
(C) 2010 Pearson Education, Inc. All rights reserved.

Assoc. Prof. Marenglen Biba

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Data structures

 Collections of related data items.

 Arrays

 Data structures consisting of related data items of the same type.

 Make it convenient to process related groups of values.

 Remain the same length once they are created.

 Enhanced for statement for iterating over an array or

collection of data items.

 Process command-line arguments in method main.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Common array manipulations with static methods

of class Arrays from the java.util package.

 ArrayList collection

 Similar to arrays

 Dynamic resizing

 They automatically increase their size at execution time to

accommodate additional elements

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Array
 Group of variables (called elements) containing values of the same

type.

 Arrays are objects so they are reference types.

 Elements can be either primitive or reference types.

 Refer to a particular element in an array
 Use the element’s index.

 Array-access expression—the name of the array followed by the
index of the particular element in square brackets, [].

 The first element in every array has index zero.

 The highest index in an array is one less than the number of
elements in the array.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 An index must be a nonnegative integer.

 Can use an expression as an index.

 An indexed array name is an array-access expression.

 Can be used on the left side of an assignment to place a new

value into an array element.

 Every array object knows its own length and stores it in

a length instance variable.

 length cannot be changed because it’s a final variable.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Array objects

 Created with keyword new.

 You specify the element type and the number of elements in an

array-creation expression, which returns a reference that can be

stored in an array variable.

 Declaration and array-creation expression for an array

of 12 int elements
int[] c = new int[12];

 Can be performed in two steps as follows:
int[] c; // declare the array variable
c = new int[12]; // creates the array

(C) 2010 Pearson Education, Inc. All
rights reserved.

 When an array is created, each element of the array

receives a default value

 Zero for the numeric primitive-type elements, false for

boolean elements and null for references.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Every element of a primitive-type array contains a

value of the array’s declared element type.

 Every element of an int array is an int value.

 Every element of a reference-type array is a reference

to an object of the array’s declared element type.

 Every element of a String array is a reference to a String
object.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Fig. 7.2 uses keyword new to create an array of 10

int elements, which are initially zero (the default for

int variables).

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Array initializer

 A comma-separated list of expressions (called an initializer

list) enclosed in braces.

 Used to create an array and initialize its elements.

 Array length is determined by the number of elements in the

initializer list.

int[] n = { 10, 20, 30, 40, 50 };

 Creates a five-element array with index values 0–4.

 Compiler counts the number of initializers in the list to

determine the size of the array

 Sets up the appropriate new operation “behind the scenes.”

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The application in Fig. 7.4 creates a 10-element array

and assigns to each element one of the even integers

from 2 to 20 (2, 4, 6, …, 20).

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 final variables must be initialized before they are

used and cannot be modified thereafter.

 An attempt to modify a final variable after it’s

initialized causes a compilation error
 cannot assign a value to final variable

variableName

 An attempt to access the value of a final variable

before it’s initialized causes a compilation error
 variable variableName might not have been
initialized

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Figure 7.5 sums the values contained in a 10-element

integer array.

 Often, the elements of an array represent a series of

values to be used in a calculation.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Many programs present data to users in a graphical manner.

 Numeric values are often displayed as bars in a bar chart.

 Longer bars represent proportionally larger numeric values.

 A simple way to display numeric data is with a bar chart

that shows each numeric value as a bar of asterisks (*).

 Format specifier %02d indicates that an int value should

be formatted as a field of two digits.
 The 0 flag displays a leading 0 for values with fewer digits than the

field width (2).

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Sometimes, programs use counter variables to summarize
data, such as the results of a survey.

 Fig. 6.8 used separate counters in a die-rolling program to
track the number of occurrences of each side of a six-sided
die as the program rolled the die 6000 times.

 Fig. 7.7 shows an array version of this application.
 Line 14 of this program replaces lines 23–46 of Fig. 6.8.

 Array frequency must be large enough to store six
counters.
 We use a seven-element array in which we ignore frequency[0]
 More logical to have the face value 1 increment frequency[1]

than frequency[0].

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Figure 7.8 uses arrays to summarize the results of data
collected in a survey:
 Forty students were asked to rate the
quality of the food in the student
cafeteria on a scale of 1 to 10 (where 1
means awful and 10 means excellent). Place
the 40 responses in an integer array, and
summarize the results of the poll.

 Array responses is a 40-element int array of the
survey responses.

 11-element array frequency counts the number of
occurrences of each response (1 to 10).
 Each element is initialized to zero by default.
 We ignore frequency[0].

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 If the data in the responses array contained invalid

values, such as 13, the program would have attempted

to add 1 to frequency[13], which is outside the

bounds of the array.

 Java doesn’t allow this.

 JVM checks array indices to ensure that they are greater than

or equal to 0 and less than the length of the array—this is

called bounds checking.

 If a program uses an invalid index, Java generates a so-called

exception to indicate that an error occurred in the program at

execution time.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Examples thus far used arrays containing elements of

primitive types.

 Elements of an array can be either primitive types or

reference types.

 Next example uses an array of reference-type elements

— objects representing playing cards—to develop a

class that simulates card shuffling and dealing.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class Card (Fig. 7.9) contains two String instance

variables—face and suit—that are used to store

references to the face and suit names for a specific

Card.

 Method toString creates a String consisting of

the face of the card, " of " and the suit of the

card.

 Can invoke explicitly to obtain a string representation of a

Card.

 Called implicitly when the object is used where a String is

expected.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class DeckOfCards (Fig. 7.10) declares as an
instance variable a Card array named deck.

 Deck’s elements are null by default
 Constructor fills the deck array with Card objects.

 Method shuffle shuffles the Cards in the deck.
 Loops through all 52 Cards (array indices 0 to 51).

 Each Card swapped with a randomly chosen other card in the
deck.

 Method dealCard deals one Card in the array.
 currentCard indicates the index of the next Card to be

dealt

 Returns null if there are no more cards to deal

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Figure 7.11 demonstrates class DeckOfCards
(Fig. 7.10).

 When a Card is output as a String, the Card’s

toString method is implicitly invoked.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Enhanced for statement
 Iterates through the elements of an array without using a counter.
 Avoids the possibility of “stepping outside” the array.
 Also works with the Java API’s prebuilt collections (see

Section 7.14).

 Syntax:
for (parameter : arrayName)

statement

where parameter has a type and an identifier and
arrayName is the array through which to iterate.

 Parameter type must be consistent with the array’s element
type.

 The enhanced for statement simplifies the code for
iterating through an array.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The enhanced for statement can be used only to

obtain array elements

 It cannot be used to modify elements.

 To modify elements, use the traditional counter-controlled for
statement.

 Can be used in place of the counter-controlled for
statement if you don’t need to access the index of the

element.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 To pass an array argument to a method, specify the name of
the array without any brackets.
 Since every array object “knows” its own length, we need not pass

the array length as an additional argument.

 To receive an array, the method’s parameter list must
specify an array parameter.

 When an argument to a method is an entire array or an
individual array element of a reference type, the called
method receives a copy of the reference.

 When an argument to a method is an individual array
element of a primitive type, the called method receives a
copy of the element’s value.
 Such primitive values are called scalars or scalar quantities.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Pass-by-value (also called call-by-value)

 A copy of the argument’s value is passed to the called method.

 The called method works exclusively with the copy.

 Changes to the called method’s copy do not affect the original

variable’s value in the caller.

 Pass-by-reference (also called call-by-reference)

 The called method can access the argument’s value in the

caller directly and modify that data, if necessary.

 Improves performance by eliminating the need to copy

possibly large amounts of data.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A method call can pass two types of values to a method

 Copies of primitive values

 Copies of references to objects

 Objects cannot be passed to methods.

 Reference to objects are instead passed

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Previous versions of class GradeBook process a set

of grades entered by the user, but do not maintain the

individual grade values in instance variables of the

class.

 Repeat calculations require the user to reenter the same grades.

 We solve this problem by storing grades in an array.

 The grades array’s size is determined by the length

of the array that is passed to the constructor.

 So a GradeBook object can process a variable number of

grades.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The application of Fig. 7.15 creates an object of class

GradeBook (Fig. 7.14) using the int array

grades-Array.

 Lines 12–13 pass a course name and gradesArray
to the GradeBook constructor.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Two-dimensional arrays are often used to represent tables of
values consisting of information arranged in rows and columns.

 Identify a particular table element with two indices.

 By convention, the first identifies the element’s row and the
second its column.

 Multidimensional arrays can have more than two dimensions.

 Java does not support multidimensional arrays directly

 Allows you to specify one-dimensional arrays whose elements are
also one-dimensional arrays, thus achieving the same effect.

 In general, an array with m rows and n columns is called an m-
by-n array.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Multidimensional arrays can be initialized with array
initializers in declarations.

 A two-dimensional array b with two rows and two
columns could be declared and initialized with nested
array initializers as follows:

int[][] b = { { 1, 2 }, { 3, 4 } };

 The initial values are grouped by row in braces.

 The number of nested array initializers (represented by sets of
braces within the outer braces) determines the number of rows.

 The number of initializer values in the nested array initializer
for a row determines the number of columns in that row.

 Rows can have different lengths.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The lengths of the rows in a two-dimensional array are

not required to be the same:
int[][] b = { { 1, 2 }, { 3, 4, 5 } };

 Each element of b is a reference to a one-dimensional array of

int variables.

 The int array for row 0 is a one-dimensional array with two

elements (1 and 2).

 The int array for row 1 is a one-dimensional array with three

elements (3, 4 and 5).

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A multidimensional array with the same number of columns in
every row can be created with an array-creation expression.

int[][] b = new int[3][4];

 3 rows and 4 columns.

 The elements of a multidimensional array are initialized when
the array object is created.

 A multidimensional array in which each row has a different
number of columns can be created as follows:

int[][] b = new int[2][]; // create 2 rows
b[0] = new int[5]; // create 5 columns for row 0
b[1] = new int[3]; // create 3 columns for row 1

 Creates a two-dimensional array with two rows.

 Row 0 has five columns, and row 1 has three columns.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Figure 7.17 demonstrates initializing two-dimensional

arrays with array initializers and using nested for
loops to traverse the arrays.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 In most semesters, students take several exams.

 Figure 7.18 contains a version of class GradeBook
that uses a two-dimensional array grades to store the

grades of a number of students on multiple exams.

 Each row represents a student’s grades for the entire course.

 Each column represents the grades of all the students who took

a particular exam.

 In this example, we use a ten-by-three array containing

ten students’ grades on three exams.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Variable-length argument lists

 Can be used to create methods that receive an

unspecified number of arguments.

 Parameter type followed by an ellipsis (...) indicates

that the method receives a variable number of

arguments of that particular type.

 The ellipsis can occur only once at the end of a

parameter list.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Command-line arguments

 Can pass arguments from the command line to an application.

 Arguments that appear after the class name in the java
command are received by main in the String array args.

 The number of command-line arguments is obtained by

accessing the array’s length attribute.

 Command-line arguments are separated by white space, not

commas.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Arrays class
 Provides static methods for common array manipulations.

 Methods include
 sort for sorting an array (ascending order by default)

 binarySearch for searching a sorted array

 equals for comparing arrays

 fill for placing values into an array.

 Methods are overloaded for primitive-type arrays and
for arrays of objects.

 System class static arraycopy method
 Copies contents of one array into another.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Java API provides several predefined data structures, called
collections, used to store groups of related objects.
 Each provides efficient methods that organize, store and retrieve your

data without requiring knowledge of how the data is being stored.

 Reduce application-development time.

 Arrays do not automatically change their size at execution time
to accommodate additional elements.

 ArrayList<T> (package java.util) can dynamically
change its size to accommodate more elements.
 T is a placeholder for the type of element stored in the collection.

 This is similar to specifying the type when declaring an array, except that
only nonprimitive types can be used with these collection classes.

 Classes with this kind of placeholder that can be used with any
type are called generic classes.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Figure 7.24 demonstrates some common ArrayList
capabilities.

 An ArrayList’s capacity indicates how many items

it can hold without growing.

 When the ArrayList grows, it must create a larger

internal array and copy each element to the new array.

 This is a time-consuming operation. It would be inefficient for

the ArrayList to grow each time an element is added.

 An ArrayList grows only when an element is added and the

number of elements is equal to the capacity—i.e., there is no

space for the new element.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Method add adds elements to the ArrayList.
 One-argument version appends its argument to the end of the
ArrayList.

 Two-argument version inserts a new element at the specified
position.

 Collection indices start at zero.

 Method size returns the number of elements in the
ArrayList.

 Method get obtains the element at a specified index.
 Method remove deletes an element with a specific value.

 An overloaded version of the method removes the element at the
specified index.

 Method contains determines if an item is in the
ArrayList.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Program that that simulates tossing a coin.

 Application to play a game of guess the
number.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

