Lesson 3
Classes and Objects

Assoc. Prof. Dr. Marenglen Biba

OBJECTIVES

In this chapter you'll learn:

m What classes, objects, methods and instance variables are.

m How to declare a class and use it to create an object.

m How to declare methods in a class to implement the class’s behaviors.

m How to declare instance variables in a class to implement the class’s attributes.

How to call an object’s methods to make those methods perform their tasks.

The differences between instance variables of a class and local variables of a method.

How to use a constructor to ensure that an object’s data is initialized when the object is
created.

m The differences between primitive and reference types.

3.1 Introduction
3.2 Classes, Objects, Methods and Instance Variables
3.3 Declaring a Class with a Method and Instantiating an Object of a Class
3.4 Declaring a Method with a Parameter
3.5 Instance Variables, set Methods and get Methods
3.6 Primitive Types vs. Reference Types
3.7 lInitializing Objects with Constructors
3.8 Floating-Point Numbers and Type doubTe
3.9 (Optional) GUI and Graphics Case Study: Using Dialog Boxes
3.10 Wrap-Up

Laboratory Session: Exercises on classes

3.2 Classes, Objects, Methods and
Instance Variables

» Analogy to help you understand classes and their
contents.

= Suppose you want to drive a car and make it go faster by
pressing down on its accelerator pedal.

= Before you can drive a car, someone has to design it.
= A car typically begins as engineering drawings, similar to the
blueprints used to design a house.

= These include the design for an accelerator pedal to make the
car go faster.

3.2 Classes, Objects, Methods and
Instance Variables (Cont.)

» Analogy to help you understand classes and their contents.

= The pedal “hides” from the driver the complex mechanisms that
actually make the car go faster, just as the brake pedal “hides” the
mechanisms that slow the car and the steering wheel “hides” the
mechanisms that turn the car.

= This enables people with little or no knowledge of how engines work
to drive a car easily.

= Before you can drive a car, it must be built from the engineering
drawings that describe it.

= A completed car has an actual accelerator pedal to make the car go
faster, but even that’s not enough—the car won’t accelerate on its
own, so the driver must press the accelerator pedal.

3.2 Classes, Objects, Methods and
Instance Variables (Cont.)

» Performing a task in a program requires a method.
= The method describes the mechanisms that actually perform its

tasks.
= Hides from its user the complex tasks that it performs, just as

the accelerator pedal of a car hides from the driver the complex
mechanisms of making the car go faster.

» In Java, a class houses a method, just as a car’s
engineering drawings house the design of an

accelerator pedal.
» In a class, you provide one or more methods that are

designed to perform the class’s tasks.

3.2 Classes, Objects, Methods and
Instance Variables (Cont.)

» You must build an object of a class before a program
can perform the tasks the class describes how to do.
= That is one reason Java is known as an object-oriented
programming language.
» When you drive a car, pressing Its gas pedal sends a
message to the car to perform a task—make the car go
faster.

» You send messages to an object—each message Is
Implemented as a method call that tells a method of the
object to perform its task.

3.2 Classes, Objects, Methods and
Instance Variables (Cont.)

» A car has many attributes

= Color, the number of doors, the amount of gas in its tank, its
current speed and its total miles driven.

» Attributes are represented as part of a car’s design in its
engineering diagrams.
» Every car maintains its own attributes.

= Each car knows how much gas is in its own gas tank, but not
how much is in the tanks of other cars.

3.2 Classes, Objects, Methods and
Instance Variables (Cont.)

» An object has attributes that are carried with the object
as 1t’s used 1n a program.
= Specified as part of the object’s class.

= A bank account object has a balance attribute that represents
the amount of money in the account.

= Each bank account object knows the balance in the account it
represents, but not the balances of the other accounts in the
bank.

» Attributes are specified by the class’s Instance
variables.

3.3 Declaring a Class with a Method and
Instantiating an Object of a Class

» Create a new class (GradeBook)
» Use It to create an object.

» Each class declaration that begins with keyword
pub 11 c must be stored in a file that has the same
name as the class and ends with the . java file-name
extension.

» Keyword pub11c is an access modifier.
= Indicates that the class 1s “available to the public”

Common Programming Error 3.1
Declaring more than one pub1ic class in the same file
is a compilation error.

// Fig. 3.1: GradeBook.java
// Class declaration with one method.

public class GradeBook

{
// display a welcome message to the GradeBook user
public void displayMessage()

{ . Performs the task of displaying a
" | " .
System.out.pr1qt1n(Welcome to the Grade Book!"); «— message on the screen: method
} // end method displayMessage .
displayMessage must be called to
} // end class GradeBook :
perform this task

-0 Vo ~NONOBND WN =

Fig. 3.1 | Class declaration with one method.

3.3 Declaring a Class with a Method and
Instantiating an Object of a Class (Cont.)

» The main method is called automatically by the Java
Virtual Machine (JVM) when you execute an application.

» Normally, you must call methods explicitly to tell them to
perform their tasks.

» Apublic is “available to the public”
= |t can be called from methods of other classes.

» The return type specifies the type of data the method returns
after performing its task.

» Return type vo1d indicates that a method will perform a
task but will not return (i.e., give back) any information to
Its calling method when it completes its task.

3.3 Declaring a Class with a Method and
Instantiating an Object of a Class (Cont.)

>
>

>
>

Method name follows the return type.

By convention, method names begin with a lowercase first
letter and subsequent words In the name begin with a
capital letter.

Empty parentheses after the method name indicate that the
method does not require additional information to perform
Its task.

Together, everything in the first line of the method is
typically called the Method header

Every method’s body is delimited by left and right braces.

The method body contains one or more statements that
perform the method’s task.

3.3 Declaring a Class with a Method and
Instantiating an Object of a Class (Cont.)

>
>

Use class GradeBook in an application.

Class GradeBook is not an application because it does not
contain main.

Can’t execute GradeBook; will receive an error message
like:

- Exception in thread "main"
java. lang.NoSuchMethodError: main

Must either declare a separate class that contains a main
method or place a main method in class GradeBook.

To help you prepare for the larger programs, use a separate
class containing method mai n to test each new class.

Some programmers refer to such a class as a driver class.

Voo ~NONUND WN =

13
14
15

// Fig. 3.2: GradeBookTest.java

// Creating a GradeBook object and calling 1ts displayMessage method.

public class GradeBookTest
{
// main method begins program execution
public static void main(String[] args)
{
// create a GradeBook object and assign it to myGradeBook
GradeBook myGradeBook = new GradeBook(); =

// call myGradeBook's displayMessage method
myGradeBook.displayMessage(); =

Creates a GradeBook object and
assigns it to variable myGradeBook

} // end main
1 // end class GradeBookTest

Invokes method displayMessage on
the GradeBook object that was
assigned to variable myGradeBook

Welcome to the Grade Book!

Fig. 3.2 | Creating a GradeBook object and calling its displayMessage method.

3.3 Declaring a Class with a Method and
Instantiating an Object of a Class (Cont.)

» A static method (such as main) is special

= |t can be called without first creating an object of the class in
which the method is declared.

» Typically, you cannot call a method that belongs to
another class until you create an object of that class.
» Declare a variable of the class type.

= Each new class you create becomes a new type that can be
used to declare variables and create objects.

= You can declare new class types as needed; this Is one reason
why Java is known as an extensible language.

3.3 Declaring a Class with a Method and
Instantiating an Object of a Class (Cont.)

» Class Instance creation expression
= Keyword new creates a new object of the class
specified to the right of the keyword.
= Used to initialize a variable of a class type.
= The parentheses to the right of the class name are
required.

= Parentheses in combination with a class name represent
a call to a constructor, which is similar to a method but
IS used only at the time an object is created to initialize
the object’s data.

3.3 Declaring a Class with a Method and
Instantiating an Object of a Class (Cont.)

» Call a method via the class-type variable
= Variable name followed by a dot separator (.), the method
name and parentheses.

= Call causes the method to perform its task.

» Any class can contain a ma1n method.

= The JVM invokes the main method only in the class used to
execute the application.

= |f multiple classes that contain ma1in, then one that is invoked
is the one in the class named in the Java command.

3.3 Declaring a Class with a Method and
Instantiating an Object of a Class (Cont.)

» Compiling an Application with Multiple Classes
= Compile the classes in Fig. 3.1 and Fig. 3.2 before executing.
= Type the command
javac GradeBook.java GradeBookTest.java

= If the directory containing the application includes only this
application’s files, you can compile all the classes in the
directory with the command

javac *.java

3.3 Declaring a Class with a Method and
Instantiating an Object of a Class (Cont.)

» Figure 3.3: UML class diagram for class GradeBooKk.

» Each class is modeled in a class diagram as a rectangle with
three compartments.
= Top: contains the class name centered horizontally in boldface type.
= Middle: contains the class’s attributes, which correspond to instance
variables (Section 3.5).
= Bottom: contains the class’s operations, which correspond to
methods.
» Operations are modeled by listing the operation name
preceded by an access modifier (in this case +) and

followed by a set of parentheses.
» The plus sign (+) corresponds to the keyword pub11c.

GradeBook

+ displayMessage()

Fig. 3.3 | UML class diagram indicating that class GradeBook has a pubTic
displayMessage operation.

3.4 Declaring a Method with a Parameter

» Car analogy

= Pressing a car’s gas pedal sends a message to the car to
perform a task—make the car go faster.

= The farther down you press the pedal, the faster the car
accelerates.

= Message to the car includes the task to perform and additional
Information that helps the car perform the task.

» Parameter: Additional information a method needs to
perform its task.

3.4 Declaring a Method with a Parameter
(Cont.)

» A'method can require one or more parameters that
represent additional information it needs to perform its
task.
= Defined in a comma-separated parameter list
= Located in the parentheses that follow the method name
= Each parameter must specify a type and an identifier.

» A method call supplies values — called arguments —
for each of the method’s parameters.

Parameter courseName provides the
additional information that the method
requires to perform its task

I // Fig. 3.4: GradeBook.java

2 // Class declaration with a method that has a parameter.

3

4 public class GradeBook

5 {

6 // display a welcome message to the GradeBook user

7 public void displayMessage(String courseName) =

8 {

9 System.out.printf("Welcome to the grade book for\n%s!\n",
10

courseName); .\
i1

12 } // end class GradeBook

Parameter courseName’s value is
displayed as part of the output

Fig. 3.4 | Class declaration with one method that has a parameter.

1 // Fig. 3.5: GradeBookTest.java

2 // Create GradeBook object and pass a String to

3 // its displayMessage method.

4 import java.util.Scanner; // program uses Scanner

5

6 public class GradeBookTest

7 {

8 // main method begins program execution

9 public static void main(String[] args)

10 {

11 // create Scanner to obtain input from command window
12 Scanner input = new Scanner(System.in);

13

14 // create a GradeBook object and assign it to myGradeBook
15 GradeBook myGradeBook = new GradeBook();

16

17 // prompt for and input course name

18 System.out.printin("Please enter the course name:");
19 String nameOfCourse = input.nextLine(); // read a line of text
20 System.out.println(); // outputs a blank line
21

Reads a String from
the user

Fig. 3.5 | Creating a GradeBook object and passing a String to its
displayMessage method. (Part | of 2.)

22 // call myGradeBook's displayMessage method

23 // and pass nameOfCourse as an argument
24 myGradeBook.displayMessage(nameOfCourse); =
25 } // end main

26 } // end class GradeBookTest

Passes the value of nameOfCourse as
the argument to method
displayMessage

Please enter the course name:
CS101 Introduction to Java Programming

Welcome to the grade book for
CS101 Introduction to Java Programming!

Fig. 3.5 | Creating a GradeBook object and passing a String to its
displayMessage method. (Part 2 of 2.)

3.4 Declaring a Method with a Parameter
(Cont.)

» Scanner method nextIlL.ine

= Reads characters typed by the user until the newline character is
encountered

Returns a String containing the characters up to, but not including,
the newline

Press Enter to submit the string to the program.

Pressing Enter inserts a newline character at the end of the characters
the user typed.

The newline character is discarded by nextL1ine.

» Scanner method next
= Reads individual words

= Reads characters until a white-space character is encountered, then
returns a String (the white-space character is discarded).

= Information after the first white-space character can be read by other
statements that call the Scanner’s methods later in the program.

3.4 Declaring a Method with a Parameter
(Cont.)

» More on Arguments and Parameters
= The number of arguments in a method call must
match the number of parameters in the parameter
list of the method’s declaration.
= The argument types in the method call must be
“consistent with” the types of the corresponding
parameters 1n the method’s declaration.

Common Programming Error 3.2

A compilation error occurs if the number of arguments in
a method call does not match the number of parameters
in the method declaration.

&g Common Programming Error 3.3

CAL A compilation error occurs if the type of any argument in
a method call is not consistent with the type of the corre-
sponding parameter in the method declaration.

3.4 Declaring a Method with a Parameter
(Cont.)

» The UML class diagram of Fig. 3.6 models class
GradeBook of Fig. 3.4.

» The UML models a parameter by listing the parameter
name, followed by a colon and the parameter type In
the parentheses - following the operation name.

» The UML type Str1ing corresponds to the Java type
String.

GradeBook

+ displayMessage(courseName : String)

Fig. 3.6 | UML class diagram indicating that class GradeBook has a
displayMessage operation with a courseName parameter of UML type String.

3.4 Declaring a Method with a Parameter
(Cont.)

» Notes on 1mport Declarations

= Classes Systemand String are in package java. lang
- Implicitly imported into every Java program
- Can use the Java. lang classes without explicitly importing them
* Most classes you’ll use in Java programs must be imported explicitly.

= Classes that are compiled in the same directory on disk are in the
same package—known as the default package.

= Classes in the same package are implicitly imported into the source-
code files of other classes in the same package.

= An 1mport declaration is not required if you always refer to a class
via its fully qualified class name
- Package name followed by a dot (.) and the class name.

3.5 Instance Variables, set Methods and
get Methods

» Local variables

= Variables declared in the body of a particular method.

= When a method terminates, the values of its local
variables are lost.

= Recall from Section 3.2 that an object has attributes that
are carried with the object as it’s used in a program.

= Such attributes exist before a method is called on an
object and after the method completes execution.

3.5 Instance Variables, set Methods and
get Methods (Cont.)

» A class normally consists of one or more methods that
manipulate the attributes that belong to a particular
object of the class.
= Attributes are represented as variables in a class declaration.
= Called fields.
= Declared inside a class declaration but outside the bodies of the

class’s method declarations.

» Instance variable

= When each object of a class maintains its own copy of an
attribute, the field Is an instance variable

= Each object (instance) of the class has a separate instance of
the variable in memory.

Each GradeBook object maintains its
own copy of instance variable
courseName

Method allows client code to change
the courseName

Method allows client code to obtain
the courseName

1 // Fig. 3.7: GradeBook.java
2 // GradeBook class that contains a courseName instance variable
3 // and methods to set and get its value.
4
5 public class GradeBook
6 { ‘_.—H—-————“"‘—"—H—'E—F—_H—_E—F——ﬂ‘—
7 private String courseName; // course name for this GradeBook
8
9 // method to set the course name
10 public void setCourseName(String name) -
11 {
12 courseName = name; // store the course name
13 } // end method setCourseName
14
15 // method to retrieve the course name
16 pubTlic String getCourseName() -
17 {
18 return courseName;
19 } // end method getCourseName
20

Fig. 3.7 | GradeBook class that contains a courseName instance variable and
methods to set and get its value. (Part | of 2.)

21
22
23
24
25
26
27
28
29

// display a welcome message to the GradeBook user

public void displayMessage() =
{
// calls getCourseName to get the name of
// the course this GradeBook represents

No parameter required; all methods in
this class already know about instance
variable courseName and the class’s
other methods

System.out.printf("Welcome to the grade book for\n%s!\n",

getCourseName()); .\
} // end method displayMe

ssage
} // end class GradeBook

Good practice to access your instance
variables via set or get methods

Fig. 3.7 | GradeBook class that contains a courseName instance variable and
methods to set and get its value. (Part 2 of 2.)

3.5 Instance Variables, set Methods and
get Methods (Cont.)

» Every instance (l.e., object) of a class contains one copy of
each instance variable.
» Instance variables typically declared private.

= private Is an access modifier.

= private variables and methods are accessible only to methods of
the class in which they are declared.

» Declaring instance private is known as data hiding or
Information hiding.
» private variables are encapsulated (hidden) in the object

and can be accessed only by methods of the object’s class.

= Prevents instance variables from being modified accidentally by a
class in another part of the program.

= Set and get methods used to access instance variables.

y Software Engineering Observation 3.2
Precede each field and method declaration with an access
modifier. Generally, instance variables should be
declared private and methods public. (We'll see that
it's appropriate to declare certain methods private, if
they'll be accessed only by other methods of the class.)

3.5 Instance Variables, set Methods and
get Methods (Cont.)

» When a method that specifies a return type other than void
completes its task, the method returns a result to its calling
method.

» Method setCourseName and getCourseName each
use variable courseName even though it was not declared
In any of the methods.

= Can use an instance variable of the class in each of the classes
methods.

= Exception to this is static methods (Chapter 8)
» The order In which methods are declared in a class does not
determine when they are called at execution time.

» One method of a class can call another method of the same
class by using just the method name.

3.5 Instance Variables, set Methods and
get Methods (Cont.)

» Unlike local variables, which are not automatically
Initialized, every field has a default initial value—a
value provided by Java when you do not specify the
field’s 1nitial value.

» Fields are not required to be explicitly initialized
before they are used in a program — unless they must
be initialized to values other than their default values.

» The default value for a field of type Stringis
null

1 // Fig. 3.8: GradeBookTest.java

2 // Creating and manipulating a GradeBook object.

3 import java.util.Scanner; // program uses Scanner

4

5 public class GradeBookTest

6 {

7 // main method begins program execution

8 pubTic static void main(String[] args)

9 {

10 // create Scanner to obtain input from command window

11 Scanner input = new Scanner(System.in);

12

13 // create a GradeBook object and assign it to myGradeBook

14 GradeBook myGradeBook = new GradeBook();

15

16 // display initial value of courseName

17 System.out.printf("Initial course name is: %s\n\n",

18 myGradeBook.getCourseName()); = GﬁstheVMueofthemyGradeBoqk
19 object’s courseName instance variable
20 // prompt for and read course name
21 System.out.printin("Please enter the course name:");
22 String theName = input.nextLine(); // read a line of text Sets the value of the
23 myGradeBook.setCourseName(theName); // set the course name = | _o.rseName instance

Fig. 3.8 | Creating and manipulating a GradeBook object. (Part | of 2.)

variable

24 System.out.printin(); // outputs a blank line

25

26 // display welcome message after specifying course name : ,

27 myGradeBook.displayMessage(); < Pwpbysﬂw(deeBooksrnegmga
28 } // end main !ndudmgthgvmuecﬁthecourseName
29 } // end class GradeBookTest instance variable

Initial course name is: null

Please enter the course name:
CS101 Introduction to Java Programming

Welcome to the grade book for
CS101 Introduction to Java Programming!

Fig. 3.8 | Creating and manipulating a GradeBook object. (Part 2 of 2.)

3.5 Instance Variables, set Methods and
get Methods (Cont.)

» set and get methods

= A class’s private fields can be manipulated only by
the class’s methods.

= A client of an object calls the class’s pub 11 c methods
to manipulate the private fields of an object of the
class.

= Classes often provide pub 11 c methods to allow clients

to set (i.e., assign values to) or get (i.e., obtain the
values of) private instance variables.

= The names of these methods need not begin with set or
get, but this naming convention is recommended.

3.5 Instance Variables, set Methods and
get Methods (Cont.)

» Figure 3.9 contains an updated UML class diagram for
the version of class GradeBook in Fig. 3.7.
= Models instance variable courseName as an attribute in the
middle compartment of the class.

= The UML represents instance variables as attributes by listing
the attribute name, followed by a colon and the attribute type.

= A minus sign (—) access modifier corresponds to access
modifier private.

GradeBook

— courseName : String

+ setCourseName(name : String)
+ getCourseName() : String
+ displayMessage()

Fig. 3.9 | UML class diagram indicating that class GradeBook has a private
courseName attribute of UML type String and three public operations—
setCourseName (with a name parameter of UML type String), getCourseName
(which returns UML type String) and displayMessage.

3.6 Primitive Types vs. Reference Types

» Types are divided into primitive types and reference types.

» The primitive types are boolean, byte, char, short,
1nt, long, float and double.

» All nonprimitive types are reference types.

» A primitive-type variable can store exactly one value of its
declared type at a time.

» Primitive-type instance variables are initialized by default
— variables of types byte, char, short, 1nt, long,
float and double are initialized to 0, and variables of
type boolean are initialized to false.

» You can specify your own initial value for a primitive-type
variable by assigning the variable a value in its declaration.

Error-Prevention Tip 3.1
An attempt to use an uninitialized local variable causes
a compilation error.

3.7 Primitive Types vs. Reference Types

» Programs use variables of reference types (normally called
references) to store the locations of objects in the
computer’s memaory.
= Such a variable is said to refer to an object in the program.

» Objects that are referenced may each contain many instance
variables and methods.

» Reference-type instance variables are initialized by default
to the value nul 1
= Areserved word that represents a “reference to nothing.”

» When using an object of another class, a reference to the

object is required to invoke (i.e., call) its methods.
= Also known as sending messages to an object.

K52 Software Engineering Observation 3.3

E8X A variable’s declared type (e.g., int, double or
GradeBook) indicates whether the variable is of a
primitive or a reference type. If a variable’s type is not

one of the eight primitive types, then it’s a reference type.

3.8 Initializing Objects with Constructors

» When an object of a class is created, its instance
variables are initialized by default.

» Each class can provide a constructor that initializes an
object of a class when the object is created.

» Java requires a constructor call for every object that Is
created.

» Keyword new requests memory from the system to
store an object, then calls the corresponding class’s
constructor to initialize the object.

» A constructor must have the same name as the class.

3.8 Initializing Objects with Constructors
(Cont.)

>

By default, the compiler provides a default constructor with
no parameters in any class that does not explicitly include a
constructor.

= |nstance variables are initialized to their default values.

Can provide your own constructor to specify custom
Initialization for objects of your class.

A constructor’s parameter list specifies the data it requires
to perform its task.

Constructors cannot return values, so they cannot specify a
return type.

Normally, constructors are declared pub11ic.

If you declare any constructors for a class, the Java
compiler will not create a default constructor for that class.

1 // Fig. 3.10: GradeBook.java

2 // GradeBook class with a constructor to initialize the course name.

3

4 public class GradeBook

5 {

6 private String courseName; // course name for this GradeBook

7

8 // constructor initializes courseName with String argument —

9 pubTic GradeBook(String name) ‘__ConﬂnWUNthalmUMMgg
10 { courseName to the specified value
11 courseName = name; // initializes courseName

12 } // end constructor

13

14 // method to set the course name

15 public void setCourseName(String name)

16 {

17 courseName = name; // store the course name

18 } // end method setCourseName

19

Fig. 3.10 | GradeBook class with a constructor to initialize the course name. (Part |
of 2.)

20 // method to retrieve the course name

21 public String getCourseName()

22 {

23 return courseName;

24 } // end method getCourseName

25

26 // display a welcome message to the GradeBook user
27 public void displayMessage()

28 {

29 // this statement calls getCourseName to get the
30 // name of the course this GradeBook represents
31 System.out.printf("Welcome to the grade book for\n%s!\n",
32 getCourseName());

33 } // end method displayMessage

34 } // end class GradeBook

Fig. 3.10 | GradeBook class with a constructor to initialize the course name. (Part 2
of 2.)

1 // Fig. 3.11: GradeBookTest.java

2 // GradeBook constructor used to specify the course name at the

3 // time each GradeBook object is created.

4

5 public class GradeBookTest

6 {

7 // main method begins program execution

g [%)ub'hc static void main(String[] args) Class instance creation expression

0 // create GradeBook object initializes the GradeBook and returns a
f that i igned t iabl

11 GradeBook gradeBookl = new GradeBook(- ri;:igfokf 'S assigned to variabie

12 "CS101 Introduction to Java Programming"); g

13 GradeBook gradeBook2 = new GradeBook(- - -

14 "CS102 Data Structures in Java"™): '“““‘*-\MH\ Class instance creation expression

I5 ’ initializes the GradeBook and returns a

16 // display initial value of courseName for each GradeBook mkswgeiftwasagwdtovmwbk

17 System.out.printf("gradeBookl course name is: %s\n", gradeboo

18 gradeBookl.getCourseName());

19 System.out.printf("gradeBook2 course name is: %s\n",

20 gradeBook2.getCourseName());

21 } // end main

22 1} // end class GradeBookTest

Fig. 3.11 | GradeBook constructor used to specify the course name at the time
each GradeBook object is created. (Part | of 2.)

gradeBookl course name is: CS101 Introduction to Java Programming
gradeBook2 course name is: CS102 Data Structures in Java

Fig. 3.11 | GradeBook constructor used to specify the course name at the time
each GradeBook object is created. (Part 2 of 2.)

<z, Error-Prevention Tip 3.2

% Unless default initialization of your class’s instance vari-
ables is acceptable, provide a constructor to ensure that
your class’s instance variables are properly initialized
with meaningful values when each new object of your
class is created.

3.8 Initializing Objects with Constructors
(Cont.)

» The UML class diagram of Fig. 3.12 models class
GradeBook of Fig. 3.10, which has a constructor that
has a name parameter of type String.

» Like operations, the UML models constructors in the
third compartment of a class in a class diagram.

» To distinguish a constructor, the UML requires that the
word “constructor’” be placed between guillemets («
and ») (or angle quotes) before the constructor’s name.

» List constructors before other operations in the third
compartment.

GradeBook

— courseName : String

«constructor GradeBook(name : String)
+ setCourseName(name : String)

+ getCourseName() : String

+ displayMessage()

Fig. 3.12 | UML class diagram indicating that class GradeBook has a constructor
that has a name parameter of UML type String.

3.9 Floating-Point Numbers and Type
double

» Floating-point number
= A number with a decimal point, such as 7.33, 0.0975 or
1000.12345).
= float and doube primitive types
= doub1e variables can store numbers with larger magnitude
and finer detail than f1oat variables.
» £loat represents single-precision floating-point
numbers up to seven significant digits.

» double represents double-precision floating-point
numbers that require twice as much memory as float
and provide 15 significant digits — approximately
double the precision of f1oat variables.

3.9 Floating-Point Numbers and Type
double (Cont.)

» Java treats all floating-point literals (such as 7.33 and
0.0975) as doub 1 e values by default.

» Appendix D, Primitive Types shows the ranges of
values for floats and doub1es.

1 // Fig. 3.13: Account.java

2 // Account class with a constructor to validate and

3 // initialize instance variable balance of type double.

4

5 public class Account

6 { : :

7 private double balance; // instance variable that stores the balance Floating-point number
3 for the account balance
9 // constructor —

10 public Account(double initialBalance) = Parameter_ used to lﬂIt'IEIIZB the

i { balance instance variable

12 // validate that initialBalance is greater than 0.0;

13 // if it is not, balance is initialized to the default value 0.0

:: i éa:'lg:é;alB?l?:?; Ea?z.:lgc)e' "\ Validating the parameter’s value to
16 } // end Account constructor ’ ensure that it is greater than 0

17

18 // credit (add) an amount to the account Initializ deCountar to 1-

19 public void credit(double amount) - nitializes gradetounter 1o L,

20 { indicates first grade about to be input
21 balance = balance + amount; // add amount to balance

22 } // end method credit

Fig. 3.13 | Account class with a constructor to validate and initialize instance
variable balance of type double. (Part | of 2.)

23

24 // return the account balance

25 public double getBalance() = Beturns the yalue of the balance
26 { instance variable as a double

27 return balance; // gives the value of balance to the calling method

28 } // end method getBalance

29 1} // end class Account

Fig. 3.13 | Account class with a constructor to validate and initialize instance
variable balance of type double. (Part 2 of 2.)

3.9 Floating-Point Numbers and Type
double (Cont.)

» System.out.printf

= Format specifier %. 2T
= 3£ is used to output values of type Tloat or double.

= . 2 represents the number of decimal places (2) to output to the
right of the decimal point—known as the number’s precision.

= Any floating-point value output with %. 2 will be rounded to
the hundredths position.
» Scanner method nextDouble returns a double

value entered by the user.

1 // Fig. 3.14: AccountTest.java

2 // Inputting and outputting floating-point numbers with Account objects.

3 import java.util.Scanner;

4

5 public class AccountTest

6 {

7 // main method begins execution of Java application

8 pubTic static void main(String[] args)

9 {

10 Account accountl = new Account(50.00); // create Account object

11 Account account2 = new Account(-7.53); // create Account object

12

13 // display initial balance of each object 5 5 X
14 System.out.printf("accountl balance: $%.2f\n", ‘________vguﬁnn;banpgpomtvmueswwhtwo—
15 accountl.getBalance()); ‘//,///// 'gIts Of precision
16 System.out.printf("account2 balance: $%.2f\n\n",

17 account2.getBalance());

18

19 // create Scanner to obtain input from command window
20 Scanner input = new Scanner(System.in);
21 double depositAmount; // deposit amount read from user

Fig. 3.14 | Inputting and outputting floating-point numbers with Account objects.
(Part | of 3.)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

System.out.print("Enter deposit amount for accountl: "); h} J_b1 0o tvoed by th
depositAmount = input.nextDouble(); // obtain user input =] cormsddoubieVaile typed by the

System.out.printf("\nadding %.2f to accountl ba]ance\n\n”.User
depositAmount);
accountl.credit(depositAmount); // add to accountl balance

// display balances

System.out.printf("accountl balance: $%.2f\n",
accountl.getBalance());

System.out.printf("account2 balance: $%.2f\n\n",
account2.getBalance());

System.out.print("Enter deposit amount for account2: "); // prompt

depositAmount = input.nextDouble(); // obtain user input

System.out.printf("\nadding %.2f to account2 balance\n\n",
depositAmount);

account2.credit(depositAmount); // add to account2 balance

// display balances
System.out.printf("accountl balance: $%.2f\n",
accountl.getBalance());

Fig. 3.14 | Inputting and outputting floating-point numbers with Account objects.

(Part 2 of 3.)

44 System.out.printf("account2 balance: $%.2f\n",
45 account2.getBalance());

46 } // end main

47 } // end class AccountTest

accountl balance: $50.00
account2 balance: $0.00

Enter deposit amount for accountl: 25.53
adding 25.53 to accountl balance

accountl balance: $75.53
account2 balance: $0.00

Enter deposit amount for account2: 123.45
adding 123.45 to account2 balance

accountl balance: $75.53
account2 balance: $123.45

Fig. 3.14 | Inputting and outputting floating-point numbers with Account objects.
(Part 3 of 3.)

3.9 Floating-Point Numbers and Type
double (Cont.)

» The UML class diagram in Fig. 3.15 models class
Account of Fig. 3.13.

Account

— balance : Double

«constructor» Account(initialBalance : Double)
+ credit(amount : Double)
+ getBalance() : Double

Fig. 3.15 | UML class diagram indicating that class Account has a private
balance attribute of UML type Doub1le, a constructor (with a parameter of UML
type Double) and two pub1ic operations—credit (with an amount parameter of
UML type Double) and getBalance (returns UML type Double).

3.10 (Optional) GUI and Graphics Case
Study: Using Dialog Boxes

3.10 (Optional) GUI and Graphics Case
Study: Using Dialog Boxes (Cont.)

» Many applications use windows or dialog boxes (also
called dialogs) to display output.

» Typically, dialog boxes are windows in which programs
display important messages to users.

» Class JOptionPane provides prebuilt dialog boxes

that enable programs to display windows containing
messages—such windows are called message dialogs.

// Fig. 3.17: Dialogl.java

// Printing multiple Tines in dialog box.
import javax.swing.JOptionPane; // import class JOptionPane ———

Imports class JOptionPane for use in
this program

public class Dialogl
{
public static void main(String[] args)
{
// display a dialog with a message
JOptionPane.showMessageDialog(null, "Welcome\nto\nJava"”);
} // end main
12 } // end class Dialogl

COVOO~NGOUVNDWN =

Message [:::]

Welcome
to

Java

[Lox]

Displays a message
dialog in the center of
the screen.

-—

Fig. 3.17 | Using JOptionPane to display multiple lines in a dialog box.

3.10 (Optional) GUI and Graphics Case
Study: Using Dialog Boxes (Cont.)

» Package jawvax.swing contains many classes that help
you create graphical user interfaces (GUISs).

» GUI components facilitate data entry by a program’s user
and presentation of outputs to the user.

» JOptionPane method showMessageDialog displays

a dialog box containing a message.

= Requires two arguments.
= The first helps the Java application determine where to position the
dialog box.

- If the first argument is nu 1 1, the dialog box is displayed at the center of
your screen.

= The second argument is the String to display in the dialog box.

3.10 (Optional) GUI and Graphics Case
Study: Using Dialog Boxes (Cont.)

» JOptionPane method showMessageDialogisa
static method.

» Such methods often define frequently used tasks.

» Typically called by using method’s class name
followed by a dot (.) and the method name, as In
ClassName.methodName(arguments)
» Notice that you do not create an object of class
JOptionPane to use its static method
showMessageDi1alog.

3.10 (Optional) GUI and Graphics Case
Study: Using Dialog Boxes (Cont.)

» An input-dialog allows the user to enter data into a
program.
» JOptionPane method showInputDialog
displays an input dialog
= Contains a prompt and a field (known as a text field) in which
the user can enter text.

» Method showInputDialog (line 11) returns a
String containing the characters typed by the user.

» If you press the dialog’s Cancel button or press the Esc
key, the method returns nu'l 1.

3.10 (Optional) GUI and Graphics Case
Study: Using Dialog Boxes (Cont.)

» static String method format returns a
formatted String.

» Method format works like method
System.out.printf, except that format returns
the formatted St ring rather than displaying it in a
command window.

Voo ~NONUND WN =

19
20

// Fig. 3.18: NameDialog.java
// Basic input with a dialog box.
import javax.swing.JOptionPane;

public class NameDialog

{

public static void main(String[] args)

{

// prompt user to enter name

String name =
JOptionPane.showInputDialog("What is your name?"); =

from the user

Displays an input dialog to obtain data

// create the message

String message =
String.format("Welcome, %s, to Java Programming!", name); «— |

// display the message to welcome the user by name

JOptionPane.showMessageDialog(null, message);

Creates a formatted
String containing the
name the user entered
in the input dialog

} // end main
} // end class NameDialog

Fig. 3.18 | Obtaining user input from a dialog. (Part | of 2.)

,lnput Message @

Whatis your name?
Welcome, Paul, to Java Programming!
’ Paul |

[oK] | Cancel | @
ls

Fig. 3.18 | Obtaining user input from a dialog. (Part 2 of 2.)

Laboratory Session

Exercises

» Invoice
> Java program that models and implements an invoice
- Each invoice has a number of parts and each part has a
part—-number, a description and a price.
> The program should create some invoices and print their
information

» Employee
> Java program that models employees
- Each employee has name and surname and a monthly
salary

> The program should create some employees and then
increase their salary by 10%, and print their information.

Exercises

» Heart Rate

> Java program that models heart rates, maximum heart rate
and the maximum and minimum target heart rate.

> The heart rate should be modeled with a class and should
have name, surname, birthYear and currentYear.

- The maximum heart rate MHR is based on the formula 220
- age.

> The minimum target HR is based on: 0.5 * MHR

> The maximum target HR is based on: 0.85 * MHR

- The program should create some objects of type Heart Rate
and print their information.

Exercises

» Health Profile

> Java program that models health profile of persons

- Based on the previous program of Heart Rates: add the
gender, height and weight attribute

- Compute the person's BMI (body mass index): Weight * 703
/ (getHeight() * getHeight());

- The program should create some objects of type Heart Rate
and print their information.

Exercises

» Date
> Create a Java program that models the date
- The date has three attributes: day, month, year.
- Create some objects Date and print their information

» Addition

> Build a program in Java to perform addition of two
numbers

- Use Graphical User Interface libraries in Java to get the
numbers with an input window and show the sum in
another window.

Home Exercises

» Develop a Java program that performs the following:

- Model a bank account with these details:
- Name and Surname of person holding the account
- Address of the person
- Phone number
- Balance
+ Credit or Withdraw method
- Last operation performed (Credit or Withdraw)

> The program should:

- Be able to take from keyboard the name, surname, phone
number, address of the person and create a bank account
with these data.

- Be able to print the data of the person and the balance.

- Be able to take from keyboard the amount to credit or
withdraw (positive is credit and negative is withdraw).

- Be able to print the last operation performed.
- Increase the balance by a percentage inserted from the user

Readings

» Java: How to Program. 8th ed.
- Chapter 3

