Lesson 4
Control Statements: Part 2

Assoc. Prof. Dr. Marenglen Biba

OBJECTIVES
In this Chapter you'll learn:

m The essentials of counter-controlled repetition.

m To use the for and do...while repetition statements to execute statements in a program
repeatedly.

m To understand multiple selection using the switch selection statement.
m To use the break and continue program control statements to alter the flow of control.

m To use the logical operators to form complex conditional expressions in control statements.

5.1 Introduction

5.2 Essentials of Counter-Controlled Repetition

5.3 for Repetition Statement

5.4 Examples Using the for Statement

5.5 do...wh1i1e Repetition Statement

5.6 switch Multiple-Selection Statement

5.7 break and continue Statements

5.8 Logical Operators

5.9 Structured Programming Summary
5.10 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals
5.11 Wrap-Up

5.1 Introduction

» for repetition statement

» do...wh1 1e repetition statement

» switch multiple-selection statement
» break statement

» continue statement

» Logical operators

» Control statements summary.

5.2 Essentials of Counter-Controlled
Repetition

» Counter-controlled repetition requires
= a control variable (or loop counter)
= the initial value of the control variable

= the increment (or decrement) by which the control variable is
modified each time through the loop (also known as each
Iteration of the loop)

= the loop-continuation condition that determines if looping
should continue.

// Fig. 5.1: WhileCounter.java

public class WhileCounter

// Counter-controlled repetition with the while repetition statement.

{
public static void main(String[] args)
{ //,

Declares and initializes control variable
counter to 1

int counter = 1; // declare and initialize control variable

ooo~NONGKNbD WN =—

10 while (counter <= 10 op-continuation condition
11 {

12 System.out.printf("%d ", counter);

Loop-continuation condition tests for
count’s final value

13 ++counter; // increment control variable by 1

14 } // end while T

Initializes gradeCounter to 1;
indicates first grade about to be input

16 System.out.println(); // output a newline
17 } // end main
I8 1} // end class WhileCounter

1 2 3 4 5 6 7 8 9 10

Fig. 5.1 | Counter-controlled repetition with the while repetition statement.

5.3 for Repetition Statement

» for repetition statement

= Specifies the counter-controlled-repetition details in a single
line of code.

= Figure 5.2 reimplements the application of Fig. 5.1 using for.

for statement’s header contains
everything you need for counter-

1 // Fig. 5.2: ForCounter.java

2 // Counter-controlled repetition with the for repetition statement.

3

4 public class ForCounter

5 {

6 public static void main(String[] args)

7 {

8 // for statement header includes initialization,

9 // loop-continuation condition and increment
10 for (int counter = 1; counter <= 10; counter++) =— |
11 m. .printf("% " nter); o
12 =B EUE I E L oLt controlled repetition
13 System.out.println(); // output a newline
14 } // end main
IS } // end class ForCounter

1 2 3 4 5 6 7 8 9 10

Fig. 5.2 | Counter-controlled repetition with the for repetition statement.

Required Required
for Control semicolon semicolon
keyword variable separator separator

FoN l

for (int counter = 1; counter <= 10; counter++)

N -
Initial value of f _ _ Increment of
control variable Loop-continuation control variable
condition

Fig. 5.3 | for statement header components.

5.3 for Repetition Statement (Cont.)

» The general format of the Tor statement is
for (initialization;
loopContinuationCondition; increment)
statement
= the initialization expression names the loop’s control variable
and optionally provides its initial value

= loopContinuationCondition determines whether the loop
should continue executing

= Increment modifies the control variable’s value (possibly an
Increment or decrement), so that the loop-continuation
condition eventually becomes false.

» The two semicolons in the for header are required.

5.3 for Repetition Statement (Cont.)

» In most cases, the Tor statement can be represented with an
equivalent wh1 1 e statement as follows:
Initiglization;
while (loopContinuationCondition)

statement
Increment;

}

» Typically, for statements are used for counter-controlled
repetition and wh1 1e statements for sentinel-controlled
repetition.

» If the initialization expression in the Tor header declares the
control variable, the control variable can be used only in that
for statement.

» A variable’s scope defines where it can be used in a program.

= A local variable can be used only in the method that declares it and only
from the point of declaration through the end of the method.

5.3 for Repetition Statement (Cont.)

» All three expressions in a for header are optional.

= |f the loopContinuationCondition is omitted, the condition is always
true, thus creating an infinite loop.

= You might omit the initialization expression if the program initializes
the control variable before the loop.

= You might omit the increment if the program calculates it with
statements in the loop’s body or 1f no increment 1s needed.

» The increment expression in a for acts as if it were a
standalone statement at the end of the for’s body, so

counter = counter + 1
counter += 1
++counter

counter++

are equivalent increment expressions in a for statement.

5.3 for Repetition Statement (Cont.)

» The initialization, loop-continuation condition and
Increment can contain arithmetic expressions.
» For example, assumethatx =2 andy =10. If xand y
are not modified in the body of the loop, the statement
for (int J =x; J <=4 *x*vy; J+=Yy / X)
» 1S equivalent to the statement
for (int j = 2; j <= 80; j += 5)
» The increment of a for statement may be negative, in
which case it’s a decrement, and the loop counts
downward.

!

Initialize
contral variable

————— int counter = 1

\
=

\\ [counter <= 10]

Display the = Increment the

. counter value control variable
[counter > 10] \ I I
| |
\ 1 1
\ |
\ ! counter++
\ 1
I
. |
Determine whether |
looping should !
continue System.out.printf(“%d 7, counter);

Fig. 5.4 | UML activity diagram for the for statement in Fig. 5.2.

5.4 Examples Using the for
Statement

» a)Vary the control variable from 1 to
100 in increments of 1.
for (int 1 =1; 1 <= 100; 1++)
» b)Vary the control variable from 100
to 1 in decrements of 1.
for (int 1 = 100; 1 >= 1; 1--)
» c)Vary the control variable from /7 to

// 1n increments of /.
for (int i =7; 1 <=77; 1 4+=7)

(C) 2010 Pearson Education, Inc. All
rights reserved.

5.4 Examples Using the for
Statement (Cont.)

» d)Vary the control variable from 20
to 2 in decrements of 2.
for (int 1 =20; 1 >=2; 1 -= 2)
» e)Vary the control variable over the

values 21 51 81 111 141 171 20-

for (int i =2; 1 <= 20; 1 4= 3)
» f)Vary the control variable over the

values 99, 88, 77- 66- 55- 44, 33,

22, 11, 0.
for (int 1 =99; 1 >=0; 1 -= 11)

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Fig. 5.5: Sum.java

2 // Summing integers with the for statement.

3

4 public class Sum

5 {

6 public static void main(String[] args)

7 {

8 int total = 0; // initialize total

9
10 // total even integers from 2 through 20 ; T ;
11 for (int number = 2; number <= 20; number += 2) «—] yo¢thatﬂm}mﬁa?iﬁlnThﬁloop5
12 T 2, since we wish to total only the even
13 integers
14 System.out.printf("Sum is %d\n", total); // display results
15 } // end main

16 } // end class Sum

Sum is 110

Fig. 5.5 | Summing the even integers from 2 to 20 with the for statement.

5.4 Examples Using the for Statement
(Cont.)

» Compound interest application

» A person invests £1000 in a savings account
yielding 5% interest. Assuming that all the
interest is left on deposit. calculate and print
the amount of money in the account at the end of

each year for 10 years. Use the following formula
to determine the amounts:

a =p (1 + r)’

where
p 1s the original amount invested (i-e-.: the
principal)
r i1s the annual interest rate (e-g-. use 0.05
for 5%)

n is the number of years

a 1s the amount on deposit at the end of
the nth year-

5.4 Examples Using the for Statement
(Cont.)

» The solution to this problem (Fig. 5.6) involves a loop
that performs the indicated calculation for each of the
10 years the money remains on deposit.

» Java treats floating-point constants like 1000. 0 and
0.05 as type double.

» Java treats whole-number constants like 7 and -22 as
type 1nt.

// Fig. 5.6: Interest.java
// Compound-interest calculations with for.

public class Interest

{

public static void main(String[] args)

{

double amount; // amount on deposit at end of each year
double principal = 1000.0; // initial amount before interest

Voo ~NONUND WN =

10 double rate = 0.05; interest rate ; —
[Java treats floating-point literals as

double values

12 // display headers

13 System.out.printf("%s%20s\n", "Year"”, "Amount on deposit”);

14

15 // calculate amount on deposit for each of ten years

16 for (int year = 1; year <= 10; year++)

17 {

18 // calculate new amount for specified year ;

19 amount = principal * Math.pow(1.0 + rate, year); 4———-LBeSStat1cn“ﬁhOdMath'DOWto.
20 help calculate the amount on deposit

Fig. 5.6 | Compound-interest calculations with for. (Part | of 2.)

21 // display the year and the amount

22 System.out.printf("%4d%,20.2f\n", year, amount); «—
23 } // end for

24 } // end main

Comma in format specifier indicates
that large numbers should be displayed
with thousands separators

25 1} // end class Interest

Amount on deposit
1,050.00
1,102.50
1,157.63
1,215.51
1,276.28
1,340.10
1,407.10
1,477.46
1,551.33
1,628.89

<
(1)
o))
=

QWoO~NOOUVIARWNRE

=

Fig. 5.6 | Compound-interest calculations with for. (Part 2 of 2.)

5.4 Examples Using the for Statement
(Cont.)

» In the format specifier %20s, the integer 20 between the %
and the conversion character s indicates that the value
output should be displayed with a field width of 20—that
is, printf displays the value with at least 20 character
positions.

» If the value to be output is less than 20 character positions
wide, the value is right justified in the field by default.

» If the year value to be output has more characters than the
field width, the field width would be extended to the right
to accommodate the entire value.

» To Indicate that values should be output left justified,
precede the field width with the minus sign (=) formatting

flag (e.g., %-205).

5.4 Examples Using the for Statement
(Cont.)

» Java does not include an exponentiation operator—
Math class stat1c method pow can be used for
raising a value to a power.

» You can call a static method by specifying the
class name followed by a dot (.) and the method
name, as in

- ClassName.methodName(arguments)

» Math.pow(x, y) calculates the value of X raised to
the y™ power. The method receives two double
arguments and returns a doub 1e value.

5.4 Examples Using the for Statement
(Cont.)

» In the format specifier %, 20 . 2T, the comma (,)
formatting flag indicates that the floating-point value
should be output with a grouping separator.

» Separator 1s specific to the user’s locale (1.e., country).

» In the United States, the number will be output using
commas to separate every three digits and a decimal point
to separate the fractional part of the number, as in 1,234.45.

» The number 20 in the format specification indicates that the
value should be output right justified in a field width of 20
characters.

» The . 2 specifies the formatted number’s precision—in this

case, the number Is rounded to the nearest hundredth and
output with two digits to the right of the decimal point.

5.5 do...wh11e Repetition Statement

» The do..while repetition statement is similar to the
wh1 1e statement.

» In the wh1 1e, the program tests the loop-continuation
condition at the beginning of the loop, before executing
the loop’s body; if the condition 1s false, the body never
executes.

» The do...wh1 1e statement tests the loop-continuation
condition after executing the loop s body; therefore, the
body always executes at least once.

» When a do...wh1 1e statement terminates, execution
continues with the next statement in sequence.

I // Fig. 5.7: DoWhileTest.java

2 // do...while repetition statement.

3

4 public class DoWhileTest

5 {

6 public static void main(String[] args)

7 {

8 int counter = 1; // initialize counter

9
10 do
11 {
12 System.out.printf("%d ", counter);
13 ++counter;
14 } while (counter <= 10); // end do...while
I5
16 System.out.printin(); // outputs a newline
17 } // end main

I8 1} // end class DoWhileTest

Condition tested at end of loop, so
loop always executes at least once

1 2 3 4 5 6 7 8 9 10

Fig. 5.7 | do...while repetition statement.

Display the

System.out.printf(“%d ", counter); -----
counter value
e counter - - — — - Increment the

control variable

Determine whether _ _ _ _ _ _ _ _ _ _ [counter <= 10]

looping should
continue [counter > 10]

Fig. 5.8 | do.while repetition statement UML activity diagram.

5.5 do...wh11e Repetition Statement
(Cont.)

» Braces are not required in the do...wh1 1e repetition
statement if there’s only one statement in the body.

» Most programmers include the braces, to avoid
confusion between the whi1le and do...while

Statements.

» Thus, the do...wh1 1e statement with one body

statement Is usually written as follows:
- do
{

statement
} while (condition);

5.6 switch Multiple-Selection Statement

» switch multiple-selection statement performs

different actions based on the possible values of a
constant integral expression of type byte, short,

1nt or char.

No need to initialize these totals and
counters to 0, though many
programmers consider this a good
programming practice

1 // Fig. 5.9: GradeBook.java

2 // GradeBook class uses switch statement to count letter grades.
3 import java.util.Scanner; // program uses class Scanner

4

5 public class GradeBook

6 {

7 private String courseName; // name of course this GradeBook represents
8 // int instance variables are initialized to 0 by default ~
9 private int total; // sum of grades

10 private int gradeCounter; // number of grades entered

11 private int aCount; // count of A grades

12 private int bCount; // count of B grades

13 private int cCount; // count of C grades

14 private int dCount; // count of D grades

15 private int fCount; // count of F grades

16

17 // constructor initializes courseName;

18 public GradeBook(String name)

19 {
20 courseName = name; // initializes courseName
21 } // end constructor
22

Fig. 5.9 | GradeBook class uses switch to count letter grades. (Part I of 6.)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// method to set the course name
public void setCourseName(String name)
{
courseName = name; // store the course name
} // end method setCourseName

// method to retrieve the course name
public String getCourseName()
{
return courseName;
} // end method getCourseName

// display a welcome message to the GradeBook user
pubTlic void displayMessage()
{
// getCourseName gets the name of the course
System.out.printf("Welcome to the grade book for\n%s!\n\n",
getCourseName());
} // end method displayMessage

Fig. 5.9 | GradeBook class uses switch to count letter grades. (Part 2 of 6.)

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

// input arbitrary number of grades from user
pubTic void inputGrades()
{

Scanner input = new Scanner(System.in);
int grade; // grade entered by user

System.out.printf("%s\n%s\n %s\n %s\n",
"Enter the integer grades in the range 0-100.",
"Type the end-of-file indicator to terminate input:",
"On UNIX/Linux/Mac 0S X type <Ctrl> d then press Enter",
"On Windows type <Ctrl> z then press Enter");

// 1loop until user enters the end-of-file indicator
while (input.hasNext()) =

{

Loop continutes until end-of-file
indicator is encountered

grade = input.nextInt(); // read grade
total += grade; // add grade to total
++gradeCounter; // increment number of grades

// call method to increment appropriate counter
incrementLetterGradeCounter(grade);
} // end while
} // end method inputGrades

Fig. 5.9 | GradeBook class uses switch to count letter grades. (Part 3 of 6.)

67

68 // add 1 to appropriate counter for specified grade

69 private void incrementLetterGradeCounter(int grade)

70 {

[4 // determine which grade was entered ; ;
72 switch (grade / 10) grade/}OlsthegonQOMng
73 { expresmon;resuhnng|ntegeryahJe|s
74 case 9: // grade was between 90 compared to each case label’s value
75 case 10: // and 100, inclusive

76 ++aCount; // increment aCount

77 break; // necessary to exit switch

78

79 case 8: // grade was between 80 and 89

80 ++bCount; // increment bCount

81 break; // exit switch

82

83 case 7: // grade was between 70 and 79

84 ++cCount; // increment cCount

85 break; // exit switch

86

87 case 6: // grade was between 60 and 69

88 ++dCount; // increment dCount

89 break; // exit switch

90

Fig. 5.9 | GradeBook class uses switch to count letter grades. (Part 4 of 6.)

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
1l

default: // grade was less than 60 ,\\\\\\\

++fCount; // increment fCount

break; // optional; will exit switch anyway

default case executes for grades less
than 60

} // end switch
} // end method incrementLetterGradeCounter

// display a report based on the grades entered by user
public void displayGradeReport()

{
System.out.printin("\nCrade Report:");

// 1f user entered at least one grade...

if (gradeCounter != 0) =

Tests for possibility of division by zero

{

// calculate average of all grades entered
double average = (double) total / gradeCounter;

// output summary of results

System.out.printf("Total of the %d grades entered is %d\n",

gradeCounter, total);
System.out.printf("Class average is %.2f\n", average);

Fig. 5.9 | GradeBook class uses switch to count letter grades. (Part 5 of 6.)

112 System.out.printf("%s\n%s%d\n%s%d\n%s%d\n%s%d\n%s%d\n",

113 "Number of students who received each grade:",

114 "A: ", aCount, // display number of A grades

115 "B: ", bCount, // display number of B grades

116 "C: ", cCount, // display number of C grades

117 "D: ", dCount, // display number of D grades

118 "F: ", fCount); // display number of F grades

119 } // end if

120 else // no grades were entered, so output appropriate message
121 System.out.println("No grades were entered”);

122 } // end method displayGradeReport

123 1} // end class GradeBook

Fig. 5.9 | GradeBook class uses switch to count letter grades. (Part 6 of 6.)

Voo ~NONUND WN =

16
17

// Fig. 5.10: GradeBookTest.java
// Create GradeBook object, input grades and display grade report.

public class GradeBookTest
{
public static void main(String[] args)
{
// create GradeBook object myGradeBook and
// pass course name to constructor
GradeBook myGradeBook = new GradeBook(

"CS101 Introduction to Java Programming"); Calling GradeBook pubTic methods

myGradeBook.displayMessage(); // display welcome messagg//_g≫é;;ijiggfnzegmde&then
myGradeBook.inputGrades(); // read grades from user

myGradeBook.displayGradeReport(); // display report based on grades
} // end main
} // end class GradeBookTest

Fig. 5.10 | GradeBookTest creates a GradeBook object and invokes its
methods. (Part | of 3.)

Welcome to the grade book for
CS101 Introduction to Java Programming!

Enter the integer grades in the range 0-100.

Type the end-of-file indicator to terminate input:
On UNIX/Linux/Mac 0S X type <Ctrl> d then press Enter
On Windows type <Ctrl> z then press Enter

99

92

45

57

63

71

76

85

90

100

AZ

Fig. 5.10 | GradeBookTest creates a GradeBook object and invokes its
methods. (Part 2 of 3)

Grade Report:

Total of the 10 grades entered is 778
Class average 1i1s 77.80

Number of students who received each grade:
A: 4

B: 1
C: 2
D: 1
F: 2

Fig. 5.10 | GradeBookTest creates a GradeBook object and invokes its
methods. (Part 3 of 3.)

5.6 switch Multiple-Selection Statement
(Cont.)

» Scahher method hasNext determine whether there

IS more data to input. This method returns the
boolean value true if there is more data; otherwise,
it returns false.

» As long as the end-of-file indicator has not been typed,
method hasNext will return true.

5.6 switch Multiple-Selection Statement
(Cont.)

>

The switch statement consists of a block that contains a
sequence of case labels and an optional default case.

The program evaluates the controlling expression in the
parentheses following keyword switch.

The program compares the controlling expression’s value
(which must evaluate to an integral value of type byte,
char, short or 1nt) with each case label.

If @ match occurs, the program executes that case’s
statements.

The break statement causes program control to proceed
with the first statement after the sw1 tch.

5.6 switch Multiple-Selection Statement
(Cont.)

» switch does not provide a mechanism for testing ranges of
values—every value must be listed in a separate case label.

» Note that each case can have multiple statements.

» switch differs from other control statements in that it does not
require braces around multiple statements in a case.

» Without break, the statements for a matching case and
subsequent cases execute until a break or the end of the
switch is encountered. This is called “falling through.”

» If no match occurs between the controlling expression’s value
and a case label, the default case executes.

» If no match occurs and there is no default case, program
control simply continues with the first statement after the
switch.

[true] ; :
case a - case aactions(s) ’% M‘

[false]
(
case b ————<>% case b actions(s) ’9 break ’9< >
[false] |
/

[true] ,
Case 7 - case zactions(s) }% break H >
[false]

default actions(s)

Fig. 5.11 | switch multiple-selection statement UML activity diagram with
break statements.

5.7 break and continue Statements

» The break statement, when executed in awh1 1e,
for, do...while or switch, causes immediate exit

from that statement.
» Execution continues with the first statement after the
control statement.

» Common uses of the break statement are to escape
early from a loop or to skip the remainder of a
switch.

//

{

ooo~NONGKNbD WN =—

Fig. 5.12: BreakTest.java

public static voi

{

// break statement exiting a for statement.
public class BreakTest

d main(String[] args)

int count; // control variable also used after Toop terminates

for (count =

{
if (count
break;

System.out.
} // end for

1; count <= 10; count++) // loop 10 times

==5) // if count is 5,

// terminate Toop =

printf("%d ", count);

Terminates the loop immediately and
program control continues at line 17

System.out.printf("\nBroke out of loop at count = %d\n", count);

} // end main

19 3} // end class BreakTest

1234

Broke out of loop at count = 5

Fig. 5.12 | break statement exiting a for statement.

5.7 break and continue Statements
(Cont.)

» The cont1nue statement, when executed in a
while, foror do...wh1i1e, skips the remaining

statements in the loop body and proceeds with the next
Iteration of the loop.

» Inwh11e and do...wh1 1e statements, the program

evaluates the loop-continuation test immediately after
the cont1nue statement executes.

» In a for statement, the increment expression executes,
then the program evaluates the loop-continuation test.

I // Fig. 5.13: ContinueTest.java

2 // continue statement terminating an iteration of a for statement.

3 public class ContinueTest

4 {

5 public static void main(String[] args)

6 {

7 for (int count = 1; count <= 10; count++) // loop 10 times

8 {

9 if (count == 5) // if count 1is 5, ; : :
10 continue; // skip remaining code in loop = TmﬂunNBSUJWQtnemUonofbop
[and proceeds to increment
12 System.out.printf("%d ", count);
13 } // end for
14
15 System.out.println("\nUsed continue to skip printing 5");
16 } // end main

17 } // end class ContinueTest

123467 8910
Used continue to skip printing 5

Fig. 5.13 | continue statement terminating an iteration of a for statement.

5.8 Logical Operators

» Java’s logical operators enable you to form more
complex conditions by combining simple conditions.

» The logical operators are
= && (conditional AND)
= | | (conditional OR)
= & (boolean logical AND)
= | (boolean logical inclusive OR)
= A (boolean logical exclusive OR)
= | (logical NOT).
» [Note: The &, | and A operators are also bitwise
operators when they are applied to integral operands.]

5.8 Logical Operators (Cont.)

» The && (conditional AND) operator ensures that two
conditions are both true before choosing a certain path
of execution.

» The table in Fig. 5.14 summarizes the && operator. The
table shows all four possible combinations of false
and true values for expressionl and expression2.

» Such tables are called truth tables. Java evaluates to
false or true all expressions that include relational
operators, equality operators or logical operators.

expression | expression2 expression | && expression2

false false false
false true false
true false false
true true true

Fig. 5.14 | && (conditional AND) operator truth table.

5.8 Logical Operators (Cont.)

» The | | (conditional OR) operator ensures that either

or both of two conditions are true before choosing a
certain path of execution.

» Figure 5.15 is a truth table for operator conditional OR
(1 1).

» Operator && has a higher precedence than operator | |.

» Both operators associate from left to right.

expression | expression2 expression| || expression2

false false false
false true true
true false true
true true true

Fig. 5.15 | || (conditional OR) operator truth table.

5.8 Logical Operators (Cont.)

>

The ! (logical NOT, also called logical negation or logical
complement) operator “reverses” the meaning of a
condition.

The logical negation operator is a unary operator that has
only a single condition as an operand.

The logical negation operator is placed before a condition to
choose a path of execution if the original condition (without
the logical negation operator) is false.

In most cases, you can avoid using logical negation by
expressing the condition differently with an appropriate
relational or equality operator.

Figure 5.17 is a truth table for the logical negation operator.

expression lexpression

false true
true false

Fig. 5.17 | 1 (logical negation,
or logical NOT) operator truth table.

5.8 Logical Operators (Cont.)

» Figure 5.18 produces the truth tables discussed in this
section.

» The $b format specifier displays the word “true” or
the word “false” based on a boo1ean expression’s
value.

Value of each
condition like this is
displayed using format
specifier %b

1 // Fig. 5.18: LogicalOperators.java

2 // Logical operators.

3

4 public class LogicalOperators

5 |

6 public static void main(String[] args)

7 {

8 // create truth table for && (conditional AND) operator

9 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",
10 "Conditional AND (&&)'", "false && false", (false && false), «——|
11 "false && true", (false && true),

12 "true && false”, (true &% false),

13 "true && true", (true && true));

14

15 // create truth table for || (conditional OR) operator

16 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",
17 "Conditional OR (|]|)", "false || false"™, (false || false),
18 "false || true", (false || true),

19 "true || false", (true || false),
20 "true || true", (true || true));
21

Fig. 5.18 | Logical operators. (Part | of 4.)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// create truth table for & (boolean logical AND) operator
System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",
"Boolean Tlogical AND (&))", "false & false”, (false & false),
"false & true", (false & true),
"true & false", (true & false),
"true & true", (true & true));

// create truth table for | (boolean logical inclusive OR) operator
System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",
"Boolean logical inclusive OR (]|)",
"false | false", (false | false),
"false | true", (false | true),
"true | false", (true | false),
"true | true", (true | true));

// create truth table for A (boolean logical exclusive OR) operator
System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",
"Boolean logical exclusive OR (A)",
"false A false", (false A false),
"false A true", (false A true),
"true A false", (true A false),
"true A true", (true A true));

Fig. 5.18 | Logical operators. (Part 2 of 4.)

45 // create truth table for ! (logical negation) operator

46 System.out.printf("%s\n%s: %b\n%s: %b\n", "Logical NOT (!)",
47 "Ifalse", (Ifalse), "!true”™, (!true));
48 } // end main

49 1} // end class LogicalOperators

Conditional AND (&&)

false && false: false
false && true: false

true && false: false

true && true: true

Conditional OR (| |)

false || false: false
false || true: true
true || false: true
true || true: true

Boolean logical AND (&)
false & false: false
false & true: false
true & false: false
true & true: true

Fig. 5.18 | Logical operators. (Part 3 of 4.)

Boolean Tlogical inclusive OR (|)
false | false: false

false | true: true

true | false: true

true | true: true

Boolean logical exclusive OR (A)
false A false: false

false A true: true

true A false: true

true A true: false

Logical NOT (!)
Ifalse: true
Itrue: false

Fig. 5.18 | Logical operators. (Part 4 of 4.)

5.9 Structured Programming Summary

» Figure 5.20 uses UML activity diagrams to summarize
Java’s control statements.

» Java Includes only single-entry/single-exit control
statements—there is only one way to enter and only one
way to exit each control statement.

» Connecting control statements in sequence to form
structured programs is simple. The final state of one control
statement Is connected to the initial state of the next—that
IS, the control statements are placed one after another in a
program in sequence. We call this control-statement
stacking.

» The rules for forming structured programs also allow for
control statements to be nested.

Sequence Selection

1

if statement switch statement with breaks
(single selection) (multiple selection)

§ [t]
—=> break —

>i — break 9<g

if...else statement
(double selection)

(t]

/e —= break %<$

&' [f

®

default processing

®-

Fig. 5.20 | Java's single-entry/single-exit sequence, selection and repetition
statements. (Part | of 2.)

Repetition

while statement do...while statement for statement

<gH‘ DN initialization
% [t]

[t]

®
—= increment

Fig. 5.20 | Java's single-entry/single-exit sequence, selection and repetition
statements. (Part 2 of 2.)

5.9 Structured Programming Summary
(Cont.)

» Structured programming promotes simplicity.

» Bohm and Jacopini: Only three forms of control are
needed to implement an algorithm:

= Sequence
= Selection
= Repetition

5.10 (Optional) GUI and Graphics Case
Study: Drawing Rectangles and Ovals

>
>

Graphics methods drawRect and drawOval

Method drawRect requires four arguments. The first two
represent the x- and y-coordinates of the upper-left corner of
the rectangle; the next two represent the rectangle’s width

and height.

To draw an oval, method drawOval creates an imaginary
rectangle called a bounding rectangle and places inside it
an oval that touches the midpoints of all four sides.

Method drawOval requires the same four arguments as
method drawRect. The arguments specify the position
and size of the bounding rectangle for the oval.

1 // Fig. 5.26: Shapes.java

2 // Demonstrates drawing different shapes.
3 import java.awt.Graphics;

4 1import javax.swing.JPanel;

5

6 public class Shapes extends JPanel

7 {

8 private int choice; // user's choice of which shape to draw
9

10 // constructor sets the user's choice
11 public Shapes(int userChoice)

12 {

13 choice = userChoice;

14 } // end Shapes constructor

15

Fig. 5.26 | Drawing a cascade of shapes based on the user’s choice. (Part | of 2.)

16 // draws a cascade of shapes starting from the top-left corner

17 public void paintComponent(Graphics g)

18 {

19 super.paintComponent(g);

20

21 for (int i = 0; 1 < 10} 4+)

22 {

23 // pick the shape based on the user's choice

24 switch (choice)

25 { Draws a rectangle starting at the x-y

26 case 1: // draw rectangles coordinates specified as the first two
27 g.drawRect(10 + i * 10, 10 + i * 10, = arguments with the width and height
28 50 + i * 10, 50 + i * 10); specified by the last two arguments

29 break;

30 case 2: // draw ovals _ Draws an oval in the bounding

31 g.draw0v§1(10 + 1 * }0, 10 + i * 10, e— rectangle starting at the x-y

32 50 + 1 * 10, 50 + 1 * 10); coordinates specified as the first two
33 breaki arguments with the width and height
34 } // end switch specified by the last two arguments

35 } // end for

36 } // end method paintComponent

37 } // end class Shapes

Fig. 5.26 | Drawing a cascade of shapes based on the user’s choice. (Part 2 of 2.)

I // Fig. 5.27: ShapesTest.java

2 // Test application that displays class Shapes.

3 import javax.swing.JFrame;

4 import javax.swing.JOptionPane;

5

6 public class ShapesTest

7 {

8 public static void main(String[] args)

9 {

10 // obtain user's choice

11 String input = JOptionPane.showInputDialog(
12 "Enter 1 to draw rectangles\n" +

13 "Enter 2 to draw ovals");

14

15 int choice = Integer.parseInt(input); // convert input to int
16

17 // create the panel with the user's input
18 Shapes panel = new Shapes(choice);

19
20 JFrame application = new JFrame(); // creates a new JFrame
21

Fig. 5.27 | Obtaining user input and creating a JFrame to display Shapes. (Part |
of 3.)

22 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

23 application.add(panel); // add the panel to the frame
24 application.setSize(300, 300); // set the desired size
25 application.setVisible(true); // show the frame
26 } // end main
27 1} // end class ShapesTest
Input | oo e |
Enter 1 to draw rectangles
o Enter 2 to draw ovals
K |
Cancel

Fig. 5.27 | Obtaining user input and creating a JFrame to display Shapes. (Part 2
of 3.)

- = BEic]
Enter 1 to draw rectangles
Enter 2 to draw ovals
2 |
Cancel

Fig. 5.27 | Obtaining user input and creating a JFrame to display Shapes. (Part 3
of 3.)

Exercises

» Program that prints the product of the odd
integers from 1 to 15.

» Program that calculates Pythagorean triples
(until 500).

» Program that prints 5 groups of 3 lines, each
containing 4 asterisks.

More Exercises on Graphics

» Graphics

= Program prints 5 histograms with lengths inserted
by user

» Graphics

= Draw concentric circles at the center of the panel

Home exercises

= Develop a program that serves as a calculator

- Addition

- Multiplication

- Division

- Subtraction

- Power (for xy user is asked x and vy)

+ Sin

- Cos

- Log
= Menu of choice

- A particular number for each menu choice (-1 exit)

- User inserts the numbers after selecting the operation
= Check for all incorrect operations: division by zero, Log(-1) etc.

Home exercises - GUI use

» Develop a program that based on the previous
calculator, performs all the operations via GUI.

Use an object-oriented approach to separate the

4

function
Develop
= Show t

s of the calculator from the GUI.
the following:
he menu in a window where the user can

insert the choice in a textfield.

= Once t
to read

ne user makes the choice, show windows
the values from the user.

= Show t

ne result of the operation in a window

= Show again the main menu window

End of class

