
(C) 2010 Pearson Education, Inc. All rights reserved.

Assoc. Prof. Marenglen Biba

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Deeper look at building classes, controlling access to

members of a class and creating constructors.

 Composition — a capability that allows a class to have

references to objects of other classes as members.

 More details on enum types.

 Discuss static class members and final instance

variables in detail.

 Show how to organize classes in packages to help

manage large applications and promote reuse.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class Time1 represents the time of day.

 private int instance variables hour, minute and

second represent the time in universal-time format

(24-hour clock format in which hours are in the range

0–23).

 public methods setTime,

toUniversalString and toString.
 Called the public services or the public interface that the

class provides to its clients.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Access modifiers public and private control access to
a class’s variables and methods.
 Chapter 9 introduces access modifier protected.

 public methods present to the class’s clients a view of the
services the class provides (the class’s public interface).

 Clients need not be concerned with how the class
accomplishes its tasks.
 For this reason, the class’s private variables and private

methods (i.e., its implementation details) are not accessible to its
clients.

 private class members are not accessible outside the
class.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Every object can access a reference to itself with
keyword this.

 When a non-static method is called for a particular
object, the method’s body implicitly uses keyword
this to refer to the object’s instance variables and
other methods.
 Enables the class’s code to know which object should be

manipulated.

 Can also use keyword this explicitly in a non-static
method’s body.

 Can use the this reference implicitly and explicitly.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 When you compile a .java file containing more than

one class, the compiler produces a separate class file

with the .class extension for every compiled class.

 When one source-code (.java) file contains multiple

class declarations, the compiler places both class files

for those classes in the same directory.

 A source-code file can contain only one public
class—otherwise, a compilation error occurs.

 Non-public classes can be used only by other classes

in the same package.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 SimpleTime declares three private instance
variables—hour, minute and second.

 Parameter names for the constructor can be identical to the
class’s instance-variable names.
 We don’t recommend this practice
 Use it here to shadow (hide) the corresponding instance
 Illustrates a case in which explicit use of the this reference is

required.

 If a method contains a local variable with the same name as
a field, that method uses the local variable rather than the
field.
 The local variable shadows the field in the method’s scope.

 A method can use the this reference to refer to the
shadowed field explicitly.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Overloaded constructors enable objects of a class to be

initialized in different ways.

 To overload constructors, simply provide multiple

constructor declarations with different signatures.

 Recall that the compiler differentiates signatures by the

number of parameters, the types of the parameters and

the order of the parameter types in each signature.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class Time2 (Fig. 8.5) contains five overloaded

constructors that provide convenient ways to initialize

objects of the new class Time2.

 The compiler invokes the appropriate constructor by

matching the number, types and order of the types of

the arguments specified in the constructor call with the

number, types and order of the types of the parameters

specified in each constructor declaration.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A program can declare a so-called no-argument constructor
that is invoked without arguments.

 Such a constructor simply initializes the object as specified
in the constructor’s body.

 Using this in method-call syntax as the first statement in
a constructor’s body invokes another constructor of the
same class.
 Popular way to reuse initialization code provided by another of the

class’s constructors rather than defining similar code in the no-
argument constructor’s body.

 Once you declare any constructors in a class, the compiler
will not provide a default constructor.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Validity Checking in Set Methods

 The benefits of data integrity do not follow
automatically simply because instance variables are
declared private—you must provide validity
checking.

 Predicate Methods

 Another common use for accessor methods is to test
whether a condition is true or false—such methods are
often called predicate methods.
 Example: ArrayList’s isEmpty method, which returns
true if the ArrayList is empty.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A class can have references to objects of other classes

as members.

 This is called composition and is sometimes referred to

as a has-a relationship.

 Example: An AlarmClock object needs to know the

current time and the time when it’s supposed to sound

its alarm, so it’s reasonable to include two references to

Time objects in an AlarmClock object.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The basic enum type defines a set of constants

represented as unique identifiers.

 Like classes, all enum types are reference types.

 An enum type is declared with an enum declaration,

which is a comma-separated list of enum constants

 The declaration may optionally include other

components of traditional classes, such as constructors,

fields and methods.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Each enum declaration declares an enum class with the following
restrictions:
 enum constants are implicitly final, because they declare constants that

shouldn’t be modified.
 enum constants are implicitly static.
 Any attempt to create an object of an enum type with operator new results in a

compilation error.
 enum constants can be used anywhere constants can be used, such as in the
case labels of switch statements and to control enhanced for statements.

 enum declarations contain two parts—the enum constants and the other
members of the enum type.

 An enum constructor can specify any number of parameters and can be
overloaded.

 For every enum, the compiler generates the static method values
that returns an array of the enum’s constants.

 When an enum constant is converted to a String, the constant’s
identifier is used as the String representation.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Use the static method range of class EnumSet

(declared in package java.util) to access a range of an

enum’s constants.

 Method range takes two parameters—the first and the last enum
constants in the range

 Returns an EnumSet that contains all the constants between these

two constants, inclusive.

 The enhanced for statement can be used with an

EnumSet just as it can with an array.

 Class EnumSet provides several other static methods.

 java.sun.com/javase/7/docs/api/java/util/EnumS
et.html

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Every class in Java has the methods of class Object
(package java.lang), one of which is the finalize
method.
 Rarely used because it can cause performance problems and there is

some uncertainty as to whether it will get called.

 Every object uses system resources, such as memory.
 Need a disciplined way to give resources back to the system when

they’re no longer needed; otherwise, “resource leaks” might occur.

 The JVM performs automatic garbage collection to reclaim
the memory occupied by objects that are no longer used.
 When there are no more references to an object, the object is eligible

to be collected.

 This typically occurs when the JVM executes its garbage collector.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 So, memory leaks that are common in other languages

like C and C++ (because memory is not automatically

reclaimed in those languages) are less likely in Java,

but some can still happen in subtle ways.

 Other types of resource leaks can occur.

 An application may open a file on disk to modify its contents.

 If it does not close the file, the application must terminate

before any other application can use it.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The finalize method is called by the garbage collector

to perform termination housekeeping on an object just

before the garbage collector reclaims the object’s memory.

 Method finalize does not take parameters and has return type

void.

 A problem with method finalize is that the garbage collector is

not guaranteed to execute at a specified time.

 The garbage collector may never execute before a program

terminates.

 Thus, it’s unclear if, or when, method finalize will be called.

 For this reason, most programmers should avoid method

finalize.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 In certain cases, only one copy of a particular variable

should be shared by all objects of a class.
 A static field—called a class variable—is used in such

cases.

 A static variable represents classwide

information—all objects of the class share the same

piece of data.

 The declaration of a static variable begins with the

keyword static.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Static variables have class scope.

 Can access a class’s public static members through a
reference to any object of the class, or by qualifying the
member name with the class name and a dot (.), as in
Math.random().

 private static class members can be accessed by client
code only through methods of the class.

 static class members are available as soon as the class is
loaded into memory at execution time.

 To access a public static member when no objects of the
class exist (and even when they do), prefix the class name and
a dot (.) to the static member, as in Math.PI.

 To access a private static member when no objects of
the class exist, provide a public static method and call it
by qualifying its name with the class name and a dot.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A static method cannot access non-static class
members, because a static method can be called
even when no objects of the class have been
instantiated.
 For the same reason, the this reference cannot be used in a
static method.

 The this reference must refer to a specific object of the class,
and when a static method is called, there might not be any
objects of its class in memory.

 If a static variable is not initialized, the compiler
assigns it a default value—in this case 0, the default
value for type int.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

When objects exist, method getCount can also be called via any

reference to an Employee object.

When no objects of class Employee exist, client code can

access variable count by calling method getCount via the class

name, as in Employee.getCount().

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Objects become “eligible for garbage collection” when

there are no more references to them in the program.

 Eventually, the garbage collector might reclaim the

memory for these objects (or the operating system will

reclaim the memory when the program terminates).

 The JVM does not guarantee when, or even whether,

the garbage collector will execute.

 When the garbage collector does execute, it’s possible

that no objects or only a subset of the eligible objects

will be collected.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A static import declaration enables you to import

the static members of a class or interface so you can

access them via their unqualified names in your class—

the class name and a dot (.) are not required to use an

imported static member.

 Two forms

 One that imports a particular static member (which is

known as single static import)

 One that imports all static members of a class (which is

known as static import on demand)

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The following syntax imports a particular static member:

import static
packageName.ClassName.staticMemberName;

 where packageName is the package of the class, ClassName is the
name of the class and staticMemberName is the name of the
static field or method.

 The following syntax imports all static members of a class:

import static packageName.ClassName.*;
 where packageName is the package of the class and ClassName is

the name of the class.
 * indicates that all static members of the specified class

should be available for use in the class(es) declared in the file.
 static import declarations import only static class members.

 Regular import statements should be used to specify the classes
used in a program.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The principle of least privilege is fundamental to good

software engineering.

 Code should be granted only the amount of privilege and access that

it needs to accomplish its designated task, but no more.

 Makes your programs more robust by preventing code from

accidentally (or maliciously) modifying variable values and calling

methods that should not be accessible.

 Keyword final specifies that a variable is not modifiable

(i.e., it’s a constant) and any attempt to modify it is an error.
private final int INCREMENT;

 Declares a final (constant) instance variable INCREMENT of type

int.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 final variables can be initialized when they are

declared or by each of the class’s constructors so that

each object of the class has a different value.

 If a class provides multiple constructors, every one

would be required to initialize each final variable.

 A final variable cannot be modified by assignment

after it’s initialized.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 If a final variable is not initialized, a compilation

error occurs.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Each class in the Java API belongs to a package that

contains a group of related classes.

 Packages are defined once, but can be imported into many

programs.

 Packages help programmers manage the complexity of

application components.

 Packages facilitate software reuse by enabling programs to

import classes from other packages, rather than copying the

classes into each program that uses them.

 Packages provide a convention for unique class names,

which helps prevent class-name conflicts.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The steps for creating a reusable class:

 Declare a public class; otherwise, it can be used only by
other classes in the same package.

 Choose a unique package name and add a package
declaration to the source-code file for the reusable class
declaration.
 In each Java source-code file there can be only one package

declaration, and it must precede all other declarations and
statements.

 Compile the class so that it’s placed in the appropriate
package directory.

 Import the reusable class into a program and use the class.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Placing a package declaration at the beginning of a Java
source file indicates that the class declared in the file is part of
the specified package.

 Only package declarations, import declarations and
comments can appear outside the braces of a class declaration.

 A Java source-code file must have the following order:
 a package declaration (if any),
 import declarations (if any), then
 class declarations.

 Only one of the class declarations in a particular file can be
public.

 Other classes in the file are placed in the package and can be
used only by the other classes in the package.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Compile the class so that it’s stored in the appropriate package.

 When a Java file containing a package declaration is compiled,
the resulting class file is placed in the directory specified by the
declaration.

 The package declaration

package com.deitel.jhtp.ch08;

 indicates that class Time1 should be placed in the directory

com
deitel

jhtp
ch08

 The directory names in the package declaration specify the exact

location of the classes in the package.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 javac command-line option -d causes the javac
compiler to create appropriate directories based on the
class’s package declaration.
 The option also specifies where the directories should be

stored.

 Example:
javac -d . Time1.java

 specifies that the first directory in our package name
should be placed in the current directory (.).

 The compiled classes are placed into the directory that
is named last in the package statement.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The package name is part of the fully qualified class
name.
 Class Time1’s name is actually
com.deitel.jhtp.ch08.Time1

 Can use the fully qualified name in programs, or
import the class and use its simple name (the class
name by itself).

 If another package contains a class by the same name,
the fully qualified class names can be used to
distinguish between the classes in the program and
prevent a name conflict (also called a name collision).

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Fig. 8.19, line 3 is a single-type-import declaration
 It specifies one class to import.

 When your program uses multiple classes from the same
package, you can import those classes with a type-import-
on-demand declaration.

 Example:
import java.util.*; // import java.util classes

 uses an asterisk (*) at the end of the import declaration to
inform the compiler that all public classes from the
java.util package are available for use in the program.
 Only the classes from package java-.util that are used in the

program are loaded by the JVM.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Specifying the Classpath During Compilation

 When compiling a class that uses classes from other
packages, javac must locate the .class files for all
other classes being used.

 The compiler uses a special object called a class loader
to locate the classes it needs.
 The class loader begins by searching the standard Java classes

that are bundled with the JDK.

 Then it searches for optional packages.

 If the class is not found in the standard Java classes or in the
extension classes, the class loader searches the classpath,
which contains a list of locations in which classes are stored.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The classpath consists of a list of directories or archive
files, each separated by a directory separator
 Semicolon (;) on Windows or a colon (:) on

UNIX/Linux/Mac OS X.

 Archive files are individual files that contain directories
of other files, typically in a compressed format.
 Archive files normally end with the .jar or .zip file-name

extensions.

 The directories and archive files specified in the
classpath contain the classes you wish to make
available to the Java compiler and the JVM.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 By default, the classpath consists only of the current
directory.

 The classpath can be modified by:
 providing the -classpath option to the javac compiler

 setting the CLASSPATH environment variable (not
recommended).

 Classpath
 http://docs.oracle.com/javase/7/docs/technot
es/tools/index.html#genera

 The section entitled “General Information” contains information
on setting the classpath for UNIX/Linux and Windows.

http://docs.oracle.com/javase/7/docs/technotes/tools/index.html#genera

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Specifying the Classpath When Executing an Application
 When you execute an application, the JVM must be able to

locate the .class files of the classes used in that
application.

 Like the compiler, the java command uses a class loader
that searches the standard classes and extension classes
first, then searches the classpath (the current directory by
default).

 The classpath can be specified explicitly by using either of
the techniques discussed for the compiler.

 As with the compiler, it’s better to specify an individual
program’s classpath via command-line JVM options.
 If classes must be loaded from the current directory, be sure to

include a dot (.) in the classpath to specify the current directory.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 If no access modifier is specified for a method or

variable when it’s declared in a class, the method or

variable is considered to have package access.

 If a program uses multiple classes from the same

package, these classes can access each other’s package-

access members directly through references to objects

of the appropriate classes, or in the case of static
members through the class name.

 Package access is rarely used.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Chapter 8
◦ Java™ How to Program, 9/e

