
(C) 2010 Pearson Education, Inc. All rights reserved.

Assoc. Prof. Dr. Marenglen Biba

Laboratory Session: Exercises on classes

 Analogy to help you understand classes and their

contents.

 Suppose you want to drive a car and make it go faster by

pressing down on its accelerator pedal.

 Before you can drive a car, someone has to design it.

 A car typically begins as engineering drawings, similar to the

blueprints used to design a house.

 These include the design for an accelerator pedal to make the

car go faster.

 Analogy to help you understand classes and their contents.

 The pedal “hides” from the driver the complex mechanisms that

actually make the car go faster, just as the brake pedal “hides” the

mechanisms that slow the car and the steering wheel “hides” the

mechanisms that turn the car.

 This enables people with little or no knowledge of how engines work

to drive a car easily.

 Before you can drive a car, it must be built from the engineering

drawings that describe it.

 A completed car has an actual accelerator pedal to make the car go

faster, but even that’s not enough—the car won’t accelerate on its

own, so the driver must press the accelerator pedal.

 Performing a task in a program requires a method.

 The method describes the mechanisms that actually perform its

tasks.

 Hides from its user the complex tasks that it performs, just as

the accelerator pedal of a car hides from the driver the complex

mechanisms of making the car go faster.

 In Java, a class houses a method, just as a car’s

engineering drawings house the design of an

accelerator pedal.

 In a class, you provide one or more methods that are

designed to perform the class’s tasks.

 You must build an object of a class before a program

can perform the tasks the class describes how to do.

 That is one reason Java is known as an object-oriented

programming language.

 When you drive a car, pressing its gas pedal sends a

message to the car to perform a task—make the car go

faster.

 You send messages to an object—each message is

implemented as a method call that tells a method of the

object to perform its task.

 A car has many attributes

 Color, the number of doors, the amount of gas in its tank, its

current speed and its total miles driven.

 Attributes are represented as part of a car’s design in its

engineering diagrams.

 Every car maintains its own attributes.

 Each car knows how much gas is in its own gas tank, but not

how much is in the tanks of other cars.

 An object has attributes that are carried with the object

as it’s used in a program.

 Specified as part of the object’s class.

 A bank account object has a balance attribute that represents

the amount of money in the account.

 Each bank account object knows the balance in the account it

represents, but not the balances of the other accounts in the

bank.

 Attributes are specified by the class’s instance

variables.

 Create a new class (GradeBook)

 Use it to create an object.

 Each class declaration that begins with keyword

public must be stored in a file that has the same

name as the class and ends with the .java file-name

extension.

 Keyword public is an access modifier.

 Indicates that the class is “available to the public”

 The main method is called automatically by the Java

Virtual Machine (JVM) when you execute an application.

 Normally, you must call methods explicitly to tell them to

perform their tasks.

 A public is “available to the public”

 It can be called from methods of other classes.

 The return type specifies the type of data the method returns

after performing its task.

 Return type void indicates that a method will perform a

task but will not return (i.e., give back) any information to

its calling method when it completes its task.

 Method name follows the return type.

 By convention, method names begin with a lowercase first
letter and subsequent words in the name begin with a
capital letter.

 Empty parentheses after the method name indicate that the
method does not require additional information to perform
its task.

 Together, everything in the first line of the method is
typically called the Method header

 Every method’s body is delimited by left and right braces.

 The method body contains one or more statements that
perform the method’s task.

 Use class GradeBook in an application.

 Class GradeBook is not an application because it does not
contain main.

 Can’t execute GradeBook; will receive an error message
like:

 Exception in thread "main"
java.lang.NoSuchMethodError: main

 Must either declare a separate class that contains a main
method or place a main method in class GradeBook.

 To help you prepare for the larger programs, use a separate
class containing method main to test each new class.

 Some programmers refer to such a class as a driver class.

 A static method (such as main) is special

 It can be called without first creating an object of the class in

which the method is declared.

 Typically, you cannot call a method that belongs to

another class until you create an object of that class.

 Declare a variable of the class type.

 Each new class you create becomes a new type that can be

used to declare variables and create objects.

 You can declare new class types as needed; this is one reason

why Java is known as an extensible language.

 Class instance creation expression

 Keyword new creates a new object of the class

specified to the right of the keyword.

 Used to initialize a variable of a class type.

 The parentheses to the right of the class name are

required.

 Parentheses in combination with a class name represent

a call to a constructor, which is similar to a method but

is used only at the time an object is created to initialize

the object’s data.

 Call a method via the class-type variable
 Variable name followed by a dot separator (.), the method

name and parentheses.

 Call causes the method to perform its task.

 Any class can contain a main method.

 The JVM invokes the main method only in the class used to

execute the application.

 If multiple classes that contain main, then one that is invoked

is the one in the class named in the java command.

 Compiling an Application with Multiple Classes

 Compile the classes in Fig. 3.1 and Fig. 3.2 before executing.

 Type the command

javac GradeBook.java GradeBookTest.java

 If the directory containing the application includes only this

application’s files, you can compile all the classes in the

directory with the command

javac *.java

 Figure 3.3: UML class diagram for class GradeBook.

 Each class is modeled in a class diagram as a rectangle with
three compartments.
 Top: contains the class name centered horizontally in boldface type.

 Middle: contains the class’s attributes, which correspond to instance
variables (Section 3.5).

 Bottom: contains the class’s operations, which correspond to
methods.

 Operations are modeled by listing the operation name
preceded by an access modifier (in this case +) and
followed by a set of parentheses.

 The plus sign (+) corresponds to the keyword public.

 Car analogy

 Pressing a car’s gas pedal sends a message to the car to

perform a task—make the car go faster.

 The farther down you press the pedal, the faster the car

accelerates.

 Message to the car includes the task to perform and additional

information that helps the car perform the task.

 Parameter: Additional information a method needs to

perform its task.

 A method can require one or more parameters that

represent additional information it needs to perform its

task.

 Defined in a comma-separated parameter list

 Located in the parentheses that follow the method name

 Each parameter must specify a type and an identifier.

 A method call supplies values — called arguments —

for each of the method’s parameters.

 Scanner method nextLine
 Reads characters typed by the user until the newline character is

encountered
 Returns a String containing the characters up to, but not including,

the newline
 Press Enter to submit the string to the program.
 Pressing Enter inserts a newline character at the end of the characters

the user typed.
 The newline character is discarded by nextLine.

 Scanner method next
 Reads individual words
 Reads characters until a white-space character is encountered, then

returns a String (the white-space character is discarded).
 Information after the first white-space character can be read by other

statements that call the Scanner’s methods later in the program.

 More on Arguments and Parameters

 The number of arguments in a method call must

match the number of parameters in the parameter

list of the method’s declaration.

 The argument types in the method call must be

“consistent with” the types of the corresponding

parameters in the method’s declaration.

 The UML class diagram of Fig. 3.6 models class

GradeBook of Fig. 3.4.

 The UML models a parameter by listing the parameter

name, followed by a colon and the parameter type in

the parentheses - following the operation name.

 The UML type String corresponds to the Java type

String.

 Notes on import Declarations

 Classes System and String are in package java.lang

 Implicitly imported into every Java program

 Can use the java.lang classes without explicitly importing them

 Most classes you’ll use in Java programs must be imported explicitly.

 Classes that are compiled in the same directory on disk are in the

same package—known as the default package.

 Classes in the same package are implicitly imported into the source-

code files of other classes in the same package.

 An import declaration is not required if you always refer to a class

via its fully qualified class name

 Package name followed by a dot (.) and the class name.

 Local variables

 Variables declared in the body of a particular method.

 When a method terminates, the values of its local

variables are lost.

 Recall from Section 3.2 that an object has attributes that

are carried with the object as it’s used in a program.

 Such attributes exist before a method is called on an

object and after the method completes execution.

 A class normally consists of one or more methods that
manipulate the attributes that belong to a particular
object of the class.
 Attributes are represented as variables in a class declaration.

 Called fields.

 Declared inside a class declaration but outside the bodies of the
class’s method declarations.

 Instance variable
 When each object of a class maintains its own copy of an

attribute, the field is an instance variable

 Each object (instance) of the class has a separate instance of
the variable in memory.

 Every instance (i.e., object) of a class contains one copy of
each instance variable.

 Instance variables typically declared private.
 private is an access modifier.

 private variables and methods are accessible only to methods of
the class in which they are declared.

 Declaring instance private is known as data hiding or
information hiding.

 private variables are encapsulated (hidden) in the object
and can be accessed only by methods of the object’s class.
 Prevents instance variables from being modified accidentally by a

class in another part of the program.

 Set and get methods used to access instance variables.

 When a method that specifies a return type other than void
completes its task, the method returns a result to its calling
method.

 Method setCourseName and getCourseName each
use variable courseName even though it was not declared
in any of the methods.
 Can use an instance variable of the class in each of the classes

methods.
 Exception to this is static methods (Chapter 8)

 The order in which methods are declared in a class does not
determine when they are called at execution time.

 One method of a class can call another method of the same
class by using just the method name.

 Unlike local variables, which are not automatically

initialized, every field has a default initial value—a

value provided by Java when you do not specify the

field’s initial value.

 Fields are not required to be explicitly initialized

before they are used in a program — unless they must

be initialized to values other than their default values.

 The default value for a field of type String is

null

 set and get methods

 A class’s private fields can be manipulated only by

the class’s methods.

 A client of an object calls the class’s public methods

to manipulate the private fields of an object of the

class.

 Classes often provide public methods to allow clients

to set (i.e., assign values to) or get (i.e., obtain the

values of) private instance variables.

 The names of these methods need not begin with set or

get, but this naming convention is recommended.

 Figure 3.9 contains an updated UML class diagram for

the version of class GradeBook in Fig. 3.7.

 Models instance variable courseName as an attribute in the

middle compartment of the class.

 The UML represents instance variables as attributes by listing

the attribute name, followed by a colon and the attribute type.

 A minus sign (–) access modifier corresponds to access

modifier private.

 Types are divided into primitive types and reference types.

 The primitive types are boolean, byte, char, short,
int, long, float and double.

 All nonprimitive types are reference types.

 A primitive-type variable can store exactly one value of its
declared type at a time.

 Primitive-type instance variables are initialized by default
— variables of types byte, char, short, int, long,
float and double are initialized to 0, and variables of
type boolean are initialized to false.

 You can specify your own initial value for a primitive-type
variable by assigning the variable a value in its declaration.

 Programs use variables of reference types (normally called
references) to store the locations of objects in the
computer’s memory.
 Such a variable is said to refer to an object in the program.

 Objects that are referenced may each contain many instance
variables and methods.

 Reference-type instance variables are initialized by default
to the value null
 A reserved word that represents a “reference to nothing.”

 When using an object of another class, a reference to the
object is required to invoke (i.e., call) its methods.
 Also known as sending messages to an object.

 When an object of a class is created, its instance

variables are initialized by default.

 Each class can provide a constructor that initializes an

object of a class when the object is created.

 Java requires a constructor call for every object that is

created.

 Keyword new requests memory from the system to

store an object, then calls the corresponding class’s

constructor to initialize the object.

 A constructor must have the same name as the class.

 By default, the compiler provides a default constructor with
no parameters in any class that does not explicitly include a
constructor.
 Instance variables are initialized to their default values.

 Can provide your own constructor to specify custom
initialization for objects of your class.

 A constructor’s parameter list specifies the data it requires
to perform its task.

 Constructors cannot return values, so they cannot specify a
return type.

 Normally, constructors are declared public.
 If you declare any constructors for a class, the Java

compiler will not create a default constructor for that class.

 The UML class diagram of Fig. 3.12 models class

GradeBook of Fig. 3.10, which has a constructor that

has a name parameter of type String.

 Like operations, the UML models constructors in the

third compartment of a class in a class diagram.

 To distinguish a constructor, the UML requires that the

word “constructor” be placed between guillemets («

and ») (or angle quotes) before the constructor’s name.

 List constructors before other operations in the third

compartment.

 Floating-point number
 A number with a decimal point, such as 7.33, 0.0975 or

1000.12345).

 float and double primitive types

 double variables can store numbers with larger magnitude
and finer detail than float variables.

 float represents single-precision floating-point
numbers up to seven significant digits.

 double represents double-precision floating-point
numbers that require twice as much memory as float
and provide 15 significant digits — approximately
double the precision of float variables.

 Java treats all floating-point literals (such as 7.33 and

0.0975) as double values by default.

 Appendix D, Primitive Types shows the ranges of

values for floats and doubles.

 System.out.printf
 Format specifier %.2f

 %f is used to output values of type float or double.

 .2 represents the number of decimal places (2) to output to the

right of the decimal point—known as the number’s precision.

 Any floating-point value output with %.2f will be rounded to

the hundredths position.

 Scanner method nextDouble returns a double

value entered by the user.

 The UML class diagram in Fig. 3.15 models class

Account of Fig. 3.13.

 Many applications use windows or dialog boxes (also

called dialogs) to display output.

 Typically, dialog boxes are windows in which programs

display important messages to users.

 Class JOptionPane provides prebuilt dialog boxes

that enable programs to display windows containing

messages—such windows are called message dialogs.

 Package javax.swing contains many classes that help

you create graphical user interfaces (GUIs).

 GUI components facilitate data entry by a program’s user

and presentation of outputs to the user.

 JOptionPane method showMessageDialog displays

a dialog box containing a message.

 Requires two arguments.

 The first helps the Java application determine where to position the

dialog box.

 If the first argument is null, the dialog box is displayed at the center of

your screen.

 The second argument is the String to display in the dialog box.

 JOptionPane method showMessageDialog is a

static method.

 Such methods often define frequently used tasks.

 Typically called by using method’s class name

followed by a dot (.) and the method name, as in

ClassName.methodName(arguments)

 Notice that you do not create an object of class

JOptionPane to use its static method

showMessageDialog.

 An input-dialog allows the user to enter data into a

program.

 JOptionPane method showInputDialog

displays an input dialog

 Contains a prompt and a field (known as a text field) in which

the user can enter text.

 Method showInputDialog (line 11) returns a

String containing the characters typed by the user.

 If you press the dialog’s Cancel button or press the Esc

key, the method returns null.

 static String method format returns a

formatted String.

 Method format works like method

System.out.printf, except that format returns

the formatted String rather than displaying it in a

command window.

 Invoice

◦ Java program that models and implements an invoice

◦ Each invoice has a number of parts and each part has a
part-number, a description and a price.

◦ The program should create some invoices and print their
information

 Employee

◦ Java program that models employees

◦ Each employee has name and surname and a monthly
salary

◦ The program should create some employees and then
increase their salary by 10%, and print their information.

 Heart Rate

◦ Java program that models heart rates, maximum heart rate
and the maximum and minimum target heart rate.

◦ The heart rate should be modeled with a class and should
have name, surname, birthYear and currentYear.

◦ The maximum heart rate MHR is based on the formula 220
– age.

◦ The minimum target HR is based on: 0.5 * MHR

◦ The maximum target HR is based on: 0.85 * MHR

◦ The program should create some objects of type Heart Rate
and print their information.

 Health Profile

◦ Java program that models health profile of persons

◦ Based on the previous program of Heart Rates: add the
gender, height and weight attribute

◦ Compute the person's BMI (body mass index): Weight * 703
/ (getHeight() * getHeight());

◦ The program should create some objects of type Heart Rate
and print their information.

 Date

◦ Create a Java program that models the date

◦ The date has three attributes: day, month, year.

◦ Create some objects Date and print their information

 Addition
◦ Build a program in Java to perform addition of two

numbers

◦ Use Graphical User Interface libraries in Java to get the
numbers with an input window and show the sum in
another window.

 Develop a Java program that performs the following:

◦ Model a bank account with these details:

 Name and Surname of person holding the account

 Address of the person

 Phone number

 Balance

 Credit or Withdraw method

 Last operation performed (Credit or Withdraw)

◦ The program should:

 Be able to take from keyboard the name, surname, phone
number, address of the person and create a bank account
with these data.

 Be able to print the data of the person and the balance.

 Be able to take from keyboard the amount to credit or
withdraw (positive is credit and negative is withdraw).

 Be able to print the last operation performed.

 Increase the balance by a percentage inserted from the user

 Java: How to Program. 8th ed.
◦ Chapter 3

