Lesson 5 — Part |
Methods: A Deeper Look

Assoc. Prof. Marenglen Biba

OBJECTIVES
In this Chapter you'll learn:

m How static methods and fields are associated with an entire class rather than specific
instances of the class.

m To use common Math methods available in the Java API.
m To understand the mechanisms for passing information between methods.

m How the method call/return mechanism is supported by the method-call stack and activation
records.

m How packages group related classes.
m How to use random-number generation to implement game-playing applications.
m How the visibility of declarations is limited to specific regions of programs.

m What method overloading is and how to create overloaded methods.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.1 Introduction

6.2 Program Modules in Java

6.3 static Methods, static Fields and Class Math
6.4 Declaring Methods with Multiple Parameters

6.5 Notes on Declaring and Using Methods

6.6 Method-Call Stack and Activation Records

6.7 Argument Promotion and Casting

6.8 Java API Packages

6.9 Case Study: Random-Number Generation

6.9.1 Generalized Scaling and Shifting of Random Numbers
6.9.2 Random-Number Repeatability for Testing and Debugging

6.10 Case Study: A Game of Chance; Introducing Enumerations

6.11 Scope of Declarations

6.12 Method Overloading

6.13 (Optional) GUI and Graphics Case Study: Colors and Filled Shapes
6.14 Wrap-Up

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.1 Introduction

» Best way to develop and maintain a large program is to
construct it from small, simple pieces, or modules.
= divide and conquer.

» Topics In this chapter
= static methods
= Declare a method with more than one parameter
= Simulation techniques with random-number generation.

= How to declare values that cannot change (i.e., constants) in
your programs.

= Method overloading.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.2 Program Modules in Java

» Java programs combine new methods and classes that
you write with predefined methods and classes
available in the Java Application Programming
Interface and in other class libraries.

» Related classes are typically grouped into packages so
that they can be imported into programs and reused.

» Example: Create packages in Netbeans

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.2 Program Modules in Java (Cont.)

» Methods help you modularize a program by separating its
tasks into self-contained units.

» Statements In method bodies
= Written only once

= Hidden from other methods
= Can be reused from several locations in a program

» Divide-and-conquer approach
= Constructing programs from small, simple pieces

» Software reusability
= Use existing methods as building blocks to create new programs.
» Dividing a program into meaningful methods makes the
program easier to debug and maintain.

(C) 2010 Pearson Education, Inc. All
rights reserved.

e Software Engineering Observation 6.2
WX To promote software reusability, every method should be
limited to performing a single, well-defined task, and the

name of the method should express that task effectively.

Error-Prevention Tip 6.1
A method that performs one task is easier to test and de-
bug than one that performs many tasks.

y Software Engineering Observation 6.3

&S If you cannot choose a concise name that expresses a
method’s task, your method might be attempting to
perform too many tasks. Break such a method into
several smaller methods.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.2 Program Modules in Java (Cont.)

» Hierarchical form of management (Fig. 6.1).

= A boss (the caller) asks a worker (the called method) to
perform a task and report back (return) the results after
completing the task.

= The boss method does not know how the worker method
performs its designated tasks.

= The worker may also call other worker methods, unknown to
the boss.
» “Hiding” of implementation details promotes good
software engineering.

(C) 2010 Pearson Education, Inc. All
rights reserved.

boss

SN

workerl worker?2 worker3

SN\

worker4 worker5s

Fig. 6.1 | Hierarchical boss-method/worker-method relationship.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.3 static Methods, static Fields and
Class Math

>

Sometimes a method performs a task that does not depend on the
contents of any object.

= Applies to the class in which it’s declared as a whole

= Known as a static method or a class method

It’s common for classes to contain convenient Stat1c methods
to perform common tasks.

To declare a method as static, place the keyword static
before the return type in the method’s declaration.

Calling a static method
- ClassName.methodName(arguments)

Class Math provides a collection of static methods that
enable you to perform common mathematical calculations.

Method arguments may be constants, variables or expressions.

(C) 2010 Pearson Education, Inc. All
rights reserved.

abs(x)

ceil(x)

cos(x)

exp(x)

floor(x)

Tog(x)

max(x, y)

min(x,)/)

absolute value of x

rounds x to the smallest integer not
less than x

trigonometric cosine of x (x in radians)

exponential method ¢*

rounds x to the largest integer not
greater than x

natural logarithm of x (base ¢)

larger value of x and y

smaller value of x and y

Fig. 6.2 | Math class methods. (Part | of 2.)

abs(23.7)1s23.7
abs(0.0)1s0.0

abs(-23.7)1s23.7
ceil(9.2)1s10.0
ceil(-9.8)15s-9.0
cos(0.0)1s1.0
exp(1.0)1s2.71828
exp(2.0) 1s 7.38906
floor(9.2) 1s9.0

floor(-9.8) is -10.0

log(Math.E)1s1.0

log(Math.E * Math.E) is 2.0
max(2.3, 12.7)1s12.7
max(-2.3, -12.7) is -2.3
min(2.3,12.7)1s2.3
min(-2.3, -12.7) 1s -12.7

(C) 2010 Pearson Education, Inc. All
rights reserved.

Method Description Example

pow(x, ¥) x raised to the power y (i.e., ¥’) pow(2.0, 7.0) is 128.0
pow(9.0, 0.5)1is3.0

sin(x) trigonometric sine of x (x in radians) sin(0.0)1s0.0

sqrt(x) square root of x sqrt(900.0) is 30.0

tan(x) trigonometric tangent of x (x in radians) tan(0.0) is 0.0

Fig. 6.2 | Math class methods. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.4 static Methods, static Fields and
Class Math (Cont.)

» Math fields for common mathematical constants
= Math.PTI (3.141592653589793)
= Math.E (2.718281828459045)

» Declared in class Math with the modifiers pub11c,
final and static
= pub 11 c allows you to use these fields in your own classes.
= A field declared with keyword final Is constant—its value
cannot change after the field is initialized.

= PT and E are declared final because their values never
change.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.4 static Methods, static Fields and
Class Math (Cont.)

» A field that represents an attribute Is also known as an
Instance variable — each object (instance) of the class
has a separate instance of the variable in memory.

» Fields for which each object of a class does not have a
separate instance of the field are declared static and
are also known as class variables.

» All objects of a class containing static fields share
one copy of those fields.

» Together the class variables (i.e., static variables)
and instance variables represent the fields of a class.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.4

static Methods, static Fields and

Class Math (Cont.)

» W

Ny is method ma1n declared static?
"he JVM attempts to invoke the ma1n method of

t

ne class you specify — when no objects of the

class have been created.

= Declaring main as static allows the JVM to
invoke ma1n without creating an instance of the
class.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.5 Declaring Methods with Multiple
Parameters

» Multiple parameters are specified as a comma-
separated list.

» There must be one argument in the method call for each
parameter (sometimes called a formal parameter) in the
method declaration.

» Each argument must be consistent with the type of the
corresponding parameter.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 6.3: MaximumFinder. java

2 // Programmer-declared method maximum with three double parameters.

3 import java.util.Scanner;

4

5 public class MaximumFinder

6 {

7 // obtain three floating-point values and locate the maximum value

8 public void determineMaximum()

9 {

10 // create Scanner for input from command window

11 Scanner input = new Scanner(System.in);

12

13 // prompt for and input three floating-point values

14 System.out.print(

15 "Enter three floating-point values separated by spaces: ");

16 double numberl = input.nextDouble(); // read first double

17 double number2 = input.nextDouble(); // read second double

18 double number3 = input.nextDouble(); // read third double

19
20 // determine the maximum value Passing th ot thod
21 double result = maximum(numberl, number2, number3); «—— asgng ree arguments to metno
22 maximum

Fig. 6.3 | Programmer-declared method maximum with three double parameters.
(Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23 // display maximum value

24 System.out.println("Maximum is: " + result);

25 } // end method determineMaximum

26

27 // returns the maximum of its three double parameters :

28 public double maximum(double x, double y, double z) - | Method maximum

29 { receives three

30 double maximumValue = x; // assume x is the largest to start parameters and returns
31 the largest of the three
32 // determine whether y 1is greater than maximumValue

33 if (y > maximumValue)

34 maximumValue = y;

35

36 // determine whether z 1is greater than maximumValue

37 if (z > maximumValue)

38 maximumValue = z;

39

40 return maximumValue;

41 } // end method maximum

42 1} // end class MaximumFinder

Fig. 6.3 | Programmer-declared method maximum with three double parameters.
(Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 6.4: MaximumFinderTest.java

2 // Application to test class MaximumFinder.
3

4 public class MaximumFinderTest

5 {

6 // application starting point

7 public static void main(String[] args)
8 {

9 MaximumFinder maximumFinder = new MaximumFinder();
10 maximumFinder.determineMaximum() ;

11 } // end main

12 } // end class MaximumFinderTest

Enter three floating-point values separated by spaces: 9.35 2.74 5.1
Maximum is: 9.35

Enter three floating-point values separated by spaces: 5.8 12.45 8.32
Maximum is: 12.45

Enter three floating-point values separated by spaces: 6.46 4.12 10.54
Maximum is: 10.54

Fig. 6.4 | Application to test class MaximumFinder.

(C) 2010 Pearson Education, Inc. All
rights reserved.

kra Software Engineering Observation 6.5

S8R Methods can return at most one value, but the returned
value could be a reference to an object that contains
many values.

sz Software Engineering Observation 6.6

8N Variables should be declared as fields of a class only if
they are required for use in more than one method of the

class or if the program should save their values between

calls to the class’s methods.

Common Programming Error 6. |

Al Declaring method parameters of the same type as float
X, y instead of float x, float y isa syntax error—
a type is required for each parameter in the parameter
list.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.5 Declaring Methods with Multiple
Parameters (Cont.)

» Implementing method max1mum by reusing method
Math.max
= Two calls to Math . max, as follows:
- return Math.max(x, Math.max(C vy, z));
= The first specifies arguments x and Math.max(y, z).

= Before any method can be called, its arguments must be
evaluated to determine their values.

= If an argument is a method call, the method call must be
performed to determine its return value.

= The result of the first call is passed as the second argument to
the other call, which returns the larger of its two arguments.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.5 Declaring Methods with Multiple
Parameters (Cont.)

>

>

String concatenation

= Assemble String objects into larger strings with operators + or +=.

When both operands of operator + are Strings, operator +

creates a new String object

= characters of the right operand are placed at the end of those in the left
operand

Every primitive value and object in Java has a String

representation.

When one of the + operator’s operands is a String, the other is

converted to a String, then the two are concatenated.

If a boolean is concatenated with a String, the boolean is

converted to the String "true” or "false"

All objects have a toString method that returns aString
representation of the object.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.6 Notes on Declaring and Using
Methods (Cont.)

» Anon-static method can call any method of the
same class directly and can manipulate any of the
class’s fields directly.

» A static method can call only other static
methods of the same class directly and can manipulate
only staticfields in the same class directly.

= To access the class’s non-static members, a static
method must use a reference to an object of the class.

(C) 2010 Pearson Education, Inc. All
rights reserved.

, Common Programming Error 6.4

Declaring a method outside the body of a class declara-

tion or inside the body of another method is a syntax er-
ror.

Common Programming Error 6.5

A Omitting the return-value-type, possibly void, in a
method declaration is a syntax error.

Common Programming Error 6.6

Al Placing a semicolon after the right parenthesis enclosing

the parameter list of a method declaration is a syntax er-
ror.

Common Programming Error 6.7

Redeclaring a parameter as a local variable in the meth-
od’s body is a compilation error.

(C) 2010 Pearson Education, Inc. All
rights reserved.

, Common Programming Error 6.8
Forgetting to return a value from a method that should
return a value is a compilation error. If a return type
other than void is specified, the method must contain a
return statement that returns a value consistent with
the method’s return type. Returning a value from a
method whose return type has been declared void is a
compilation error.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.8 Argument Promotion and Casting

» Argument promotion

= Converting an argument’s value, if possible, to the type that the
method expects to receive in its corresponding parameter.

» Conversions may lead to compilation errors if Java’s promotion
rules are not satisfied.

» Promotion rules
= specify which conversions are allowed.

= apply to expressions containing values of two or more primitive
types and to primitive-type values passed as arguments to
methods.

» Each value is promoted to the “highest” type in the expression.

» Figure 6.5 lists the primitive types and the types to which each
can be promoted.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Valid promotions

double
float
Tlong
int
char
short
byte

boolean

None

double

float or doubTe

long, float or double

int, long, float or double

int, Tong, float or double (but not char)
short, int, long, float or double (but not char)

None (booTlean values are not considered to be numbers in Java)

Fig. 6.5 | Promotions allowed for primitive types.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.8 Argument Promotion and Casting
(Cont.)

» Converting values to types lower in the table of Fig. 6.5
will result in different values if the lower type cannot
represent the value of the higher type

» In cases where information may be lost due to
conversion, the Java compiler requires you to use a cast
operator to explicitly force the conversion to occur —
otherwise a compilation error occurs.

(C) 2010 Pearson Education, Inc. All
rights reserved.

, Common Programming Error 6.9
Converting a primitive-type value to another primitive
type may change the value if the new type is not a valid
promotion. For example, converting a floating-point
value to an integer value may introduce truncation er-
rors (loss of the fractional part) into the resulk.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.9 Java API Packages

» Java contains many predefined classes that are grouped
Into categories of related classes called packages.

» A great strength of Java is the Java API’s thousands of
classes.

» Some key Java API packages are described in Fig. 6.6.

» Overview of the packages in Java SE 8:

- java.sun.com/javase/8/docs/api/
overview-summary.html

» Java APl documentation
- java.sun.com/javase/8/docs/api/

(C) 2010 Pearson Education, Inc. All
rights reserved.

java.applet The Java Applet Package contains a class and several interfaces
required to create Java applets—programs that execute in web brows-
ers. Applets are discussed in Chapter 23, Applets and Java Web Start;
interfaces are discussed in Chapter 10, Object-Oriented Program-
ming: Polymorphism.)

java.awt The Java Abstract Window Toolkit Package contains the classes
and interfaces required to create and manipulate GUIs in early ver-
sions of Java. In current versions of Java, the Swing GUI components
of the javax.swing packages are typically used instead. (Some ele-
ments of the java.awt package are discussed in Chapter 14, GUI
Components: Part 1, Chapter 15, Graphics and Java 2D™, and
Chapter 25, GUI Components: Part 2.)

java.awt.event The Java Abstract Window Toolkit Event Package contains classes
and interfaces that enable event handling for GUI components in
both the java.awt and javax. swing packages. (See Chapter 14, GUI
Components: Part 1 and Chapter 25, GUI Components: Part 2.)

Fig. 6.6 | Java API packages (a subset). (Part | of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

java.

java.

java.

java.

java.

awt.geom

io

Tang

net

sql

The Java 2D Shapes Package contains classes and interfaces for
working with Java’s advanced two-dimensional graphics capabilities.

(See Chapter 15, Graphics and Java 2D™.,)

The Java Input/Output Package contains classes and interfaces that
enable programs to input and output data. (See Chapter 17, Files,
Streams and Object Serialization.)

The Java Language Package contains classes and interfaces (dis-
cussed bookwide) that are required by many Java programs. This
package is imported by the compiler into all programs.

The Java Networking Package contains classes and interfaces that
enable programs to communicate via computer networks like the
Internet. (See Chapter 27, Networking.)

The JDBC Package contains classes and interfaces for working with
databases. (See Chapter 28, Accessing Databases with JDBC.)

Fig. 6.6 | Java API packages (a subset). (Part 2 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

java.text The Java Text Package contains classes and interfaces that enable
programs to manipulate numbers, dates, characters and strings. The
package provides internationalization capabilities that enable a pro-
gram to be customized to locales (e.g., a program may display strings
in different languages, based on the user’s country).

java.util The Java Utilities Package contains utility classes and interfaces that
enable such actions as date and time manipulations, random-num-
ber processing (class Random) and the storing and processing of large
amounts of data. (See Chapter 20, Generic Collections.)

java.util. The Java Concurrency Package contains utility classes and interfaces

concurrent for implementing programs that can perform multiple tasks in paral-
lel. (See Chapter 26, Multithreading.)

javax.media The Java Media Framework Package contains classes and interfaces

for working with Java’s multimedia capabilities. (See Chapter 24,
Multimedia: Applets and Applications.)

Fig. 6.6 | Java API packages (a subset). (Part 3 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

javax.swing The Java Swing GUI Components Package contains classes and
interfaces for Java’s Swing GUI components that provide support for
portable GUIs. (See Chapter 14, GUI Components: Part 1 and
Chapter 25, GUI Components: Part 2.)

javax.swing.event The Java Swing Event Package contains classes and interfaces that
enable event handling (e.g., responding to button clicks) for GUI
components in package javax.swing. (See Chapter 14, GUI Com-
ponents: Part 1 and Chapter 25, GUI Components: Part 2.)

javax.xml.ws The JAX-WS Package contains classes and interfaces for working
with web services in Java. (See Chapter 31, Web Services.)

Fig. 6.6 | Java API packages (a subset). (Part 4 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.10 Case Study: Random-Number
Generation

» Simulation and game playing
= element of chance
= Class Random (package java.util)
= static method random of class Math.

» Objects of class Random can produce random
boolean, byte, float, double, int, Tong and
Gaussian values

» Math method random can produce only double
valuesintherange 0.0 < x < 1.0

» Documentation for class Random

- java.sun.com/javase/6/docs/api/java/util/
Random. htmT

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.10 Case Study: Random-Number
Generation (Cont.)

» Class Random produces pseudorandom numbers

= A sequence of values produced by a complex mathematical
calculation.

= The calculation uses the current time of day to seed the
random-number generator.

» The range of values produced directly by Random
method nextInt often differs from the range of
values required in a particular Java application.

» Random method nextInt that receivesan int
argument returns a value from O up to, but not
including, the argument’s value.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.10 Case Study: Random-Number
Generation (Cont.)

» Rolling a Six-Sided Die
- face = 1 + randomNumbers.nextInt(6);

= The argument 6 — called the scaling factor — represents the
number of unigue values that nextInt should produce (0-5)

= This is called scaling the range of values

= A six-sided die has the numbers 1-6 on its faces, not 0-5.

= We shift the range of numbers produced by adding a shifting
value—In this case 1—to our previous result, as in

= The shifting value (1) specifies the first value in the desired
range of random integers.

(C) 2010 Pearson Education, Inc. All
rights reserved.

oee~NGNBNDh WN=—

22
23
24
25

// Fig. 6.7: RandomIntegers.java

// Shifted and scaled random integers.

import java.util.Random; // program uses class Random «— | Program uses class Random from

package java.util

public class RandomIntegers

{

public static void main(String[] args)

{

Creates a Random

Random randomNumbers = new Random(); // random number generator .____.Omed

int face; // stores each random integer generated

// loop 20 times
for (int counter = 1; counter <= 20; counter++)

{

// pick random integer from 1 to 6

face = 1 + randomNumbers.nextInt(6); = Produces integers in the range |

through 6

System.out.printf("%d , face); // display generated value
// if counter is divisible by 5, start a new Tine of output
if (counter % 5 == 0)

System.out.printin();
} // end for
} // end main
} // end class RandomIntegers

Fig. 6.7 | Shifted and scaled random integers. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

w A o
(BN N ST
o ow
NN UTOY
NG NN

[e) e)l i)
HwnNn O
NN
ONRR N
AR WO

Fig. 6.7 | Shifted and scaled random integers. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.10 Case Study: Random-Number
Generation (Cont.)

» Fig 6.8: Rolling a Six-Sided Die 6000 Times

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 6.8: RollDie.java

2 // Roll a six-sided die 6000 times.

3 import java.util.Random;

4

5 public class RollDie

6 {

7 public static void main(String[] args)

8 {

9 Random randomNumbers = new Random(); // random number generator
10

11 int frequencyl = 0; // maintains count of 1s rolled
12 int frequency2 = 0; // count of 2s rolled

13 int frequency3 = 0; // count of 3s rolled

14 int frequency4 = 0; // count of 4s rolled

15 int frequency5 = 0; // count of 5s rolled

16 int frequency6 = 0; // count of 6s rolled

17

18 int face; // stores most recently rolled value

19
20 // tally counts for 6000 rolls of a die
21 for (int roll = 1; roll <= 6000; roll++)
22 {
23 face = 1 + randomNumbers.nextInt(6); // number from 1 to 6
24

Fig. 6.8 | Rolling a six-sided die 6000 times. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

// determine roll value 1-6 and increment appropriate c
switch (face)

{

VaTue from | through 6 used to update

case 1:
++frequencyl; // increment
break;

case 2:
++frequency2; // increment
break;

case 3:
++frequency3; // increment
break;

case 4:
++frequency4; // increment
break;

case 5:
++frequency5; // increment
break;

case 6:

the

the

the

the

the

1s

2s

3s

4s

5s

counter

counter

counter

counter

counter

++frequency6; // increment the 6s counter
break; // optional at end of switch

} // end switch
} // end for

appropriate counter

Fig. 6.8 | Rolling a six-sided die 6000 times. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All

rights reserved.

49 System.out.println("Face\tFrequency"); // output headers

50 System.out.printf("1\t%d\n2\t%d\n3\t%d\n4\t%d\n5\t%d\n6\t%d\n",
51 frequencyl, frequency2, frequency3, frequency4,

52 frequency5, frequency6);

53 } // end main

54 1} // end class RollDie

ace Frequency
082
1001
1015
1005
1009
988

S WNRET

ace Frequency
1029
994
1017
1007
972
981

SV WNREFE T

Fig. 6.8 | Rolling a six-sided die 6000 times. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.11 Case Study: A Game of Chance;
Introducing Enumerations

» Basic rules for the dice game Craps:

“ You roll two dice- Each die has six faces: which
contain one. two. three. four. five and six
spots.: respectively. After the dice have come to
resti: the sum of the spots on the two upward
faces is calculated- If the sum is 7 or 11 on
the first throw. you win- If the sum is 2.+ 3 or
12 on the first throw (called “craps’™) . you lose
(1-e.+1 the "“house” wins). If the sum 1is 4+ 5, b
4+ 9 or 10 on the first throw. that sum becomes
your "“point."” To win. you must continue rolling
the dice until you “make your point” (i-e-. roll
that same point value). You lose by rolling a 7
before making your point-

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 6.9: Craps.java

2 // Craps class simulates the dice game craps.

3 import java.util.Random;

4

5 public class Craps

6 {

7 // create random number generator for use in method rollDice

8 private static final Random randomNumbers = new Random();

9

10 // enumeration with constants that represent the game status Dec| :
I private enum Status { CONTINUE, WON, LOST }; — R
2 the game status

13 // constants that represent common rolls of the dice

14 private static final int SNAKE_EYES = 2;

15 private static final int TREY = 3; :

16 private static final int SEVEN = 7; Dedamsconﬂan&remeamhng

17 private static final int YO_LEVEN = 11; common rolls of the dice

18 private static final int BOX_CARS = 12

19 -

Fig. 6.9 | Craps class simulates the dice game craps. (Part | of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// plays one game of craps
public void play(Q)

{

int myPoint = 0; // point if no win or Toss on first roll
Status gameStatus; // can contain CONTINUE, WON or LOST

Variable that stores the

game status

int sumOfDice = rol1Dice(); // first roll of the dice "““--_‘m‘iqRochedmetosmﬂ

// determine game status and point based on first roll
switch (sumOfDice)

playing the game

{

case SEVEN: // win with 7 on first roll -
case YO_LEVEN: // win with 11 on first roll

Player wins on the first roll; set
gameStatus to WON

gameStatus = Status.WON;

break;
case SNAKE_EYES: // lose with 2 on first roll e—

case TREY: // Tlose with 3 on first roll

Player loses on the first roll; set
gameStatus to LOST

case BOX_CARS: // lose with 12 on first roll
gameStatus = Status.LOST;
break;

Fig. 6.9 | Craps class simulates the dice game craps. (Part 2 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

default: // did not win or Tose, so remember point
gameStatus = Status.CONTINUE; // game is not over‘\\\
myPoint = sumOfDice; // remember the point

Player did not win or lose; set
gameStatus to CONTINUE

System.out.printf("Point is %d\n", myPoint);
break; // optional at end of switch
} // end switch

// while game is not complete

while (gameStatus == Status.CONTINUE) // not WON or LOST «—— | é?/ngh"egame'S”Ot
{

sumOfDice = rollDice(); // roll dice again “*“——ﬁk—ﬁk__ﬁ“_ﬁﬁk_ﬁk_Rochedkeagmn

// determine game status

h éaxgg:glge:_gtgngagN? [/ by Ak potnt “~.| Made your point; set gameStatus to
else WON
if (sumOfDice == SEVEN) lose by rolling 7 before point :
gameStatus = Status.LOST; Rolled 7: set
1 // end while gameStatus to WON

Fig. 6.9 | Craps class simulates the dice game craps. (Part 3 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

6o // display won or Jost message Display a message indicating whether
61 if (gameStatus == Status.WON) Hwﬁerwon(H%oﬂ g
62 System.out.println("Player wins");

63 else

64 System.out.println("Player loses"™);

65 } // end method play

66

67 // roll dice, calculate sum and display results

68 pubTic int rol1Dice()

69 {

70 // pick random die values

71 int diel = 1 + randomNumbers.nextInt(6); // first die roll
72 int die2 = 1 + randomNumbers.nextInt(6); // second die roll
73

74 int sum = diel + die2; // sum of die values

75

76 // display results of this roll

77 System.out.printf("Player rolled %d + %d = %d\n",

78 diel, die2, sum);

79

80 return sum; // return sum of dice

8l } // end method rollDice

82 1} // end class Craps

Fig. 6.9 | Craps class simulates the dice game craps. (Part 4 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 6.10: CrapsTest.java

2 // Application to test class Craps.

3

4 public class CrapsTest

5 {

6 public static void main(String[] args)
7 {

8 Craps game = new Craps(Q);

9 game.play(); // play one game of craps
10 } // end main
Il } // end class CrapsTest

Player rolled 5 + 6 = 11

Player wins

Player rolled 5 + 4 = 9

Point is 9

Player rolled 2 + 2 4

Player rolled 2 + 6 = 8

Player rolled 4 + 2 = 6

Player rolled 3 + 6 = 9

Player wins

Fig. 6.10 | Application to test class Craps. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

Player rolled 1 + 2 = 3
Player loses

Player rolled 2 + 6 = 8
Point 1is 8

Player rolled 5 + 1 = 6
Player rolled 2 + 1 = 3
Player rolled 1 + 6 = 7

Player loses

Fig. 6.10 | Application to test class Craps. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.11 Case Study: A Game of Chance;
Introducing Enumerations (Cont.)

» Notes:

= myPo1nt is initialized to 0 to ensure that the application will
compile.

= |f you do not initialize myPo1nt, the compiler issues an error,
because myPo1nt is not assigned a value in every case of
the swi tch statement, and thus the program could try to use
myPo1nt before it is assigned a value.

= gameStatus is assigned a value in every case of the
sw1 tch statement—thus, it’s guaranteed to be initialized
before 1t’s used and does not need to be initialized.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.11 Case Study: A Game of Chance;
Introducing Enumerations (Cont.)

» enum type Status

= An enumeration in its simplest form declares a set of constants
represented by identifiers.

= Special kind of class that is introduced by the keyword enum
and a type name.

= Braces delimit an enum declaration’s body.

= Inside the braces i1s a comma-separated list of enumeration
constants, each representing a unigue value.

= The identifiers in an enum must be unique.

= Variables of an enum type can be assigned only the constants
declared in the enumeration.

(C) 2010 Pearson Education, Inc. All
rights reserved.

, Good Programming Practice 6.1
Use only uppercase letters in the names of enumeration
constants. 1his makes the constants stand out and re-
minds you that enumeration constants are not variables.

(C) 2010 Pearson Education, Inc. All
rights reserved.

, Good Programming Practice 6.2
Using enumeration constants (like Status.WON, Sta-
tus.LOST and Status. CONTINUE) rather than literal
values (such as 0, 1 and 2) makes programs easier to read
and maintain.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.12 Scope of Declarations

» Declarations introduce names that can be used to
refer to such Java entities.

» The scope of a declaration is the portion of the
program that can refer to the declared entity by its
name.

= Such an entity is said to be “in scope” for that
portion of the program.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.12 Scope of Declarations (Cont.)

» Basic scope rules:

= The scope of a parameter declaration is the body of the method in
which the declaration appears.

= The scope of a local-variable declaration is from the point at which
the declaration appears to the end of that block.

= The scope of a local-variable declaration that appears in the
initialization section of a for statement’s header is the body of the
for statement and the other expressions in the header.

= A method or field’s scope is the entire body of the class.
» Any block may contain variable declarations.
» If a local variable or parameter in a method has the same

name as a field of the class, the field is “hidden” until the
block terminates execution—this is called shadowing.

(C) 2010 Pearson Education, Inc. All
rights reserved.

, Common Programming Error 6.10
A compilation error occurs when a local variable is de-
clared more than once in a method.

Error-Prevention Tip 6.3

Use different names for fields and local variables to help
prevent subtle logic errors that occur when a method is
called and a local variable of the method shadows a field
in the class.

(C) 2010 Pearson Education, Inc. All
rights reserved.

oee~NGNBNDh WN=—

23

// Fig. 6.11: Scope.java
// Scope class demonstrates field and local variable scopes.

public class Scope

{

// field that is accessible to all methods of this class

private int x = 1; S—

Class scope

// method begin creates and initializes local variable x
// and calls methods uselocalVariable and useField
public void begin()

{

int x = 5; // method's local variable x shadows field X «—]

Method scope

System.out.printf("local x in method begin is %d\n", x);

uselLocalVvariable(); // uselLocalVariable has local x
useField(); // useField uses class Scope's field x
useLocalVariable(); // uselLocalVariable reinitializes local
useField(); // class Scope's field x retains its value

X

System.out.printf("\nlocal x in method begin is %d\n", x);

} // end method begin

Fig. 6.11 | Scope class demonstrating scopes of a field and local variables. (Part |

of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

1

2 // create and initialize Tlocal variable x during each call

3 public void uselLocalVariable()

4 {

5 int x = 25; // initialized each time uselLocalVariable is called «—— Method scope
6

7 System.out.printf(

8 "\nlocal x on entering method uselLocalVariable is %d\n", x);
9 ++x; // modifies this method's local variable x

10 System.out.printf(

11 "lTocal x before exiting method uselLocalVariable 1is %d\n", x);
12 } // end method uselLocalVariable

13

14 // modify class Scope's field x during each call

15 public void useField()

16 {

17 System.out.printf(

18 "\nfield x on entering method useField is %d\n", x);

19 X *= 10; // modifies class Scope's field X = Uses instance variable x
20 System.out.printf(
21 "field x before exiting method useField is %d\n", x);
22 } // end method useField

23 1} // end class Scope

Fig. 6.11 | Scope class demonstrating scopes of a field and local variables. (Part 2
of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 Fig. 6.12: ScopeTest.java

2 // Application to test class Scope.
3

4 public class ScopeTest

5 {

6 // application starting point

7 public static void main(String[] args)
8 {

9 Scope testScope = new Scope();
10 testScope.begin();

11 } // end main

12 } // end class ScopeTest

Fig. 6.12 | Application to test class Scope. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

local

local
local

field
field

local
local

field
field

Jocal

in method begin is 5

on entering method uselLocalVariable is
before exiting method uselocalVariable

on entering method useField is 1
before exiting method useField is 10

on entering method uselLocalVariable is
before exiting method uselLocalVariable

on entering method useField is 10
before exiting method useField is 100

in method begin 1is 5

25
is 26

25
is 26

Fig. 6.12 | Application to test class Scope. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All

rights reserved.

6.13 Method Overloading

>

Method overloading
= Methods of the same name declared in the same class
= Must have different sets of parameters

Compiler selects the appropriate method to call by examining the
number, types and order of the arguments in the call.

Used to create several methods with the same name that perform the
same or similar tasks, but on different types or different numbers of
arguments.

Literal integer values are treated as type 1nt, so the method call in
line 9 invokes the version of square that specifies an 1nt
parameter.

Literal floating-point values are treated as type doube, so the
method call in line 10 invokes the version of square that specifies
a doub1e parameter.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 6.13: MethodOverload.java

2 // Overloaded method declarations.

3

4 public class MethodOverload

5 {

6 // test overloaded square methods

7 public void testOverloadedMethods() :

8 { Calls square with an
9 System.out.printf("Square of integer 7 is %d\n'", square(7)); «—| int parameter

10 System.out.printf("Square of double 7.5 is %f\n", square(7.5)); Call T
11 } // end method testOverloadedMethods | (2l Erelielrte v &
2 double parameter
13 // square method with int argument =
14 pubTic int square(int intValue) = square met.o d
15 { receives an int

16 System.out.printf("\nCalled square with int argument: %d\n",

17 intValue);

18 return intValue * intValue;

19 } // end method square with int argument
20

Fig. 6.13 | Overloaded method declarations. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

21
22
23
24
25
26
27
28

// square method with double argument

public double square(double doubleValue)

{

System.out.printf("\nCalled square with double argument: %f\n",

doubleValue);
return doubleValue * doubleValue;

-

} // end method square with double argument

} // end class MethodOverload

square method that
receives a double

Fig. 6.13 | Overloaded method declarations. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

MethodOverload methodOverload = new MethodOverload();
methodOverload. testOverloadedMethods();
} // end main
} // end class MethodOverloadTest

1 // Fig. 6.14: MethodOverloadTest.java

2 // Application to test class MethodOverload.
3

4 public class MethodOverloadTest

5 {

6 public static void main(String[] args)
7 {

8

9

0

1

Called square with int argument: 7
Square of integer 7 is 49

Called square with double argument: 7.500000
Square of double 7.5 1is 56.250000

Fig. 6.14 | Application to test class MethodOverToad.

(C) 2010 Pearson Education, Inc. All
rights reserved.

6.14 Method Overloading

» Distinguishing Between Overloaded Methods

= The compiler distinguishes overloaded methods by their signatures
— the methods’ names and the number, types and order of their
parameters.

» Return types of overloaded methods
= Method calls cannot be distinguished by return type.

» Figure 6.15 illustrates the errors generated when two
methods have the same signature and different return types.

» Overloaded methods can have different return types if the
methods have different parameter lists.

» Overloaded methods need not have the same number of
parameters.

(C) 2010 Pearson Education, Inc. All
rights reserved.

oee~NGNBNDh WN=—

19

// Fig. 6.15: MethodOverloadError.java
// Overloaded methods with identical signatures
// cause compilation errors, even if return types are different.

public class MethodOverloadError

{
// declaration of method square with int argument
pubTlic int square(int x)

{
}

return x * X;

// second declaration of method square with int argument
// causes compilation error even though return types are different
public double square(int y) =

{

return y * y;

}
} // end class MethodOverloadError

Generates a
compilation error

Fig. 6.15 | Overloaded method declarations with identical signatures cause
compilation errors, even if the return types are different. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

MethodOverloadError.java:15: square(int) is already defined in
MethodOverloadError
public double square(int y)
A

1 error

Fig. 6.15 | Overloaded method declarations with identical signatures cause
compilation errors, even if the return types are different. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

End of Part |

(C) 2010 Pearson Education, Inc. All
rights reserved.

