} // end class Sort2

Comparator reverses
the sort order

Fig. 20.7 | Collections method sort with a Comparator object. (Part | of 2.)

Unsorted array elements: [Hearts, Diamonds, Clubs, Spades]
Sorted 1ist elements: [Spades, Hearts, Diamonds, Clubs]

Fig. 20.7 | Collections method sort with a Comparator object. (Part 2 of 2.)

20.7.1 Method sort (cont.)

» Figure 20.8 creates a custom Comparator class, named
TimeComparator, that implements interface Comparator to
compare two Time2 objects.

» Class T1me2, declared in Fig. 8.5, represents times with hours,
minutes and seconds.

» Class TimeComparator implements interface Comparator, a
generic type that takes one type argument.

» Aclass that implements Comparator must declare a compare
method that receives two arguments and returns a negative integer if
the first argument is less than the second, O if the arguments are
equal or a positive integer if the first argument is greater than the
second.

Custom Comparator
for Time2 objects

I // Fig. 20.8: TimeComparator.java

2 // Custom Comparator class that compares two Time2 objects.

3 dimport java.util.Comparator;

4

5 public class TimeComparator implements Comparator< Time2 > =

6 {

7 public int compare(Time2 timel, Time2 time2)

8 {

9 int hourCompare = timel.getHour() - time2.getHour(); // compare hour
10

11 // test the hour first

12 if (hourCompare != 0)

13 return hourCompare;

14

15 int minuteCompare =

16 timel.getMinute() - time2.getMinute(); // compare minute
17

18 // then test the minute

19 if (minuteCompare != 0)
20 return minuteCompare;
21
22 int secondCompare =
23 timel.getSecond() - time2.getSecond(); // compare second

Fig. 20.8 | Custom Comparator class that compares two Time2 objects. (Part | of 2.)

24
25 return secondCompare; // return result of comparing seconds

26 } // end method compare
27 } // end class TimeComparator

Fig. 20.8 | Custom Comparator class that compares two Time2 objects. (Part 2 of 2.)

I // Fig. 20.9: Sort3.java

2 // Collections method sort with a custom Comparator object.
3 dimport java.util.List;

4 dimport java.util.ArraylList;

5 1import java.util.Collections;

6

7 public class Sort3

8 {

9 public static void main(String[] args)

10 {

11 List< Time2 > Tist = new ArraylList< Time2 >(); // create List
12

13 Tist.add(new Time2(6, 24, 34));

14 Tist.add(new Time2(18, 14, 58));

15 Tist.add(new Time2(6, 05, 34));

16 Tist.add(new Time2(12, 14, 58));

17 Tist.add(new Time2(6, 24, 22));

18

19 // output List elements
20 System.out.printf("Unsorted array elements:\n%s\n", 1list);
21

Fig. 20.9 | Collections method sort with a custom Comparator object. (Part |
of 2.)

22 // sort in order using a comparator

23 Collections.sort(list, new TimeComparator()); =

24

25 // output List elements

26 System.out.printf("Sorted list elements:\n%s\n", list);
27 } // end main

28 1} // end class Sort3

Unsorted array elements:

[6:24:34 AM, 6:14:58 PM, 6:05:34 AM, 12:14:58 PM, 6:24:22 AM]
Sorted Tist elements:

[6:05:34 AM, 6:24:22 AM, 6:24:34 AM, 12:14:58 PM, 6:14:58 PM]

Time2 objects could
not be sorted before
creating the
TimeComparator;
technique can be used
to make objects of
almost any class
sortable

Fig. 20.9 | Collections method sort with a custom Comparator object. (Part 2
of 2.)

7.2 Method shuffle

» Method shuffle randomly ordersa L1st’s
elements.

I // Fig. 20.10: DeckOfCards.java

2 // Card shuffling and dealing with Collections method shuffle.
3 import java.util.List;

4 import java.util.Arrays;

5 import java.util.Collections;

6

7 // class to represent a Card in a deck of cards

8 class Card

9 {

10 public static enum Face { Ace, Deuce, Three, Four, Five, Six,
11 Seven, Eight, Nine, Ten, Jack, Queen, King };

12 public static enum Suit { Clubs, Diamonds, Hearts, Spades };
13

14 private final Face face; // face of card

15 private final Suit suit; // suit of card

16

17 // two-argument constructor

18 public Card(Face cardFace, Suit cardSuit)

19 {
20 face = cardFace; // initialize face of card
21 suit = cardSuit; // initialize suit of card
22 } // end two-argument Card constructor

Fig. 20.10 | Card shuffling and dealing with Col1ections method shuffle. (Part
| of 5.)

23

24 // return face of the card

25 public Face getFace()

26 {

27 return face;

28 } // end method getFace

29

30 // return suit of Card

31 public Suit getSuit()

32 {

33 return suit;

34 } // end method getSuit

35

36 // return String representation of Card
37 public String toString()

38 {

39 return String.format("%s of %s", face, suit);
40 } // end method toString

41 } // end class Card

42

Fig. 20.10 | Card shuffling and dealing with Col1ections method shuffle. (Part
20f5)

43 // class DeckOfCards declaration
44 public class DeckOfCards

45 {

46 private List< Card > list; // declare List that will store Cards
47

48 // set up deck of Cards and shuffle

49 public DeckOfCards()

50 {

51 Card[] deck = new Card[52];

52 int count = 0; // number of cards

53

54 // populate deck with Card objects

55 for (Card.Suit suit : Card.Suit.values())

56 {

57 for (Card.Face face : Card.Face.values())
58 {

59 deck[count] = new Card(face, suit);
60 ++count;

61 } // end for

62 } // end for

63

Fig. 20.10 | Card shuffling and dealing with ColTections method shuffle. (Part
30of 5)

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

list = Arrays.asList(deck); // get List

Collections.shuffle(1ist); // shuffle deck =
} // end DeckOfCards constructor

// output deck
public void printCards()
{
// display 52 cards in two columns
for (int i = 0; i < list.size(); i++)
System.out.printf("%-19s%s", 1ist.get(i),
((Ci+1)%4==0)7?"\n":"");
} // end method printCards

public static void main(String[] args)
{
DeckOfCards cards = new DeckOfCards();
cards.printCards();
} // end main
} // end class DeckOfCards

Shuffles the contents
of a collection

Fig. 20.10 | Card shuffling and dealing with Col1ections method shuffle. (Part

4 0f 5))

Deuce of Clubs
Three of Diamonds
Three of Spades
Ten of Spades
Nine of Clubs

Ten of Clubs
Queen of Diamonds
Ace of Spades
Seven of Diamonds
Seven of Spades
Eight of Clubs
Six of Clubs

Five of Spades

Six of Spades
Five of Clubs
Six of Diamonds
King of Diamonds
Ten of Diamonds
Five of Hearts
Ace of Diamonds
Deuce of Spades
Three of Hearts
King of Hearts
Three of Clubs
Nine of Spades
King of Spades

Nine of Diamonds
Deuce of Diamonds
King of Clubs
Eight of Spades
Eight of Diamonds
Ace of Clubs

Four of Clubs

Ace of Hearts
Four of Spades
Seven of Hearts
Queen of Clubs
Four of Hearts
Jack of Spades

Ten of Hearts
Seven of Clubs
Jack of Hearts
Six of Hearts
Eight of Hearts
Deuce of Hearts
Nine of Hearts
Jack of Diamonds
Four of Diamonds
Five of Diamonds
Queen of Spades
Jack of Clubs
Queen of Hearts

Fig. 20.10 | Card shuffling and dealing with Col1ections method shuffle. (Part

50f5))

20.7.3 Methods reverse, fi11, copy,
max and min

» Collections method reverse reverses the order of the elements in a
List
» Method £i11 overwrites elements in a L1 st with a specified value.

» Method copy takes two arguments—a destination L1 st and a source
List.

> Each source L1st element is copied to the destination L1st.

> The destination L1 st must be at least as long as the source L15st;
otherwise, an IndexOutOfBoundsException occurs.

> If the destination L1 st is longer, the elements not overwritten are
unchanged.

» Methods min and max each operate on any Collection.

o Method m1 n returns the smallest element ina Collection, and
method max returns the largest elementina Col lection.

1 // Fig. 20.11: Algorithmsl.java

2 // Collections methods reverse, fill, copy, max and min.

3 import java.util.List;

4 import java.util.Arrays;

5 1import java.util.Collections;

6

7 public class Algorithmsl

8 {

9 public static void main(String[] args)

10 {

11 // create and display a List< Character >

12 Character[] Tetters = { 'P", 'C', "M' };

13 List< Character > 1list = Arrays.asList(letters); // get List
14 System.out.printin("Tist contains: ");

15 output(Tist);

16

17 // reverse and display the List< Character >

18 Collections.reverse(list); // reverse order the elements
19 System.out.printin("\nAfter calling reverse, list contains: ");
20 output(Tist);
21

Fig. 20.11 | Collections methods reverse, fi11, copy, max and min. (Part | of
3.)

22 // create copylList from an array of 3 Characters

23 Character[] lettersCopy = new Character[3];

24 List< Character > copylList = Arrays.aslList(TettersCopy);
25

26 // copy the contents of 1list into copylList

27 Collections.copy(copylList, list);

28 System.out.printin("\nAfter copying, copylList contains: ");
29 output(copylList);

30

31 // fill 1ist with Rs

32 Collections.fi11(1ist, 'R");

33 System.out.printin("\nAfter calling fi11, Tist contains: ");
34 output(1ist);

35 } // end main

36

37 // output List information

38 private static void output(List< Character > 1listRef)

39 {

40 System.out.print("The Tlist is: ");

41

42 for (Character element : TlistRef)

43 System.out.printf("%s ", element);

Fig. 20.11 | Collections methods reverse, fi11, copy, max and min. (Part 2 of
3.)

44

45 System.out.printf("\nMax: %s", Collections.max(listRef));
46 System.out.printf(" Min: %s\n", Collections.min(TistRef));
47 } // end method output

48 } // end class Algorithmsl

Tist contains:
The Tist is: P C M
Max: P Min: C

After calling reverse, list contains:
The 1ist is: M C P
Max: P Min: C

After copying, copylList contains:
The 1ist is: M C P
Max: P Min: C

After calling fi1l, 1ist contains:
The Tist is: R R R
Max: R Min: R

Fig. 20.11 | Collections methods reverse, fi11, copy, max and min. (Part 3 of
3)

20.7.5 Methods addAll, frequency and
disjoint
» Collections method addAl1l takes two arguments—a
Col lection into which to insert the new element(s) and
an array that provides elements to be inserted.
» Collections method frequency takes two arguments

—acCollection to be searched and an Object to be

searched for in the collection.
- Method frequency returns the number of times that the second
argument appears in the collection.

» Collections method disjoint takes two
Col lections and returns true if they have no elements

INn common.

I // Fig. 20.13: Algorithms2.java

2 // Collections methods addAl11, frequency and disjoint.

3 import java.util.ArraylList;

4 dimport java.util.List;

5 import java.util.Arrays;

6 import java.util.Collections;

7

8 public class Algorithms2

9 {

10 pubTic static void main(String[] args)

11 {

12 // initialize Tistl and 1ist2

13 String[] colors = { "red"”, "white", "yellow", "blue" };
14 List< String > listl = Arrays.asList(colors);

15 ArraylList< String > 1list2 = new ArraylList< String >();
16

17 Tist2.add("black™); // add "black” to the end of Tist2
18 Tist2.add("red"); // add "red" to the end of Tist2

19 Tist2.add("green"); // add "green" to the end of Tist2
20
21 System.out.print("Before addAll, list2 contains: ");
22

Fig. 20.13 | Collections methods addA11, frequency and disjoint. (Part | of
3.)

23 // display elements in 1list2

24 for (String s : 1ist2)

25 System.out.printf("%s ", s);

26

27 Collections.addA11(1ist2, colors); // add colors Strings to Tist2
28

29 System.out.print("\nAfter addAll, Tist2 contains: ");
30

31 // display elements in Tist2

32 for (String s : 1list2)

33 System.out.printf("%s ", s);

34

35 // get frequency of "red"

36 int frequency = Collections.frequency(list2, "red”);
37 System.out.printf(

38 "\nFrequency of red in 1list2: %d\n", frequency);

39

40 // check whether 1istl and 1ist2 have elements in common
41 boolean disjoint = Collections.disjoint(1listl, 1list2);
42

43 System.out.printf("lTistl and 1list2 %s elements in common\n'",
44 (disjoint ? "do not have” : "have"));

45 } // end main

46 } // end class Algorithms2

Fig. 20.13 | Collections methods addA11, frequency and disjoint. (Part 2 of
3)

Before addAl11, 1ist2 contains: black red green

After addAl11, Tist2 contains: black red green red white yellow blue
Frequency of red in list2: 2

Tistl and 1ist2 have elements in common

Fig. 20.13 | Collections methods addA11, frequency and disjoint. (Part 3 of
3.)

Exercise 1

» Student Poll. Figure 7.8 contains an array of survey responses that’s
hard coded into the program.

» Suppose we wish to process survey results that are stored in a file.

» This exercise requires two separate programs. First, create an
application that prompts the user for survey responses and outputs

» each response to a file.

» Use a Formatter to create a file called numbers.txt. Each integer
should be written using method format.

» Then modify the program in Fig. 7.8 to read the survey responses
from numbers.txt.

» The responses should be read from the file by using a Scanner. Use
method nextint to input one integer at a time from the file.

» The program should continue to read responses until it reaches the
end of the file. The results should be output to the text file
"output.txt”.

From Lesson 5 Part-2

» Figure 7.8 uses arrays to summarize the results of data
collected In a survey:

o Forty students were asked to rate the
quality of the food in the student
cafeteria on a scale of 1 to 10 (where 1
means awful and 10 means excellent). Place
the 40 responses in an integer array: and
summarize the results of the poll-.

» Array responses Is a40-element 1nt array of the

survey responses.
» 11-element array frequency counts the number of
occurrences of each response (1 to 10).

- Each element is initialized to zero by default.
- We ignore frequency[0].

End of Class

» End of the course
» Hope you have enjoyed the course

» Good luck and have fun!

(C) 2010 Pearson Education, Inc. All
rights reserved.

