
(C) 2010 Pearson Education, Inc. All rights reserved.

Assoc. Prof. Marenglen Biba

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Best way to develop and maintain a large program is to

construct it from small, simple pieces, or modules.

 divide and conquer.

 Topics in this chapter

 static methods

 Declare a method with more than one parameter

 Simulation techniques with random-number generation.

 How to declare values that cannot change (i.e., constants) in

your programs.

 Method overloading.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Java programs combine new methods and classes that

you write with predefined methods and classes

available in the Java Application Programming

Interface and in other class libraries.

 Related classes are typically grouped into packages so

that they can be imported into programs and reused.

 Example: Create packages in Netbeans

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Methods help you modularize a program by separating its
tasks into self-contained units.

 Statements in method bodies
 Written only once

 Hidden from other methods

 Can be reused from several locations in a program

 Divide-and-conquer approach
 Constructing programs from small, simple pieces

 Software reusability
 Use existing methods as building blocks to create new programs.

 Dividing a program into meaningful methods makes the
program easier to debug and maintain.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Hierarchical form of management (Fig. 6.1).

 A boss (the caller) asks a worker (the called method) to

perform a task and report back (return) the results after

completing the task.

 The boss method does not know how the worker method

performs its designated tasks.

 The worker may also call other worker methods, unknown to

the boss.

 “Hiding” of implementation details promotes good

software engineering.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Sometimes a method performs a task that does not depend on the
contents of any object.
 Applies to the class in which it’s declared as a whole

 Known as a static method or a class method

 It’s common for classes to contain convenient static methods
to perform common tasks.

 To declare a method as static, place the keyword static
before the return type in the method’s declaration.

 Calling a static method
 ClassName.methodName(arguments)

 Class Math provides a collection of static methods that
enable you to perform common mathematical calculations.

 Method arguments may be constants, variables or expressions.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Math fields for common mathematical constants
 Math.PI (3.141592653589793)

 Math.E (2.718281828459045)

 Declared in class Math with the modifiers public,

final and static
 public allows you to use these fields in your own classes.

 A field declared with keyword final is constant—its value

cannot change after the field is initialized.

 PI and E are declared final because their values never

change.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A field that represents an attribute is also known as an

instance variable — each object (instance) of the class

has a separate instance of the variable in memory.

 Fields for which each object of a class does not have a

separate instance of the field are declared static and

are also known as class variables.

 All objects of a class containing static fields share

one copy of those fields.

 Together the class variables (i.e., static variables)

and instance variables represent the fields of a class.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Why is method main declared static?

 The JVM attempts to invoke the main method of

the class you specify — when no objects of the

class have been created.

 Declaring main as static allows the JVM to

invoke main without creating an instance of the

class.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Multiple parameters are specified as a comma-

separated list.

 There must be one argument in the method call for each

parameter (sometimes called a formal parameter) in the

method declaration.

 Each argument must be consistent with the type of the

corresponding parameter.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Implementing method maximum by reusing method

Math.max
 Two calls to Math.max, as follows:

 return Math.max(x, Math.max(y, z));

 The first specifies arguments x and Math.max(y, z).

 Before any method can be called, its arguments must be

evaluated to determine their values.

 If an argument is a method call, the method call must be

performed to determine its return value.

 The result of the first call is passed as the second argument to

the other call, which returns the larger of its two arguments.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 String concatenation
 Assemble String objects into larger strings with operators + or +=.

 When both operands of operator + are Strings, operator +
creates a new String object
 characters of the right operand are placed at the end of those in the left

operand

 Every primitive value and object in Java has a String
representation.

 When one of the + operator’s operands is a String, the other is
converted to a String, then the two are concatenated.

 If a boolean is concatenated with a String, the boolean is
converted to the String "true" or "false".

 All objects have a toString method that returns a String
representation of the object.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A non-static method can call any method of the

same class directly and can manipulate any of the

class’s fields directly.

 A static method can call only other static
methods of the same class directly and can manipulate

only static fields in the same class directly.

 To access the class’s non-static members, a static
method must use a reference to an object of the class.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Argument promotion

 Converting an argument’s value, if possible, to the type that the
method expects to receive in its corresponding parameter.

 Conversions may lead to compilation errors if Java’s promotion
rules are not satisfied.

 Promotion rules

 specify which conversions are allowed.

 apply to expressions containing values of two or more primitive
types and to primitive-type values passed as arguments to
methods.

 Each value is promoted to the “highest” type in the expression.

 Figure 6.5 lists the primitive types and the types to which each

can be promoted.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Converting values to types lower in the table of Fig. 6.5

will result in different values if the lower type cannot

represent the value of the higher type

 In cases where information may be lost due to

conversion, the Java compiler requires you to use a cast

operator to explicitly force the conversion to occur —

otherwise a compilation error occurs.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Java contains many predefined classes that are grouped

into categories of related classes called packages.

 A great strength of Java is the Java API’s thousands of

classes.

 Some key Java API packages are described in Fig. 6.6.

 Overview of the packages in Java SE 8:
 java.sun.com/javase/8/docs/api/

overview-summary.html

 Java API documentation
 java.sun.com/javase/8/docs/api/

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Simulation and game playing
 element of chance

 Class Random (package java.util)

 static method random of class Math.

 Objects of class Random can produce random
boolean, byte, float, double, int, long and
Gaussian values

 Math method random can produce only double
values in the range 0.0  x < 1.0.

 Documentation for class Random
 java.sun.com/javase/6/docs/api/java/util/

Random.html

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class Random produces pseudorandom numbers
 A sequence of values produced by a complex mathematical

calculation.

 The calculation uses the current time of day to seed the
random-number generator.

 The range of values produced directly by Random
method nextInt often differs from the range of
values required in a particular Java application.

 Random method nextInt that receives an int
argument returns a value from 0 up to, but not
including, the argument’s value.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Rolling a Six-Sided Die
 face = 1 + randomNumbers.nextInt(6);

 The argument 6 — called the scaling factor — represents the

number of unique values that nextInt should produce (0–5)

 This is called scaling the range of values

 A six-sided die has the numbers 1–6 on its faces, not 0–5.

 We shift the range of numbers produced by adding a shifting

value—in this case 1—to our previous result, as in

 The shifting value (1) specifies the first value in the desired

range of random integers.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Fig 6.8: Rolling a Six-Sided Die 6000 Times

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Basic rules for the dice game Craps:
 You roll two dice. Each die has six faces, which

contain one, two, three, four, five and six

spots, respectively. After the dice have come to

rest, the sum of the spots on the two upward

faces is calculated. If the sum is 7 or 11 on

the first throw, you win. If the sum is 2, 3 or

12 on the first throw (called “craps”), you lose

(i.e., the “house” wins). If the sum is 4, 5, 6,

8, 9 or 10 on the first throw, that sum becomes

your “point.” To win, you must continue rolling

the dice until you “make your point” (i.e., roll

that same point value). You lose by rolling a 7

before making your point.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Notes:

 myPoint is initialized to 0 to ensure that the application will

compile.

 If you do not initialize myPoint, the compiler issues an error,

because myPoint is not assigned a value in every case of

the switch statement, and thus the program could try to use

myPoint before it is assigned a value.

 gameStatus is assigned a value in every case of the

switch statement—thus, it’s guaranteed to be initialized

before it’s used and does not need to be initialized.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 enum type Status
 An enumeration in its simplest form declares a set of constants

represented by identifiers.

 Special kind of class that is introduced by the keyword enum

and a type name.

 Braces delimit an enum declaration’s body.

 Inside the braces is a comma-separated list of enumeration

constants, each representing a unique value.

 The identifiers in an enum must be unique.

 Variables of an enum type can be assigned only the constants

declared in the enumeration.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Declarations introduce names that can be used to

refer to such Java entities.

 The scope of a declaration is the portion of the

program that can refer to the declared entity by its

name.

 Such an entity is said to be “in scope” for that

portion of the program.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Basic scope rules:
 The scope of a parameter declaration is the body of the method in

which the declaration appears.

 The scope of a local-variable declaration is from the point at which
the declaration appears to the end of that block.

 The scope of a local-variable declaration that appears in the
initialization section of a for statement’s header is the body of the
for statement and the other expressions in the header.

 A method or field’s scope is the entire body of the class.

 Any block may contain variable declarations.

 If a local variable or parameter in a method has the same
name as a field of the class, the field is “hidden” until the
block terminates execution—this is called shadowing.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Method overloading

 Methods of the same name declared in the same class

 Must have different sets of parameters

 Compiler selects the appropriate method to call by examining the

number, types and order of the arguments in the call.

 Used to create several methods with the same name that perform the

same or similar tasks, but on different types or different numbers of

arguments.

 Literal integer values are treated as type int, so the method call in

line 9 invokes the version of square that specifies an int
parameter.

 Literal floating-point values are treated as type double, so the

method call in line 10 invokes the version of square that specifies

a double parameter.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Distinguishing Between Overloaded Methods
 The compiler distinguishes overloaded methods by their signatures

— the methods’ names and the number, types and order of their
parameters.

 Return types of overloaded methods
 Method calls cannot be distinguished by return type.

 Figure 6.15 illustrates the errors generated when two
methods have the same signature and different return types.

 Overloaded methods can have different return types if the
methods have different parameter lists.

 Overloaded methods need not have the same number of
parameters.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

