Lesson 4
Control Statements: Part |

Assoc. Prof. Dr. Marenglen Biba

OBJECTIVES
In this Chapter you'll learn:

m To use basic problem-solving techniques.

m To develop algorithms through the process of top-down, stepwise refinement using
pseudocode.

m Touse the if and if...eTse selection statements to choose among alternative actions.
m To use the while repetition statement to execute statements in a program repeatedly.
m To use counter-controlled repetition and sentinel-controlled repetition.

m To use the compound assignment, increment and decrement operators.

m The portability of primitive data types.

4.1 Introduction

4.2 Algorithms

4.3 Pseudocode

4.4 Control Structures

4.5 1f Single-Selection Statement

4.6 if...else Double-Selection Statement

4.7 while Repetition Statement

4.8 Formulating Algorithms: Counter-Controlled Repetition

4.9 Formulating Algorithms: Sentinel-Controlled Repetition
4.10 Formulating Algorithms: Nested Control Statements
4.11 Compound Assignment Operators
4.12 Increment and Decrement Operators
4.13 Primitive Types
4.14 (Optional) GUI and Graphics Case Study: Creating Simple Drawings
4.15 Wrap-Up

4.1 Introduction

» Before writing a program to solve a problem, have a
thorough understanding of the problem and a carefully
planned approach to solving it.

» Understand the types of building blocks that are
available and employ proven program-construction
techniques.

» This chapter introduces
= Thei1f,1f...else and whi1e statements
= Compound assignment, increment and decrement operators
= Portability of Java’s primitive types

4.2 Algorithms

» Any computing problem can be solved by executing a series of
actions in a speC|f|c order.

» An algorithm is a procedure for solving a problem in terms of
= the actions to execute and
= the order in which these actions execute

» The “rise-and-shine algorithm” followed by one executive for
getting out of bed and going to work:
= (1) Get out of bed; (2) take off pajamas; (3) take a shower; (4) get
dressed; (5) eat breakfast; (6) carpool to work.
> Sudppose that the same steps are performed in a slightly different
oraer.
= (1) Get out of bed; (2) take off pajamas; (3) get dressed; (4) take a
shower; (5) eat breakfast; (6) carpool to work.
» Specifying the order in which statements (actions) execute in a
program is called program control.

4.3 Pseudocode

» Pseudocode is an informal language that helps you develop
algorithms without having to worry about the strict details of Java
language syntax.

» Particularly useful for developing algorithms that will be converted
to structured portions of Java programs.

» Similar to everyday English.

» Helps you “think out” a program before attempting to write it in a
programming language, such as Java.

» You can type pseudocode conveniently, using any text-editor
program.

» Carefully prepared pseudocode can easily be converted to a
corresponding Java program.

» Pseudocode normally describes only statements representing the
actions that occur after you convert a program from pseudocode to
Java and the program iIs run on a computetr.

= e.g., Input, output or calculations.

4.4 Control Structures

» Sequential execution: Statements in a program execute one after the
other in the order in which they are written.

» Transfer of control: Various Java statements, enable you to specify that
the next statement to execute is not necessarily the next one in
sequence.

» Bohm and Jacopini
= Demonstrated that programs could be written without any go to statements.

= All programs can be written in terms of only three control structures—the sequence
structure, the selection structure and the repetition structure.

» When we introduce Java’s control structure implementations, we’ll
refer to them in the terminology of the Java Language Specification as
“control statements.”

4.4 Control Structures (Cont.)

» Sequence structure
= Built into Java.

= Unless directed otherwise, the computer executes Java
statements one after the other in the order in which they’re
written.

= The activity diagram in Fig. 4.1 illustrates a typical sequence
structure in which two calculations are performed in order.

= Java lets you have as many actions as you want in a sequence
structure.

= Anywhere a single action may be placed, we may place several
actions in seguence.

!

add grade to total - ---------

/

add | tocounter |- - - - - - - - - -

Corresponding Java statement:
total = total + grade;

Corresponding Java statement:
counter = counter + 1;

Fig. 4.1 | Sequence structure activity diagram.

4.4 Control Structures (Cont.)

» Three types of selection statements.

» 1T statement:
= Performs an action, if a condition is true; skips it, if false.
= Single-selection statement—selects or ignores a single action (or
group of actions).
» 1T...el1se statement:

= Performs an action if a condition is true and performs a different
action if the condition is false.

= Double-selection statement—selects between two different actions
(or groups of actions).
» switch statement

= Performs one of several actions, based on the value of an expression.

= Multiple-selection statement—selects among many different actions
(or groups of actions).

4.4 Control Structures (Cont.)

» Three repetition statements (also called looping statements)

= Perform statements repeatedly while a loop-continuation condition
remains true.

» while and for statements perform the action(s) in their
bodies zero or more times

= if the loop-continuation condition is initially false, the body will not
execute.

» The do...wh1 1e statement performs the action(s) in its
body one or more times.

» 1T, else, switch, while, do and for are keywords.
= Appendix C: Complete list of Java keywords.

4.5 1f Single-Selection Statement

» Pseudocode

If student’s grade is greater than or equal to 60
Print “Passed”

» If the condition Is false, the Print statement iIs ignored, and
the next pseudocode statement in order is performed.

» Indentation
= Optional, but recommended
= Emphasizes the inherent structure of structured programs

» The preceding pseudocode If in Java:

1f (studentGrade >= 60)
System.out.printin("Passed"”);

» Corresponds closely to the pseudocode.

[grade >= 60]

= print “Passed”
[grade < 60]

Fig. 4.2 | if single-selection statement UML activity diagram.

4.6 1f...else Double-Selection
Statement

» 1f...else double-selection statement—specify an action

to perform when the condition is true and a different action
when the condition iIs false.

» Pseudocode

If student’s grade is greater than or equal to 60
Print “Passed”

Else

Print “Failed”

» The preceding If...Else pseudocode statement in Java:

1f (grade >= 60)
System.out.println("Passed");
else
System.out.println("Failed");

» Note that the body of the e1se is also indented.

rade < 60 rade >= 60
print “Failed” < & : &] = print “Passed”

N
' @~

Fig. 4.3 | if..else double-selection statement UML activity diagram.

4.6 1f...else Double-Selection
Statement (Cont.)

v v Vv WV

Conditional operator (2 :)—shorthand 1 f...else.
Ternary operator (takes three operands)
Operands and 7 : form a conditional expression

Operand to the left of the ? is a boolean expression—evaluates to a
boolean value (true or false)

Second operand (between the 7 and :) is the value if the boolean
expression is true

Third operand (to the right of the :) is the value if the boolean
expression evaluates to fa'lse.

Example:

System.out.printin(_
studentGrade >= 60 ? "Passed" : "Failed");

Evaluates to the string "Passed" if the boo1ean expression

studentGrade >= 60 is true and to the string "Fai led" if it is
false.

4.6 1f...else Double-Selection
Statement (Cont.)

» Can test multiple cases by placing 1f...e1se statements inside
other 1T...else statements to create nested i F...else
statements.

» Pseudocode:

If student’s grade is greater than or equal to 90
Print “4”
else
If student’s grade is greater than or equal to 80
Print “B”
else
If student s grade is greater than or equal to 70
Print “C”
else
If student s grade is greater than or equal to 60
Print “D”
else
Print “F”

4.6 1f...else Double-Selection
Statement (Cont.)

» This pseudocode may be written in Java as

if (studentGrade >= 90)
System.out.printin("A");
else
if (studentGrade >= 80)
System.out.println(C "B");
else
if (studentGrade >= 70)
System.out.printin("C");
else
if (studentGrade >= 60)
System.out.printin(C "D");
else
System.out.printin(C "F");

» If studentGrade >= 90, the first four conditions will be true, but
only the statement in the 1T part of the first 1f...e1se statement will
execute. After that, the e1se part of the “outermost” 1f...else
statement is skipped.

4.6 1f...else Double-Selection
Statement (Cont.)

» Most Java programmers prefer to write the preceding nested
1f...else statement as

if (studentGrade >= 90)
System.out.printin(C "A");
else if (studentGrade >= 80)
System.out.printin(C "B");
else if (studentGrade >= 70)
System.out.printin("C");
else if (studentGrade >= 60)
System.out.printin("D");
else
System.out.printin(C "F");

» The two forms are identical except for the spacing and
Indentation, which the compiler ignores.

4.6 1f...else Double-Selection
Statement (Cont.)

» The Java compiler always associates an e 1 se with the
immediately preceding 1T unless told to do otherwise by the
placement of braces ({ and }).

» Referred to as the dangling-e1se problem.

» The following code is not what it appears:

if (x> 5)
if Cy >5)
System.out.println("x and y are > 5");
else
System.out.println("x i1s <= 5");

» Beware! This nested 1 f...e1se statement does not execute as it
appears: X maybe > than 5!

4.6 1f...else Double-Selection
Statement (Cont.)

» To force the nested 1f...e1se statement to execute as it
was originally intended, we must write it as follows:
if (x> 5)

{
if Cy > 5)
System.out.printin("x and y are > 5");
}

else
System.out.printin("x is <= 5");

» The braces indicate that the second 1 is in the body of the
first and that the el se is associated with the first 7 7.

4.6 1f...else Double-Selection
Statement (Cont.)

» The 1T statement normally expects only one statement in its body.

» To include several statements in the body of an 1f (or the body of an
else foran if...else statement), enclose the statements in braces.

» Statements contained in a pair of braces form a block.
» Ablock can be placed anywhere that a single statement can be placed.

» Example: Ablock inthe else part of an 1f...else statement:
if (grade >= 60)
: System.out.printin("'Passed");
else

{
System.out.println("Failed");

System.out.println("You must take this course again.");

}

4.7 while Repetition Statement

» Repetition statement—repeats an action while a
condition remains true.

» Pseudocode

While there are more items on my shopping list
Purchase next item and cross it off my list

» The repetition statement’s body may be a single
statement or a block.

» Eventually, the condition will become false. At this
point, the repetition terminates, and the first statement
after the repetition statement executes.

4.7 while Repetition Statement (Cont.)

» Example of Java’s while repetition statement: find the
first power of 3 larger than 100. Assume 1nt variable
product is initialized to 3.

while (product <= 100)
product = 3 * product;

» Each iteration multiplies product by 3, so product
takes on the values 9, 27, 81 and 243 successively.

» When variable product becomes 243, the wh1i 1 e-
statement condition—product <= 100—becomes false.

» Repetition terminates. The final value of product is 243.

» Program execution continues with the next statement after
the wh1 1e statement.

Common Programming Error 4.3

Not providing, in the body of a whi1e statement, an ac-
tion that eventually causes the condition in the while to
become false normally results in a logic error called an
infinite loop (the loop never terminates).

merge ~

-~

decision ~ _ - [product <= 100]

T~ > triple product value

~

~

[product > 100] o

Corresponding Java statement:
product = 3 * product;

Fig. 4.4 | while repetition statement UML activity diagram.

4.8 Formulating Algorithms: Counter-
Controlled Repetition

>

A class of ten students took a quiz. The grades (integers in the
range 0 to 100) for this quiz are available to you. Determine the
class average on the quiz.

The class average is equal to the sum of the grades divided by the number
of students.

The algorithm for solving this problem on a computer must input each
grade, keep track of the total of all grades input, perform the averaging
calculation and print the result.

Use counter-controlled repetition to input the grades one at a time.

A variable called a counter (or control variable) controls the number of
times a set of statements will execute.

Counter-controlled repetition is often called definite repetition, because the
number of repetitions is known before the loop begins executing.

4.8 Formulating Algorithms:
Counter-Controlled Repetition
(Cont.)

» Atotal 1s a variable used to accumulate the sum of
several values.

» A counter i1s a variable used to count.

» Variables used to store totals are normally initialized to
zero before being used in a program.

Set total to zero
Set gmde counter to one

While grade counter is less than or equal to ten
Prompt the user to enter the next grade
Input the next grade
Add the grade into the total
Add one to the grade counter

OO ~No N b WN -

°

Set the class average to the total divided by ten
L1 Print the class average

Fig. 4.5 | Pseudocode algorithm that uses counter-controlled repetition to solve the
class-average problem.

1 // Fig. 4.6: GradeBook.java

2 // GradeBook class that solves class-average problem using
3 // counter-controlled repetition.

4 dimport java.util.Scanner; // program uses class Scanner
5

6 public class GradeBook

7 {

8 private String courseName; // name of course this GradeBook represents
9

10 // constructor initializes courseName

11 public GradeBook(String name)

12 {

13 courseName = name; // initializes courseName

14 } // end constructor

I5

16 // method to set the course name

17 public void setCourseName(String name)

18 {

19 courseName = name; // store the course name
20 } // end method setCourseName
21

Fig. 4.6 | Counter-controlled repetition: class-average problem. (Part | of 3.)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

// method to retrieve the course name
public String getCourseName()
{
return courseName;
} // end method getCourseName

// display a welcome message to the GradeBook user
public void displayMessage()
{
// getCourseName gets the name of the course
System.out.printf("Welcome to the grade book for\n%s!\n\n",
getCourseName());
} // end method displayMessage

// determine class average based on 10 grades entered by user
public void determineClassAverage()

{ Declare method
// create Scanner to obtain input from command window determineClassAverage

Scanner input = new Scanner(System.in);

int total; // sum of grades entered by user
int gradeCounter; // number of the grade to be entered next

int grade; // grade value entered by user 'M"“*-\H\\H ; ; ;
int average; // average of grades VanaMegfadeCounterstheIoops
control variable.

Fig. 4.6 | Counter-controlled repetition: class-average problem. (Part 2 of 3.)

46
47
48
49
50
S
52
53
54
55
56
37
58
59
60
61
62
63
64
65
66
67

// initialization phase
total = 0; // initialize total
gradeCounter = 1; // initialize loop counter =

// processing phase

while (gradeCounter <= 10) // loop 10 times

{
System.out.print("Enter grade: "); // prompt
grade = input.nextInt(); // input next grade
total = total + grade; // add grade to total

gradeCounter = gradeCounter + 1; // increment counter by 1 e—— |

} // end while

// termination phase

average = total / 10; // integer division yields integer result «——

// display total and average of grades

Initializes gradeCounter to 1
indicates first grade about to be input

Increments
gradeCounter

Calculates average
with integer arithmetic

System.out.printf("\nTotal of all 10 grades is %d\n", total);

System.out.printf("Class average 1is %d\n", average);
} // end method determineClassAverage
} // end class GradeBook

Fig. 4.6 | Counter-controlled repetition: class-average problem. (Part 3 of 3.)

1 // Fig. 4.7: GradeBookTest.java

2 // Create GradeBook object and invoke its determineClassAverage method.
3

4 public class GradeBookTest

5 {

6 public static void main(String[] args)

7 {

8 // create GradeBook object myGradeBook and

9 // pass course name to constructor

10 GradeBook myGradeBook = new GradeBook(

11 "CS101 Introduction to Java Programming”);

12

13 myGradeBook.displayMessage(); // display welcome message

14 myGradeBook.determineClassAverage(); // find average of 10 grades
15 } // end main

16 } // end class GradeBookTest

Fig. 4.7 | GradeBookTest class creates an object of class GradeBook (Fig. 4.6)
and invokes its determineClassAverage method. (Part | of 2.)

Welcome to the grade book for
CS101 Introduction to Java Programming!

Enter grade: 67
Enter grade: 78
Enter grade: 89
Enter grade: 67
Enter grade: 87
Enter grade: 98
Enter grade: 93
Enter grade: 85
Enter grade: 82
Enter grade: 100

Total of all 10 grades 1is 846
Class average is 84

Fig. 4.7 | GradeBookTest class creates an object of class GradeBook (Fig. 4.6)
and invokes its determineClassAverage method. (Part 2 of 2.)

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition

» Develop a class-averaging program
that processes grades for an
arbitrary number of students each
time it 1s run-

» Sentinel-controlled repetition is often called indefinite
repetition because the number of repetitions Is not
known before the loop begins executing.

» A special value called a sentinel value (also called a
signal value, a dummy value or a flag value) can be
used to indicate “‘end of data entry.”

» A sentinel value must be chosen that cannot be
confused with an acceptable input value.

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition (Cont.)

» Top-down, stepwise refinement

» Begin with a pseudocode representation of the top—a single
statement that conveys the overall function of the program:
- Determine the class average for the quiz

» The top Is a complete representation of a program. Rarely
conveys sufficient detail from which to write a Java program.

» Divide the top into a series of smaller tasks and list these in the
order in which they’ll be performed.

» First refinement:

- Initialize variables _
Input, sum and count the quiz grades
Calculate and print the class average

» This refinement uses only the sequence structure—the steps
listed should execute in order, one after the other.

4.9 Formulating Algorithms:
Sentinel-Controlled Repetition
(Cont.)

» Second refinement: commit to specific variables.

» The pseudocode statement
Initialize variables

» can be refined as follows:

Initialize total to zero
Initialize counter to zero

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition (Cont.)

» The pseudocode statement
Input, sum and count the quiz grades

» requires a repetition structure that successively inputs each
grade.

» We do not know in advance how many grades are to be
processed, so we’ll use sentinel-controlled repetition.

» The second refinement of the preceding pseudocode
statement is then

Prompt the user to enter the first grade
Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel
Add this grade into the running total

Add one to the grade counter

Prompt the user to enter the next grade

Input the next grade (possibly the sentinel)

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition (Cont.)

» The pseudocode statement
Calculate and print the class average

» can be refined as follows:

If the counter is not equal to zero

Set the average to the total divided by the counter
Print the average

else

Print “No grades were entered”

» Test for the possibility of division by zero—a logic
error that, If undetected, would cause the program to
fail or produce invalid output.

1 Initialize total to zero
2 [nitialize counter to zero
3
4 Prompt the user to enter the first grade
5 Input the first grade (possibly the sentinel)
6
7 While the user has not yet entered the sentinel
8 Add this grade into the running total
9 Add one to the grade counter
10 Prompt the user to enter the next grade
11 Input the next grade (possibly the sentinel)
12
13 [fthe counter is not equal to zero
14 Set the average to the total divided by the counter
15 Print the average
16 clse
17 Print “No grades were entered”

Fig. 4.8 | Class-average problem pseudocode algorithm with sentinel-controlled
repetition.

1 // Fig. 4.9: GradeBook.java

2 // GradeBook class that solves class-average program using
3 // sentinel-controlled repetition.

4 dimport java.util.Scanner; // program uses class Scanner
5

6 public class GradeBook

7 {

8 private String courseName; // name of course this GradeBook represents
9

10 // constructor initializes courseName

11 public GradeBook(String name)

12 {

13 courseName = name; // initializes courseName

14 } // end constructor

I5

16 // method to set the course name

17 public void setCourseName(String name)

18 {

19 courseName = name; // store the course name
20 } // end method setCourseName
21

Fig. 4.9 | Sentinel-controlled repetition: Class-average problem. (Part | of 4.)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

// method to retrieve the course name
public String getCourseName()
{
return courseName;
} // end method getCourseName

// display a welcome message to the GradeBook user
public void displayMessage()
{

// getCourseName gets the name of the course

System.out.printf("Welcome to the grade book for\n%s!\n\n",

getCourseName());
} // end method displayMessage

// determine the average of an arbitrary number of grades
public void determineClassAverage()

{

// create Scanner to obtain input from command window

Declare method
determineClassAverage

Scanner input = new Scanner(System.in);

int total; // sum of grades
int gradeCounter; // number of grades entered

int grade; // grade value ‘/f/”’//(

Will calculate and store a floating-
point average

double average; // number with decimal point for average

Fig. 4.9 | Sentinel-controlled repetition: Class-average problem. (Part 2 of 4.)

46
47
48
49
50
S
52
53
54
55
56
37
58
59
60
61
62
63
64
65
66

// initialization phase
total = 0; // initialize total
gradeCounter = 0; // initialize loop counter =

// processing phase
// prompt for input and read grade from user

Initializes gradeCounter to 0; no
grades have been input yet and first
grade could be the sentinel value

System.out.print("Enter grade or -1 to quit: "); e«—

grade = input.nextInt();

// Toop until sentinel value read from user
while (grade != -1)

{
total = total + grade; // add grade to total

Obtain first grade before the loop in
sentinel-controlled repetition

gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read next grade from user
System.out.print("Enter grade or -1 to quit: ");
grade = input.nextInt();

} // end while

-

Obtain subsequent grades at the end
of the loop in sentinel-controlled
repetition

Fig. 4.9 | Sentinel-controlled repetition: Class-average problem. (Part 3 of 4.)

67 // termination phase

e /1 1 senerterad 2t lsast one grade. .. Test forthe possibity of dision by
70 { Zero

71 // calculate average of all grades entered ;
72 average = (double) total / gradeCounter; - thcmiopemﬂntofpmeafbahng
73 point average calculation

74 // display total and average (with two digits of precision)

75 System.out.printf("\nTotal of the %d grades entered is %d\n",

76 gradeCounter, total);

77 System.out.printf("Class average is %.2f\n", average);

78 } // end if

79 else // no grades were entered, so output appropriate message

80 System.out.printin("No grades were entered");

81 } // end method determineClassAverage

82 } // end class GradeBook

Fig. 4.9 | Sentinel-controlled repetition: Class-average problem. (Part 4 of 4.)

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition (Cont.)

4
4

Integer division yields an integer result.

To perform a floating-point calculation with integers, temporarily treat
these values as floating-point numbers for use in the calculation.

The unary cast operator (double) creates a temporary floating-point
copy of its operand.

Cast operator performs explicit conversion (or type cast).
The value stored in the operand is unchanged.
Promotion (or implicit conversion) performed on operands.

In an expression containing values of the types 1nt and doub e, the
1nt values are promoted to doub 1e values for use in the expression.

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition (Cont.)

» Cast operators are available for any type.

» Cast operator formed by placing parentheses around the
name of a type.

» The operator Is a unary operator (i.e., an operator that takes
only one operand).

1 // Fig. 4.10: GradeBookTest.java

2 // Create GradeBook object and invoke its determineClassAverage method.
3

4 public class GradeBookTest

5 {

6 public static void main(String[] args)

7 {

8 // create GradeBook object myGradeBook and

9 // pass course name to constructor

10 GradeBook myGradeBook = new GradeBook(

11 "CS101 Introduction to Java Programming”);

12

13 myGradeBook.displayMessage(); // display welcome message

14 myGradeBook.determineClassAverage(); // find average of grades
15 } // end main

16 } // end class GradeBookTest

Fig. 4.10 | GradeBookTest class creates an object of class GradeBook (Fig. 4.9)
and invokes its determineClassAverage method. (Part | of 2.)

Welcome to the grade book for
CS101 Introduction to Java Programming!

Enter grade or -1 to quit: 97
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 72
Enter grade or -1 to quit: -1

Total of the 3 grades entered is 257
Class average is 85.67

Fig. 4.10 | GradeBookTest class creates an object of class GradeBook (Fig. 4.9)
and invokes its determineClassAverage method. (Part 2 of 2.)

4.10 Formulating Algorithms: Nested
Control Statements

» This case study examines nesting one control statement
within another.

» A college offers a course that prepares students for the
state licensing exam for real estate brokers. Last year,
ten of the students who completed this course took the
exam. The college wants to know how well its students
did on the exam. You’ve been asked to write a program
to summarize the results. You’ve been given a list of
these 10 students. Next to each name is written a 1 if
the student passed the exam or a 2 if the student failed.

4.10 Formulating Algorithms:

Nested Control Statements (Cont.)

» This case study examines nesting one control statement
within another.

» Your program should analyze the results of the
exam as follows:

= Tnput each test result (i.e.- a 1l or a 2).

Display the message "“Enter result™ on the screen

each time the program requests another test
result.

= Count the number of test results of each type.

= Display a summary of the test resultss
indicating the number of students who passed and
the number who failed-.

= If more than eight students passed the exam-
print the message '"“Bonus to instructor!™

I [Initialize passes to zero
2 [nitialize failures to zero
3 [Initialize student counter to one
4
5 While student counter is less than or equal to 10
0 Prompt the user to enter the next exam result
7 Input the next exam result
8
9 If the student passed
10 Add one ro passes
11 Else
12 Add one to failures
13
14 Add one to student counter
15

16 Print the number of passes
17 Print the number of failures

I8
19 [f more than eight students passed
20 Print “Bonus to instructor!”

Fig. 4.11 | Pseudocode for examination-results problem.

1 // Fig. 4.12: Analysis.java

2 // Analysis of examination results.

3 import java.util.Scanner; // class uses class Scanner

4

5 public class Analysis

6 {

7 public static void main(String[] args)

8 {

9 // create Scanner to obtain input from command window

10 Scanner 1input = new Scanner(System.in);

11

12 // initializing variables in declarations

13 int passes = 0; // number of passes =

14 int failures = 0; // number of failures -w Dedamgqﬁnmhﬂge;ifnﬁnskn
15 int studentCounter = 1; // student counter_J passes, fariures and students
16 int result; // one exam result (obtains value from user)

17

18 rocess 10 students using counter-controlled Too " :
19 V/\Iﬁ-']pe (Studentczunter‘ :=1 lg) l;' P whﬂel'epetltlon statement iterates 10
20 { - times
21 // prompt user for input and obtain value from user
22 System.out.print("Enter result (1 = pass, 2 = fail): ");
23 result = input.nextInt();

Fig. 4.12 | Nested control structures: Examination-results problem. (Part | of 4.)

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// if...else nested in while

if (result == 1) // if result 1,
passes = passes + 1; // increment passes; -
else // else result is not 1, so

failures = failures + 1; // increment failures

// increment studentCounter so loop eventually terminates
studentCounter = studentCounter + 1;
} // end while

// termination phase; prepare and display results
System.out.printf("Passed: %d\nFailed: %d\n", passes, failures);

// determine whether more than 8 students passed
if (passes > 8)
System.out.printin("Bonus to instructor!");
} // end main
} // end class Analysis

Increment passes or
failures based on
user’s input.

Fig. 4.12 | Nested control structures: Examination-results problem. (Part 2 of 4.)

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed: 9

Failed: 1

Bonus to instructor!

Fig. 4.12 | Nested control structures: Examination-results problem. (Part 3 of 4.)

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed: 6

Failed: 4

Fig. 4.12 | Nested control structures: Examination-results problem. (Part 4 of 4.)

4.11 Compound Assignment Operators

» Compound assignment operators abbreviate assignment expressions.

» Statements like
variable= variable operator expression,
where operator is one of the binary operators +, -, *, / or % can be
written in the form
variable operator= expression,
» Example:
C =C + 3;
can be written with the addition compound assignment operator, +=, as
C += 3;
» The += operator adds the value of the expression on its right to the
value of the variable on its left and stores the result in the variable on
the left of the operator.

Assignment operator Sample expression Explanation Assigns

+= C +=7 cC=¢+ 7 10to ¢
— d -= 4 d=d -4 ltod
e e *= § e=e *5 20to e
/= f /=3 f=Ff/3 2w f
%= g %= 9 g=9%9 3tog

Fig. 4.13 | Arithmetic compound assignment operators.

412 Increment and Decrement
Operators

» Unary increment operator, ++, adds one to its operand

» Unary decrement operator, ——, subtracts one from its
operand

» An Increment or decrement operator that is prefixed to
(placed before) a variable is referred to as the prefix
Increment or prefix decrement operator, respectively.

» An increment or decrement operator that is postfixed to
(placed after) a variable is referred to as the postfix
Increment or postfix decrement operator, respectively.

Operator

Operator
name

Sample
expression

Explanation

++

++

prefix
increment

postfix
increment

prefix

decrement

postfix
decrement

++a

Increment a by 1, then use the new value of a in
the expression in which a resides.

Use the current value of a in the expression in
which a resides, then increment a by 1.

Decrement b by 1, then use the new value of b in
the expression in which b resides.

Use the current value of b in the expression in
which b resides, then decrement b by 1.

Increment and decrement operators.

Uses current value,
then increments ¢

[ncrements c then uses
new value

1 // Fig. 4.15: Increment.java

2 // Prefix increment and postfix increment operators.
3

4 public class Increment

5 {

6 public static void main(String[] args)

7 {

8 int c;

9

10 // demonstrate postfix increment operator

11 c =5; // assign 5 to c

12 System.out.printin(c); // prints 5

13 System.out.println(c++); // prints 5 then postincrements «—————
14 System.out.println(c); // prints 6

15

16 System.out.printin(); // skip a Tine

17

18 // demonstrate prefix increment operator

19 c =5; // assign 5 to ¢
20 System.out.printin(¢); // prints 5
21 System.out.printin(++c); // preincrements then prints 6 =
22 System.out.printin(c); // prints 6
23 } // end main

24 } // end class Increment

Fig. 4.15 | Preincrementing and postincrementing. (Part | of 2.)

Fig. 4.15 | Preincrementing and postincrementing. (Part 2 of 2.)

4.13 Primitive Types

» Appendix D lists the eight primitive types in Java.
» Java requires all variables to have a type.
» Java Is a strongly typed language.

» Primitive types in Java are portable across all platforms
that support Java.

» Instance variables of types char, byte, short, 1nt,
long, float and doub1e are all given the value O
by default. Instance variables of type boolean are
given the value Talse by default.

» Reference-type instance variables are initialized by
default to the value nul 1.

4.14 (Optional) GUI and Graphics Case
Study: Creating Simple Drawings

» Java’s coordinate system is a scheme for identifying points on the
screen.

» The upper-left corner of a GUI component has the coordinates (O,
0).

» A coordinate pair is composed of an x-coordinate (the horizontal
coordinate) and a y-coordinate (the vertical coordinate).

» The x-coordinate Is the horizontal location (from left to right).

» The y-coordinate Is the vertical location (from top to bottom).

» The x-axis describes every horizontal coordinate, and the y-axis
every vertical coordinate.
» Coordinate units are measured in pixels. The term pixel stands

for “picture element.” A pixel 1s a display monitor’s smallest unit
of resolution.

(0, 0) o > X-axis

S ®(x,y

\J

y-axis

Fig. 4.17 | Java coordinate system. Units are measured in pixels.

4.14 (Optional) GUI and Graphics Case
Study: Creating Simple Drawings (Cont.)

» Class Graphics (from package java.awt)

provides various methods for drawing text and shapes
onto the screen.

» Class JpPanel (from package javax.swing)
provides an area on which we can draw.

Voo ~NONUND WN =

23

// Fig. 4.18: DrawPanel.java
// Using drawLine to connect the corners of a panel.

import java.awt.Graphics;

import javax.swing.JPanel;

Import the classes Graphics and
JPanel for use in this source code file.

public class DrawPanel extends JPanel =

{

DrawPanel inherits the existing
capabilities of class JPanel

// draws an X from the corners of the panel

pubTlic void paintComponent(Graphics g) =

{

paintComponent must be displayed as
shown here

// call paintComponent to ensure the panel displays correctly

This should be the first statement

super.paintComponent(g); =

in method paintComponent

int width = getWidth(); // total width
- - . . ‘__———__‘___
int height = getHeight(); // total height

Determines the width and height of the
DrawPanel with inherited methods

// draw a Tine from the upper-left to the Tower-right

g.drawLine(0, 0, width, height); =

Draws a line from the top-left to the
bottom-right of the DrawPane

// draw a Tine from the lower-Teft to the upper-right

g.drawLine(0, height, width, 0); =

} // end method paintComponent

Draws a line from the bottom-left to
the top-right of the DrawPane1

} // end class DrawPanel

Fig. 4.18 | Using drawLine to connect the corners of a panel.

1 // Fig. 4.19: DrawPanelTest.java

: {é Afzhcitlonwx d;irr)j;y.a‘DrawPand : Imports class JFrame for use in this
4 port javax.swing.Jrrame; = source code file

5 public class DrawPanelTest

6 {

7 public static void main(String[] args)

8 {

9 // create a panel that contains our drawing

10 DrawPanel panel = new DrawPanel();

11

3 Jerame. application o new JFrame(>; o Creates a JFrane in which the

2 PP = s DrawPanel will be displayed

15 // set the frame to exit when it is closed Terminat Foat
16 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); «—— erminate application
17 when window closes
18 application.add(panel); // add the panel to the frame Attach the DrawPanel
19 application.setSize(250, 250); // set the size of the frame N rawrane

22 } // end class DrawPanelTest JFrame

i i isi o to the JF
20 application.setVisible(true); // make the frame visible '\\\\\\\ o the Jrrame
- b // end main \ Sets the size of the

Fig. 4.19 | Creating JFrame to display DrawPanel. (Part | of 2.) Displays the JFrame
on the screen

4.14 (Optional) GUI and Graphics Case
Study: Creating Simple Drawings (Cont.)

» The keyword extends creates a so-called inheritance
relationship.

» The class from which DrawPane inherits, JPanel,
appears to the right of keyword extends.

» In this inheritance relationship, JPane is called the
superclass and DrawPane | is called the subclass.

4.14 (Optional) GUI and Graphics Case
Study: Creating Simple Drawings (Cont.)

» JPanel has a paintComponent method, which the
system calls every time it needs to display the JPanel.

» The first statement in every paintComponent method

you create should always be
super.paintComponent(g);

» JPanel methods getWidth and getHeight return the
JPane1’s width and height, respectively.

» Graphics method drawLine draws a line between two
points represented by its four arguments. The first two are
the x- and y-coordinates for one endpoint, and the last two
arguments are the coordinates for the other endpoint.

4.14 (Optional) GUI and Graphics Case
Study: Creating Simple Drawings (Cont.)

» To display the DrawPane 1 on the screen, place it in a window.
» Create a window with an object of class JFrame.

» JFrame method setDefaultCloseOperation with the
argument JFrame .EXIT ON CLOSE indicates that the
application should terminate when the user closes the window.

» JFrame’s add method attaches the DrawPane 1 (or any other
GUI component) to a JFrame.

» JFrame method setSize takes two parameters that represent
the width and height of the JFrame, respectively.

» JFrame method setVvisible with the argument true
displays the JFrame.

» When a JFrame is displayed, the DrawPane’s
paintComponent method is implicitly called

2 Sl (EoleEs)

Fig. 4.19 | Creating JFrame to display DrawPanel. (Part 2 of 2.)

End of Part |

(C) 20] 0 Pearson

|||||||||| All

