
(C) 2010 Pearson Education, Inc. All rights reserved.

Assoc. Prof. Dr. Marenglen Biba

 Java application

 A computer program that executes when you use the java

command to launch the Java Virtual Machine (JVM).

 Sample program in Fig. 2.1 displays a line of text.

 Comments
// Fig. 2.1: Welcome1.java

 // indicates that the line is a comment.

 Used to document programs and improve their readability.

 Compiler ignores comments.

 A comment that begins with // is an end-of-line comment—it

terminates at the end of the line on which it appears.

 Traditional comment, can be spread over several lines as in
/* This is a traditional comment. It

can be split over multiple lines */

 This type of comment begins with /* and ends with */.

 All text between the delimiters is ignored by the compiler.

 Class declaration
public class Welcome1

 Every Java program consists of at least one class that you

define.

 class keyword introduces a class declaration and is

immediately followed by the class name.

 Keywords (Appendix C) are reserved for use by Java and are

always spelled with all lowercase letters.

 Class names

 By convention, begin with a capital letter and capitalize the

first letter of each word they include (e.g.,

SampleClassName).

 A class name is an identifier—a series of characters consisting
of letters, digits, underscores (_) and dollar signs ($) that does

not begin with a digit and does not contain spaces.

 Java is case sensitive—uppercase and lowercase letters are

distinct—so a1 and A1 are different (but both valid)

identifiers.

 Braces
 A left brace, {, begins the body of every class declaration.

 A corresponding right brace, }, must end each class

declaration.

 Code between braces should be indented.

 This indentation is one of the spacing conventions mentioned

earlier.

 Declaring the main Method
public static void main(String[] args)

 Starting point of every Java application.

 Parentheses after the identifier main indicate that it’s a
program building block called a method.

 Java class declarations normally contain one or more methods.

 main must be defined as shown; otherwise, the JVM will not
execute the application.

 Methods perform tasks and can return information when they
complete their tasks.

 Keyword void indicates that this method will not return any
information.

 Body of the method declaration
 Enclosed in left and right braces.

 Statement
System.out.println("Welcome to Java Programming!");

 Instructs the computer to perform an action

 Print the string of characters contained between the double
quotation marks.

 A string is sometimes called a character string or a string
literal.

 White-space characters in strings are not ignored by the
compiler.

 System.out object

 Standard output object.

 Allows Java applications to display strings in the command

window from which the Java application executes.

 System.out.println method

 Displays (or prints) a line of text in the command window.

 The string in the parentheses is the argument to the method.

 Positions the output cursor at the beginning of the next line in

the command window.

 Most statements end with a semicolon.

 Compiling and Executing Your First Java Application

 Open a command window and change to the directory where the

program is stored.

 Many operating systems use the command cd to change directories.

 To compile the program, type

javac Welcome1.java

 If the program contains no syntax errors, preceding command creates

a.class file (known as the class file) containing the platform-

independent Java bytecodes that represent the application.

 When we use the java command to execute the application on a

given platform, these bytecodes will be translated by the JVM into

instructions that are understood by the underlying operating system.

 To execute the program, type java Welcome1.

 Launches the JVM, which loads the .class file for

class Welcome1.

 Note that the .class file-name extension is omitted

from the preceding command; otherwise, the JVM will

not execute the program.

 The JVM calls method main to execute the program.

 Class Welcome2, shown in Fig. 2.3, uses two
statements to produce the same output as that shown in
Fig. 2.1.

 New and key features in each code listing are
highlighted.

 System.out’s method print displays a string.

 Unlike println, print does not position the output
cursor at the beginning of the next line in the command
window.
 The next character the program displays will appear

immediately after the last character that print displays.

 Newline characters indicate to System.out’s print and
println methods when to position the output cursor at
the beginning of the next line in the command window.

 Newline characters are white-space characters.

 The backslash (\) is called an escape character.
 Indicates a “special character”

 Backslash is combined with the next character to form an
escape sequence.

 The escape sequence \n represents the newline character.

 Complete list of escape sequences
java.sun.com/docs/books/jls/third_edition/html/
lexical.html#3.10.6.

 System.out.printf method
 f means “formatted”
 displays formatted data

 Multiple method arguments are placed in a comma-separated list.
 Java allows large statements to be split over many lines.

 Cannot split a statement in the middle of an identifier or string.

 Method printf’s first argument is a format string
 May consist of fixed text and format specifiers.
 Fixed text is output as it would be by print or println.
 Each format specifier is a placeholder for a value and specifies the type

of data to output.

 Format specifiers begin with a percent sign (%) and are followed
by a character that represents the data type.

 Format specifier %s is a placeholder for a string.

 Integers

 Whole numbers, like –22, 7, 0 and 1024)

 Programs remember numbers and other data in the

computer’s memory and access that data through

program elements called variables.

 The program of Fig. 2.7 demonstrates these concepts.

 import declaration

 Helps the compiler locate a class that is used in this program.

 Rich set of predefined classes that you can reuse rather than

“reinventing the wheel.”

 Classes are grouped into packages—named groups of related

classes—and are collectively referred to as the Java class

library, or the Java Application Programming Interface (Java

API).

 You use import declarations to identify the predefined

classes used in a Java program.

 Variable declaration statement
Scanner input = new Scanner(System.in);

 Specifies the name (input) and type (Scanner) of a variable that
is used in this program.

 Variable
 A location in the computer’s memory where a value can be stored for

use later in a program.

 Must be declared with a name and a type before they can be used.

 A variable’s name enables the program to access the value of the
variable in memory.

 The name can be any valid identifier.

 A variable’s type specifies what kind of information is stored at that
location in memory.

 Scanner
 Enables a program to read data for use in a program.
 Data can come from many sources, such as the user at the keyboard or a

file on disk.
 Before using a Scanner, you must create it and specify the source of

the data.

 The equals sign (=) in a declaration indicates that the variable
should be initialized (i.e., prepared for use in the program) with
the result of the expression to the right of the equals sign.

 The new keyword creates an object.
 Standard input object, System.in, enables applications to read

bytes of information typed by the user.
 Scanner object translates these bytes into types that can be

used in a program.

 Variable declaration statements
int number1; // first number to add
int number2; // second number to add
int sum; // sum of number1 and number2

declare that variables number1, number2 and sum hold

data of type int

 They can hold integer.

 Range of values for an int is –2,147,483,648 to +2,147,483,647.

 Actual int values may not contain commas.

 Several variables of the same type may be declared in one

declaration with the variable names separated by commas.

 Prompt

 Output statement that directs the user to take a specific action.

 System is a class.
 Part of package java.lang.

 Class System is not imported with an import declaration at

the beginning of the program.

 Scanner method nextInt
number1 = input.nextInt(); // read first number from
user

 Obtains an integer from the user at the keyboard.

 Program waits for the user to type the number and press the
Enter key to submit the number to the program.

 The result of the call to method nextInt is placed in
variable number1 by using the assignment operator, =.
 “number1 gets the value of input.nextInt().”

 Operator = is called a binary operator—it has two operands.

 Everything to the right of the assignment operator, =, is always
evaluated before the assignment is performed.

 Arithmetic
sum = number1 + number2; // add numbers

 Assignment statement that calculates the sum of the variables

number1 and number2 then assigns the result to variable sum
by using the assignment operator, =.

 “sum gets the value of number1 + number2.”

 In general, calculations are performed in assignment statements.

 Portions of statements that contain calculations are called

expressions.

 An expression is any portion of a statement that has a value

associated with it.

 Integer formatted output
System.out.printf("Sum is %d\n", sum);

 Format specifier %d is a placeholder for an int value

 The letter d stands for “decimal integer.”

 Variables

 Every variable has a name, a type, a size (in bytes) and a value.

 When a new value is placed into a variable, the new value

replaces the previous value (if any)

 The previous value is lost.

 Arithmetic operators are summarized in Fig. 2.11.

 The asterisk (*) indicates multiplication

 The percent sign (%) is the remainder operator

 The arithmetic operators are binary operators because

they each operate on two operands.

 Integer division yields an integer quotient.

 Any fractional part in integer division is simply discarded (i.e.,

truncated)—no rounding occurs.

 The remainder operator, %, yields the remainder after

division.

 Arithmetic expressions in Java must be written in
straight-line form to facilitate entering programs into
the computer.

 Expressions such as “a divided by b” must be written
as a / b, so that all constants, variables and operators
appear in a straight line.

 Parentheses are used to group terms in expressions in
the same manner as in algebraic expressions.

 If an expression contains nested parentheses, the
expression in the innermost set of parentheses is
evaluated first.

 Rules of operator precedence

 As in algebra, it’s acceptable to place redundant

parentheses (unnecessary parentheses) in an ex-

pression to make the expression clearer.

 Condition
 An expression that can be true or false.

 if selection statement
 Allows a program to make a decision based on a condition’s value.

 Equality operators (== and !=)

 Relational operators (>, <, >= and <=)

 Both equality operators have the same level of precedence,
which is lower than that of the relational operators.

 The equality operators associate from left to right.

 The relational operators all have the same level of
precedence and also associate from left to right.

 An if statement always begins with keyword if,
followed by a condition in parentheses.
 Expects one statement in its body, but may contain multiple

statements if they are enclosed in a set of braces ({}).

 The indentation of the body statement is not required, but it
improves the program’s readability by emphasizing that
statements are part of the body.

 Note that there is no semicolon (;) at the end of the
first line of each if statement.
 Such a semicolon would result in a logic error at execution

time.

 Treated as the empty statement—semicolon by itself.

 Program that calculates the product of three
integers inserted from the user.

 Program that prints the sum, product, difference
and quotient of two numbers inserted from
keyboard.

 Program that determines the largest of two
numbers.

 Program calculates the largest and the smallest of
five integers entered one at a time.

 Program that swaps two numbers using
temporary or third variable

 Program accepts five numbers as input and prints
the number of negatives, positives and zeros.

1. Program that determines if the first number entered is a
multiple of the second number entered. Put the program in
a class called Multiple.

2. Program that determines if sum of the first two numbers
entered is greater or equal than the third number entered.
Put the program in a class called Sum.

3. Program that determines with four entered numbers
whether the product of the first two is smaller than the
division of the last two. Put the program in a class called
Product.

 Java™ How to Program, 9/e
 Chapter 2

(C) 2010 Pearson
Education, Inc. All rights
reserved.

(C) 2010 Pearson
Education, Inc. All rights
reserved.

