Lesson 6
Classes and Objects:
A Deeper Look

Assoc. Prof. Marenglen Biba

OBJECTIVES
In this Chapter you'll learn:

m Encapsulation and data hiding.

m To use keyword this.

m To use static variables and methods.

m To import static members of a class.

m To use the enum type to create sets of constants with unique identifiers.
m To declare enum constants with parameters.

m To organize classes in packages to promote reuse.

(C) 2010 Pearson Education, Inc. All
rights reserved.

0 O O C & & 0 o

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
.10
A1
A2
A3
14
A5
.16
A7

Introduction

Time Class Case Study

Controlling Access to Members

Referring to the Current Object’s Members with the this Reference
Time Class Case Study: Overloaded Constructors

Default and No-Argument Constructors

Notes on Set and Get Methods

Composition

Enumerations

Garbage Collection and Method finalize

static Class Members

static Import

final Instance Variables

Time Class Case Study: Creating Packages

Package Access

(Optional) GUI and Graphics Case Study: Using Objects with Graphics
Wrap-Up

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.1 Introduction

» Deeper look at building classes, controlling access to
members of a class and creating constructors.

» Composition — a capability that allows a class to have
references to objects of other classes as members.

» More details on enum types.

» Discuss static class members and final instance
variables in detalil.

» Show how to organize classes in packages to help
manage large applications and promote reuse.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.2 Time Class Case Study

» Class T1mel represents the time of day.

» private 1nt instance variables hour, minute and
second represent the time in universal-time format
(24-hour clock format in which hours are in the range
0-23).

» pub11c methods setTime,

touniversalStringand toString.
= Called the public services or the public interface that the
class provides to its clients.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Instance variables represent the time in

Validate the initial time

Format the time in 24-
hour clock format

1 // Fig. 8.1: Timel.java

2 // Timel class declaration maintains the time in 24-hour format.

3

4 public class Timel

5 {

6 private int hour; // 0 - 23 1

7 private int minute; // 0 - 59

8 private int second; // 0 - 59 24-hour clock format
9

10 // set a new time value using universal time; ensure that

11 // the data remains consistent by setting invalid values to zero

12 public void setTime(int h, int m, int s)

13 {

14 hour = ((h>=08&& h <24) ?2h :0); // validate hour

15 minute = ((m>=0& & m< 60) ?m: 0); // validate minute val
16 second = ((s> 0&& s <60) ?s :0); // validate second alues
17 } // end method setTime

18

19 // convert to String in universal-time format (HH:MM:SS)
20 pubTic String toUniversalString()
21 {
22 return String.format("%02d:%02d:%02d", hour, minute, second); «—
23 } // end method toUniversalString
24

Fig. 8.1 | Timel class declaration maintains the time in 24-hour format. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

25
26
27
28
29
30
31
32

// convert to String in standard-time format (H:MM:SS AM or PM)

public String toString()
{
return String.format("%d:%02d:%02d %s",
((hour == 0 || hour == 12) ? 12
minute, second, (hour < 12 7 "AM"
} // end method toString
} // end class Timel

: hour % 12),
: ITPMII));

Format the time in |2-
hour clock format; this
is also the default
String format for
Timel

Fig. 8.1 | Timel class declaration maintains the time in 24-hour format. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All

rights reserved.

1 // Fig. 8.2: TimelTest.java

2 // Timel object used in an application.

3

4 public class TimelTest

5 {

6 public static void main(String[] args)

7 {

8 // create and initialize a Timel object Create default 11
9 Timel time = new Timel(); // invokes Timel constructor = reate detau Timel
10 object

11 // output string representations of the time

12 System.out.print("The initial universal time is: "); -

13 System.out.printin(time.toUniversalString()); = Cet 24'htOLtJ.r forr?i_t ST

14 System.out.print("The initial standard time 1is: "); representation of time

15 System.out.printin(time.toString()); \ —

16 System.out.printin(); // output a blank Tine Get I2?hou'rformat String: call to
17 toString IS unnecessary

18 // change time and output updated time ; X -

19 e e R aet thet_lmeta uswzjgvalld(\j/alues for the
20 System.out.print("Universal time after setTime is: "); O MRS I S5O

21 System.out.printin(time.toUniversalString());

22 System.out.print("Standard time after setTime is: ");

23 System.out.printin(time.toString());

24 System.out.printin(); // output a blank Tine

Fig. 8.2 | Timel object used in an application. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

25

;: é?mi?:ez}?ﬁeﬁjgg,1gg?1;g ;?1:es, output updated time Satheﬁmeugnghnmhdvduesbrﬁw
28 System.out.printin("After attempting invalid settings:");hounnnmﬂeandsabnd

29 System.out.print("Universal time: ");

30 System.out.printin(time.toUniversalString());

31 System.out.print("Standard time: ");

32 System.out.printin(time.toString());

33 } // end main

34 } // end class TimelTest

The initial universal time is: 00:00:00
The initial standard time is: 12:00:00 AM

Universal time after setTime is: 13:27:06
Standard time after setTime is: 1:27:06 PM

After attempting invalid settings:
Universal time: 00:00:00
Standard time: 12:00:00 AM

Fig. 8.2 | Timel object used in an application. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All

rights reserved.

-9 Software Engineering Observation 8.2

XX Interfaces change less frequently than implementations.
When an implementation changes, implementation-
dependent code must change accordingly. Hiding the
implementation reduces the possibility that other
program parts will become dependent on class
implementation details.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.3 Controlling Access to Members

» Access modifiers pub11c and private control access to
a class’s variables and methods.
= Chapter 9 introduces access modifier protected.

» pub11c methods present to the class’s clients a view of the
services the class provides (the class’s pub 11 c interface).

» Clients need not be concerned with how the class

accomplishes its tasks.

= For this reason, the class’s private variables and private
methods (i.e., its implementation details) are not accessible to its
clients.

» private class members are not accessible outside the
class.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 8.3: MemberAccessTest.java

2 // Private members of class Timel are not accessible.

3 public class MemberAccessTest

4 {

5 public static void main(String[] args)

6 {

7 Timel time = new Timel(); // create and initialize Timel object

8 Fach of th

9 time.hour = 7; // error: hour has private access in Timel - ’?Ct 0 tesit -
10 time.minute = 15; // error: minute has private access in Timel saemzntsathe?ps °
11 time.second = 30; // error: second has private access in Timel acc_ess ata that 15
12 Y // end main private to class
I3 } // end class MemberAccessTest ULt

Fig. 8.3 | Private members of class Timel are not accessible. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

MemberAccessTest.java:9: hour has private access in Timel
time.hour = 7; // error: hour has private access in Timel
A
MemberAccessTest.java:10: minute has private access in Timel
time.minute = 15; // error: minute has private access in Timel
A
MemberAccessTest.java:11l: second has private access in Timel

time.second = 30; // error: second has private access in Timel
A

3 errors

Fig. 8.3 | Private members of class Timel are not accessible. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.4 Referring to the Current Object’s
Members with the this Reference

» Every object can access a reference to itself with
keyword this.

» When a non-static method is called for a particular
object, the method’s body implicitly uses keyword
th1is to refer to the object’s instance variables and
other methods.
= Enables the class’s code to know which object should be

manipulated.

= Can also use keyword th1is explicitly in anon-static
method’s body.

» Can use the th1s reference implicitly and explicitly.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.4 Referring to the Current Object’s
Members with the th1s Reference (Cont.)

» When you compile a . Java file containing more than
one class, the compiler produces a separate class file
with the . class extension for every compiled class.

» When one source-code (. Java) file contains multiple
class declarations, the compiler places both class files
for those classes in the same directory.

» A source-code file can contain only one pub1ic
class—otherwise, a compilation error occurs.

» Non-pub 11 c classes can be used only by other classes
In the same package.

(C) 2010 Pearson Education, Inc. All
rights reserved.

ooo~NONGKNbD WN =—

// Fig. 8.4: ThisTest.java
// this used implicitly and explicitly to refer to members of an object.

public class ThisTest
{
public static void main(String[] args)
{
SimpleTime time = new SimpleTime(15, 30, 19);
System.out.printin(time.buildString());
} // end main
} // end class ThisTest

// class SimpleTime demonstrates the "this" reference
class SimpleTime
{

private int hour; // 0-23

private int minute; // 0-59

private int second; // 0-59

Fig. 8.4 | this used implicitly and explicitly to refer to members of an object. (Part

| of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// 1f the constructor uses parameter names identical to
// instance variable names the "this" reference is

// required to distinguish between names

public SimpleTime(int hour, int minute, int second)

{

The this reference enables you to
explicitly access instance variables
when they are shadowed by local
variables of the same name

this.hour = hour; // set "this" object's hour -
this.minute = minute; // set "this" object's minute
this.second = second; // set "this" object's second

} // end SimpleTime constructor

// use explicit and implicit "this" to call toUniversalString
pubTic String buildString()
{

return String.format("%24s: %s\n%24s: %s",
"this.toUniversalString()", this.toUniversalString(), =
"toUniversalString()", toUniversalString());

The this reference is not required to
call other methods of the same class

} // end method buildString

Fig. 8.4 | this used implicitly and explicitly to refer to members of an object. (Part

20f3))

(C) 2010 Pearson Education, Inc. All
rights reserved.

38 // convert to String in universal-time format (HH:MM:SS)

39 public String toUniversalString()

40 {

41 // "this" is not required here to access instance variables,

42 // because method does not have local variables with same

43 // names as instance variables

44 return String.format("%02d:%02d:%02d", T , -

45 this.hour, this.minute, this.second); « R nopmquwedhem,gncethe
46 } // end method toUniversalString instance variables are not shadowed

47 } // end class SimpleTime

this.toUniversalString(): 15:30:19
toUniversalString(): 15:30:19

Fig. 8.4 | this used implicitly and explicitly to refer to members of an object. (Part
3of3)

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.4 Referring to the Current Object’s
Members with the th1s Reference (Cont.)

» SimpleTime declares three private instance
variables—hour, minute and second.

» Parameter names for the constructor can be identical to the
class’s instance-variable names.
= We don’t recommend this practice
= Use it here to shadow (hide) the corresponding instance
= |llustrates a case in which explicit use of the th1is reference is

required.

» If a method contains a local variable with the same name as

?-ﬁlgld’ that method uses the local variable rather than the
1€1d.

= The local variable shadows the ficld in the method’s scope.
» Amethod can use the th1is reference to refer to the
shadowed field explicitly.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.5 T1ime Class Case Study: Overloaded
Constructors

» Overloaded constructors enable objects of a class to be
Initialized in different ways.

» To overload constructors, simply provide multiple
constructor declarations with different signatures.

» Recall that the compiler differentiates signatures by the
number of parameters, the types of the parameters and
the order of the parameter types in each signature.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.5 Time Class Case Study: Overloaded
Constructors (Cont.)

» Class T1me2 (Fig. 8.5) contains five overloaded
constructors that provide convenient ways to initialize
objects of the new class T1me?2.

» The compiler invokes the appropriate constructor by
matching the number, types and order of the types of
the arguments specified in the constructor call with the
number, types and order of the types of the parameters
specified in each constructor declaration.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 8.5: Time2.java

2 // Time2 class declaration with overloaded constructors.

3

4 public class Time2

5 {

6 private int hour; // 0 - 23

7 private int minute; // 0 - 59

8 private int second; // 0 - 59

9

10 // Time2 no-argument constructor: initializes each instance variable
11 // to zero; ensures that Time2 objects start in a consistent state
12 public Time2()

13 {

14 this(0, 0, 0); // invoke Time2 constructor with three arguments
15 } // end Time2 no-argument constructor

16

17 // Time2 constructor: hour supplied, minute and second defaulted to O
18 public Time2(int h)

19 {
20 this(C h, 0, 0); // invoke Time2 constructor with three arguments
21 } // end Time2 one-argument constructor
22

Invoke three-argument
constructor

Invoke three-argument
constructor

Fig. 8.5 | Time2 class with overloaded constructors. (Part | of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

// Time2 constructor: hour and minute supplied, second defaulted to O

public Time2(int h, int m)
{

this(C h, m, 0); // invoke Time2 constructor with three arguments

} // end Time2 two-argument constructor

// Time2 constructor: hour, minute and second supplied
public Time2(int h, int m, int s)
{

setTime(h, m, s); // invoke setTime to validate time

Invoke three-argument
constructor

} // end Time2 three-argument constructor

// Time2 constructor: another Time2 object supplied
public Time2(Time2 time)
{
// invoke Time2 three-argument constructor
this(time.getHour(), time.getMinute(), time.getSecond());
} // end Time2 constructor with a Time2 object argument

[nvoke setTime to
validate the data

-—————————

Invoke three-argument
constructor

Fig. 8.5 | Time2 class with overloaded constructors. (Part 2 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

// Set Methods

// set a new time value using universal time; ensure that
// the data remains consistent by setting invalid values to zero
public void setTime(int h, int m, int s)

{
setHour(h); // set the hour
setMinute(m); // set the minute
setSecond(s); // set the second
} // end method setTime

// validate and set hour
public void setHour(int h)

{

hour = ((h>=08& h <24) 7?7 h:

} // end method setHour

// validate and set minute
public void setMinute(int m)

{

minute = ((m>= 0 && m< 60) ?7 m:

} // end method setMinute

0);

0);

Fig. 8.5 | Time2 class with overloaded constructors. (Part 3 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

// validate and set second
public void setSecond(int s)

{

second = ((s >= 0 && s < 60) ? s :

} // end method setSecond

// Get Methods
// get hour value
public int getHour()
{
return hour;
} // end method getHour

// get minute value
public int getMinute()
{
return minute;
} // end method getMinute

// get second value
public int getSecond()
{
return second;
} // end method getSecond

0);

Fig. 8.5 | Time2 class with overloaded constructors. (Part 4 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

// convert to String in universal-time format (HH:MM:SS)
public String toUniversalString()
{
return String.format(
"%02d:%02d:%02d", getHour(), getMinute(), getSecond());
} // end method toUniversalString

// convert to String in standard-time format (H:MM:SS AM or PM)
public String toString()
{
return String.format("%d:%02d:%02d %s",
((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12),
getMinute(), getSecond(), (getHour() < 12 ? "AM" : "PM"));
} // end method toString

103 } // end class Time2

Fig. 8.5 | Time2 class with overloaded constructors. (Part 5 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

|

2

3

4

5 {

6

7 {

8 Time2
9 Time2
10 Time2
11 Time2
12 Time2
13 Time2
14

15 System.
16 System
17 System.
18 System.
19
20 System.
21 "t2:
22 System.
23 System.
24

// Fig. 8.6: Time2Test.java
// Overloaded constructors used to initialize Time2 objects.

public class Time2Test

public static void main(String[] args)

tl = new Time2(); // 00:00:00 -
t2 = new Time2(2); // 02:00:00 . ; :
. Compiler determines which
t3 = new Time2(21, 34); // 21:34:00
. ’ ’ constructor to call based on the
t4 = new Time2(12, 25, 42); // 12:25:42
t5 = new Time2(27, 74, 99): // 00:00:00 number and types of the arguments
t6 = new Time2(t4); // 12:25:42
out.printin("Constructed with:");
out.printin("tl: all arguments defaulted”);
out.printf(" %s\n", tl.toUniversalString());
out.printf(" %s\n", tl.toString(Q));
out.printin(
hour specified; minute and second defaulted");
out.printf(" %s\n", t2.toUniversalString());
out.printf(" %s\n", t2.toString());

Fig. 8.6 | Overloaded constructors used to initialize Time2 objects. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

25 System.out.printin(

26 "t3: hour and minute specified; second defaulted");
27 System.out.printf(" %s\n", t3.toUniversalString());
28 System.out.printf(" %s\n", t3.toString());

29

30 System.out.println("t4: hour, minute and second specified”);
31 System.out.printf(" %s\n", t4.toUniversalString());
32 System.out.printf(" %s\n", t4.toString());

33

34 System.out.println("t5: all invalid values specified”);
35 System.out.printf(" %s\n", t5.toUniversalString());
36 System.out.printf(" %s\n", t5.toString());

37

38 System.out.printin("t6: Time2 object t4 specified”);

39 System.out.printf(" %s\n", t6.toUniversalString());
40 System.out.printf(" %s\n", t6.toString());

41 } // end main

42 1} // end class Time2Test

Fig. 8.6 | Overloaded constructors used to initialize Time2 objects. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

tl: all arguments defaulted
00:00:00
12:00:00 AM
t2: hour specified; minute and second defaulted
02:00:00
2:00:00 AM
t3: hour and minute specified; second defaulted
21:34:00
9:34:00 PM
t4: hour, minute and second specified
12:25:42
12:25:42 PM
t5: all invalid values specified
00:00:00
12:00:00 AM
t6: Time2 object t4 specified
12:25:42
12:25:42 PM

Fig. 8.6 | Overloaded constructors used to initialize Time2 objects. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.5 Time Class Case Study: Overloaded
Constructors (Cont.)

» A program can declare a so-called no-argument constructor
that Is invoked without arguments.

» Such a constructor simply initializes the object as specified
in the constructor’s body.

» Using this in method-call syntax as the first statement in
a constructor’s body invokes another constructor of the
same class.

= Popular way to reuse initialization code provided by another of the
class’s constructors rather than defining similar code in the no-
argument constructor’s body.
» Once you declare any constructors in a class, the compiler
will not provide a default constructor.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.7 Notes on Sef and Get Methods
(Cont.)

» Validity Checking in Set Methods

» The benefits of data integrity do not follow
automatically simply because instance variables are
declared private—you must provide validity
checking.

» Predicate Methods

» Another common use for accessor methods Is to test
whether a condition is true or false—such methods are
often called predicate methods.

= Example: ArrayList’s 1sEmpty method, which returns
true ifthe ArrayL1ist is empty.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.8 Composition

» A class can have references to objects of other classes
as members.

» This i1s called composition and is sometimes referred to
as a has-a relationship.

» Example: An AlarmClock object needs to know the
current time and the time when it’s supposed to sound

its alarm, so 1t’s reasonable to include two references to
T1ime objects inan AlarmClock object.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 8.7: Date.java

2 // Date class declaration.

3

4 public class Date

5 {

6 private int month; // 1-12

7 private int day; // 1-31 based on month

8 private int year; // any year

9

10 // constructor: call checkMonth to confirm proper value for month;
11 // call checkDay to confirm proper value for day

12 public Date(int theMonth, 1int theDay, int theYear)
13 {

14 month = checkMonth(theMonth); // validate month
15 year = theYear; // could validate year

16 day = checkDay(theDay); // validate day

17

18 System.out.printf(

19 "Date object constructor for date %s\n", this);
20 } // end Date constructor
21

Fig. 8.7 | Date class declaration. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

22 // utility method to confirm proper month value

23 private int checkMonth(int testMonth)

24 {

25 if (testMonth > 0 & & testMonth <= 12) // validate month
26 return testMonth;

27 else // month is invalid

28 {

29 System.out.printf(

30 "Invalid month (%d) set to 1.", testMonth);

31 return 1; // maintain object in consistent state

32 } // end else

33 } // end method checkMonth

34

35 // utility method to confirm proper day value based on month and year
36 private int checkDay(int testDay)

37 {

38 int[] daysPerMonth =

39 { o0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
40

41 // check if day in range for month

42 if (testDay > 0 && testDay <= daysPerMonth[month])

43 return testDay;

44

Fig. 8.7 | Date class declaration. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

45 // check for Teap year

46 if (month == 2 && testDay == 29 && (year % 400 == 0 ||
47 (year % 4 == 0 && year % 100 =0)))

48 return testDay;

49

50 System.out.printf("Invalid day (%d) set to 1.", testDay);
31 return 1; // maintain object in consistent state

52 } // end method checkDay

53

54 // return a String of the form month/day/year

55 public String toString()

56 {

57 return String.format("%d/%d/%d", month, day, year);

58 } // end method toString

59 1} // end class Date

Fig. 8.7 | Date class declaration. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Fig. 8.8: Employee.java

2 // Employee class with references to other objects.

3

4 public class Employee

5 {

6 private String firstName;

7 private String lastName; References to other objects composed
8 private Date birthDate; into class Employee
9 private Date hireDate; -J

10

11 // constructor to initialize name, birth date and hire date

12 public Employee(String first, String last, Date dateOfBirth,

13 Date dateOfHire)

14 {

I5 firstName = first;

16 TastName = last;

17 birthDate = dateOfBirth;

18 hireDate = dateOfHire;

19 } // end Employee constructor
20

Fig. 8.8 | Employee class with references to other objects. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

21 // convert Employee to String format

22 public String toString()

23 {

24 return String.format("%s, %s Hired: %s Birthday: %s",
25 TastName, firstName, hireDate, birthDate);

26 } // end method toString

27 1} // end class Employee

Fig. 8.8 | Employee class with references to other objects. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Fig. 8.9: EmployeeTest.java

2 // Composition demonstration.

3

4 public class EmployeeTest

5 {

6 public static void main(String[] args)

7 { -

8 Date birth = new Date(7, 24, 1949); = P?;e]."bﬁl";tsfsed £
9 Date hire = new Date(3, 12, 1988); nitialize tmpfoyee
10 Employee employee = new Employee("Bob", "Blue™, birth, hire);
i1 5 .
12 System.out.printin(employee); = GasEmp19yeESStr?ng)
13 Y // end main FEp@SQHaUOHbycamngtoStr1ng
14 } // end class EmployeeTest implicitly

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988
Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

Fig. 8.9 | Composition demonstration.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.9 Enumerations

» The basic enum type defines a set of constants
represented as unique identifiers.

» Like classes, all enum types are reference types.

» An enum type Is declared with an enum declaration,
which is a comma-separated list of enum constants

» The declaration may optionally include other
components of traditional classes, such as constructors,
fields and methods.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.9 Enumerations (Cont.)

» Each enum declaration declares an enum class with the following
restrictions:

enum constants are implicitly final, because they declare constants that
shouldn’t be modified.

enum constants are implicitly static.

Any attempt to create an object of an enum type with operator new results in a
compilation error.

enum constants can be used anywhere constants can be used, such as in the
case labels of switch statements and to control enhanced for statements.
enum declarations contain two parts—the enum constants and the other
members of the enum type.

An enum constructor can specify any number of parameters and can be
overloaded.

» For every enum, the compiler generates the static method values
that returns an array of the enum’s constants.

» When an enum constant is converted to a String, the constant’s
identifier is used as the String representation.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 8.10: Book.java

2 // Declaring an enum type with constructor and explicit instance fields

3 // and accessors for these fields

4

5 public enum Book

6 {

7 // declare constants of enum type

8 JHTP("Java How to Program", "2010"), ‘__________gqqmponﬂaﬂm
9 CHTPC "C How to Program", "2007"), initialized with
10 IW3HTP("Internet & World Wide Web How to Program™, "2008"), constructor calls
11 CPPHTP("C++ How to Program"™, "2008"),

12 VBHTP("Visual Basic 2008 How to Program"”, "2009"),

13 CSHARPHTP("Visual C# 2008 How to Program", "2009");

14

15 // instance fields

16 private final String title; // book title

17 private final String copyrightYear; // copyright year

18

Fig. 8.10 | Declaring an enum type with constructor and explicit instance fields and
accessors for these fields. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

19 // enum constructor

20 Book(String bookTitle, String year)
21 {

22 title = bookTitle;

23 copyrightYear = year;

24 } // end enum Book constructor

25

26 // accessor for field title

27 public String getTitle()

28 {

29 return title;

30 } // end method getTitle

31

32 // accessor for field copyrightYear
33 public String getCopyrightYear()

34 {

35 return copyrightYear;

36 } // end method getCopyrightYear

37 1} // end enum Book

Fig. 8.10 | Declaring an enum type with constructor and explicit instance fields and
accessors for these fields. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

Voo ~NONUND WN =

22
23

// Fig. 8.11: EnumTest.java
// Testing enum type Book.
import java.util.EnumSet;

public class EnumTest

{

public static void main(String[] args)

{
System.out.printin("All books:\n");

// print all books in enum Book
for (Book book : Book.values()) =
System.out.printf("%-10s%-45s%s\n", book,

enum method values returns a
collection of the enum constants

book.getTitle(), book.getCopyrightYear());

System.out.printin("\nDisplay a range of enum constants:\n");

// print first four books
for (Book book : EnumSet.range(Book.JHTP, Book.CPPHTP)) we——
System.out.printf("%-10s%-45s%s\n", book,
book.getTitle(), book.getCopyrightYear());
} // end main
} // end class EnumTest

EnumSet method
range returns a
collection of the enum
constants in the
specified range of
constants

Fig. 8.11 | Testing an enum type. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

A11 books:

JHTP Java How to Program 2010
CHTP C How to Program 2007
IW3HTP Internet & World Wide Web How to Program 2008
CPPHTP C++ How to Program 2008
VBHTP Visual Basic 2008 How to Program 2009
CSHARPHTP Visual C# 2008 How to Program 2009
Display a range of enum constants:

JHTP Java How to Program 2010
CHTP C How to Program 2007
IW3HTP Internet & World Wide Web How to Program 2008
CPPHTP C++ How to Program 2008

Fig. 8.11 | Testing an enum type. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All

rights reserved.

8.9 Enumerations (Cont.)

» Use the stati1c method range of class EnumSet
(declared in package java.uti1) to access a range of an

enum’s constants.

= Method range takes two parameters—the first and the last enum
constants in the range

= Returns an EnumSet that contains all the constants between these
two constants, inclusive.

» The enhanced for statement can be used with an
EnumSet just as it can with an array.

» Class EnumSet provides several other static methods.

= java.sun.com/javase/7/docs/api/java/util/EnumS
et.html

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.10 Garbage Collection and Method
finalize

» Every class in Java has the methods of class Object
(package java. lang), one of which is the finalize
method.
= Rarely used because it can cause performance problems and there is

some uncertainty as to whether it will get called.

» Every object uses system resources, such as memory.
= Need a disciplined way to give resources back to the system when

they’re no longer needed; otherwise, “resource leaks” might occur.

» The JVM performs automatic garbage collection to reclaim
the memory occupied by objects that are no longer used.
= When there are no more references to an object, the object is eligible

to be collected.
= This typically occurs when the JVM executes its garbage collector.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.10 Garbage Collection and Method
finalize (Cont.)

» S0, memory leaks that are common in other languages
like C and C++ (because memory Is not automatically
reclaimed In those languages) are less likely in Java,
but some can still happen in subtle ways.

» Other types of resource leaks can occur.
= An application may open a file on disk to modify its contents.

= If it does not close the file, the application must terminate
before any other application can use It.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.10 Garbage Collection and Method
finalize (Cont.)

» The finalize method Is called by the garbage collector

to perform termination housekeeping on an object just

before the garbage collector reclaims the object’s memory.

= Method finalize does not take parameters and has return type
void.

= A problem with method finalize is that the garbage collector is
not guaranteed to execute at a specified time.

= The garbage collector may never execute before a program
terminates.

= Thus, it’s unclear if, or when, method finalize will be called.

= For this reason, most programmers should avoid method
finalize.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Software Engineering Observation 8.7

A class that uses system resources, such as files on disk,
should provide a method that programmers can call to
release resources when they are no longer needed in a
program. Many Java API classes provide close or
dispose methods for this purpose. For example, class
Scanner (java.sun.com/javase/6/docs/api/
java/util/Scanner.html) has a close method.

LN

“'—_Q“

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.11 static Class Members

» In certain cases, only one copy of a particular variable
should be shared by all objects of a class.

= A static field—called a class variable—is used in such
cases.

» A static variable represents classwide

Information—all objects of the class share the same
piece of data.

= The declaration of a stat1i c variable begins with the
keyword static.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.11 static Class Members (Cont.)

4
>

Static variables have class scope.

Can access a class’s pub11c static members through a
reference to any object of the class, or by qualifying the
member name with the class name and a dot (.), as in
Math.random().

private static class members can be accessed by client
code only through methods of the class.

static class members are available as soon as the class is
loaded into memory at execution time.

To access a pub 11c¢ static member when no objects of the
class exist (and even when they do), prefix the class name and
a dot (.) to the static member, asin Math.PI.

To access a private static member when no objects of
the class exist, provide a pub11c static method and call it
by qualifying its name with the class name and a dot.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.11 static Class Members (Cont.)

» A static method cannot access non-static class
members, because a static method can be called
even when no objects of the class have been
Instantiated.

= For the same reason, the this reference cannot be used in a
static method.

= The th1is reference must refer to a specific object of the class,
and when a static method is called, there might not be any
objects of its class in memory.
» If a static variable is not initialized, the compiler
assigns it a default value—in this case 0, the default
value for type 1nt.

(C) 2010 Pearson Education, Inc. All
rights reserved.

static variable shared
by all Employees

1 // Fig. 8.12: Employee.java

2 // Static variable used to maintain a count of the number of
3 // Employee objects in memory.

4

5 public class Employee

6 {

7 private String firstName;

8 private String lastName;

9 private static int count = 0; // number of Employees created =
10

11 // initialize Employee, add 1 to static count and

12 // output String indicating that constructor was called
13 public Employee(String first, String last)

14 {

15 firstName = first;

16 TastName = Tlast;

17

18 ++count; // increment static count of employees

19 System.out.printf("Employee constructor: %s %s; count = %d\n",
20 firstName, lastName, count);
21 } // end Employee constructor
22

static variables can
be access by all of the
class’s methods

Fig. 8.12 | static variable used to maintain a count of the number of EmpTloyee
objects in memory. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23 // get first name

24 public String getFirstName()

25 {

26 return firstName;

27 } // end method getFirstName

28

29 // get last name

30 public String getLastName()

31 {

32 return lastName;

33 } // end method getLastName

34

:: [/)ﬁb?;'Citlzaﬁizh?:ttgeggguiiﬁ?C LR - stat,ic method can be called by the
37 { class’s clients to get the current

38 return count: count—whet'hero'rnotthere are any
39 } // end method getCount Employee objects in memory

40 1} // end class Employee

Fig. 8.12 | static variable used to maintain a count of the number of Employee
objects in memory. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 8.13: EmployeeTest.java

2 // Static member demonstration.

3

4 public class EmployeeTest

5 {

6 public static void main(String[] args)

7 {

8 // show that count is 0 before creating Employees

9 System.out.printf("Employees before instantiation: %d\n",

10 Employee.getCount()); = Gets.the count before

I creating Employees

12 // freate two Employees; count should be 2

13 Employee el = new Employee("Susan", "Baker");

14 Efployee e2 = new Employee("Bob", "Blue"); Gets the count after

15 . ‘

16 // show that count is 2 after creating two Employees creating Emp]oye_es,
. N . . . should call static

17 System.out.printin("\nEmployees after instantiation:); methods only via the

18 System.out.printf("via el.getCount(): %d\n", el.getCount()); ~———— Class name Y

19 System.out.printf("via e2.getCount(): %d\n", e2.getCount()); —

20 System.out.printf("via Employee.getCount(): %d\n",

21 Employee.getCount()); - ‘\ Srigstitnhelzcw]nt after

22 \ g mp loyees

Fig/8.13 | static member demonstration. (Part | of 2.)

When no objects of class Employee exist, client code can
access variable count by calling method getCount via the class
name, as in Employee.getCount().

When objects exist, method getCount can also be called via any
reference to an Employee object.

23
24
25
26
27
28
29
30
31
32
33
34

// get names of Employees

System.out.printf("\nEmployee 1: %s %s\nEmployee 2: %s %s\n",
el.getFirstName(), el.getLastName(),
e2.getFirstName(), e2.getLastName());

// in this example, there is only one reference to each Employee,
// so the following two statements indicate that these objects
// are eligible for garbage collection

el = null; =

e2 = null; =
} // end main
} // end class EmployeeTest

Employees before instantiation: 0
Employee constructor: Susan Baker; count = 1
Employee constructor: Bob Blue; count = 2

Employees after instantiation:
via el.getCount(): 2

via e2.getCount(): 2

via Employee.getCount(): 2

Employee 1: Susan Baker
Employee 2: Bob Blue

Good practice to set
variables to nu11 when
you no longer need the
objects they refer to;
enables the garbage
collector to retrieve
them if there are no
other references to
those objects.

Fig. 8.13 | static member demonstration. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.11 static Class Members (Cont.)

» Objects become “eligible for garbage collection” when
there are no more references to them in the program.

» Eventually, the garbage collector might reclaim the
memory for these objects (or the operating system will
reclaim the memory when the program terminates).

» The JVM does not guarantee when, or even whether,
the garbage collector will execute.

» When the garbage collector does execute, 1t’s possible
that no objects or only a subset of the eligible objects
will be collected.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.12 static Import

» A static import declaration enables you to import
the static members of a class or interface so you can
access them via their unqualified names in your class—

the class name and a dot (.) are not required to use an
imported static member.

» Two forms

= One that imports a particular static member (which is
known as single static import)

= One that imports all static members of a class (which is
known as static import on demand)

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.12 static Import (Cont.)

» The following syntax imports a particular static member:

import static
packageName.(ClassName.staticMemberName;

» where packageName is the package of the class, ClassName is the
name of the class and staticMemberName Is the name of the
stat1ic field or method.

» The following syntax imports all stati1c members of a class:
import static packageName.ClassName. *;

» where packageName is the package of the class and ClassName is
the name of the class.

= * indicates that all stat1c members of the specified class
should be available for use in the class(es) declared in the file.

» static import declarations import only static class members.

» Regular 1mport statements should be used to specify the classes
used in a program.

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Fig. 8.14: StaticImportTest.java

2 // Static import of Math class methods.

3 import static java.lang.Math.*; « EnqNgsMaﬂ1meﬂpdstgbngedby
4 their simple names in this file
5 public class StaticImportTest

6 {

7 public static void main(String[] args)

8 {

9 System.out.printf("sqrt(900.0) = %.1f\n", sqrt(900.0));
10 System.out.printf("ceil(-9.8) = %.1f\n", ceil(-9.8));
11 System.out.printf("log(E) = %.1f\n", log(E));
12 System.out.printf("cos(0.0) = %.1f\n", cosC 0.0));
13 } // end main
14 1} // end class StaticImportTest

sqrt(900.0) = 30.0

ceil(-9.8) = -9.0

logC E) = 1.0

cos(0.0) = 1.0

Fig. 8.14 | Static import of Math class methods.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.13 final Instance Variables

» The principle of least privilege iIs fundamental to good
software engineering.

= Code should be granted only the amount of privilege and access that
It needs to accomplish its designated task, but no more.

= Makes your programs more robust by preventing code from
accidentally (or maliciously) modifying variable values and calling
methods that should not be accessible.

» Keyword final specifies that a variable is not modifiable
(1.e., 1t’s a constant) and any attempt to modify it 1s an error.

private final int INCREMENT;

= Declares a final (constant) instance variable INCREMENT of type
int.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.14 final Instance Variables

» final variables can be initialized when they are
declared or by each of the class’s constructors so that
each object of the class has a different value.

» If a class provides multiple constructors, every one
would be required to initialize each T1nal variable.

» A final variable cannot be modified by assignment
after 1t’s 1nitialized.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 8.15: Increment.java

2 // final instance variable in a class.

3

4 public class Increment

5 {

6 private 1int total = 0; // total of all increments Fr=1varabl s
7 private final int INCREMENT; // constant variable (uninitia]ized)-——————_1ﬁa.va”a € mustbe
8 initialized

9 // constructor initializes final instance variable INCREMENT

10 public Increment(int incrementValue)

11 {

12 INCREMENT = incrementValue; // initialize constant variable (once) *_.gfﬂﬁﬂﬁﬁoﬂfaﬂ”ms
13 1 // end Increment constructor € initialization

14

15 // add INCREMENT to total

16 public void addIncrementToTotal()

17 {

18 total += INCREMENT;

19 } // end method addIncrementToTotal
20

Fig. 8.15 | final instance variable in a class. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

21 // return String representation of an Increment object's data

22 public String toString()

23 {

24 return String.format("total = %d", total);
25 } // end method toString

26 } // end class Increment

Fig. 8.15 | final instance variable in a class. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Fig. 8.16: IncrementTest.java

2 // final variable initialized with a constructor argument.

3

4 public class IncrementTest

5 {

6 public static void main(String[] args)

7 {

8 Increment value = new Increment(5); < Argument pas;e_d'to_
9 constructoyto initialize
10 System.out.printf("Before incrementing: %s\n\n", value); the.ﬁn‘ﬂ S
[variable

12 for (int i = 1; i <= 3; i++)

13 {

14 value.addIncrementToTotal();

15 System.out.printf("After increment %d: %s\n", i, value);

16 } // end for

17 } // end main

I8 1} // end class IncrementTest

Before incrementing: total = 0

After increment 1: total 5
After increment 2: total = 10
After increment 3: total = 15

Fig. 8.16 | final variable initialized with a constructor argument.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.14 final Instance Variables (Cont.)

» Ifa f1nal variable is not initialized, a compilation
error occurs.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Increment.java:13: variable INCREMENT might not have been initialized

} // end Increment constructor
A

1 error

Fig. 8.17 | final variable INCREMENT must be initialized.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.15 Time Class Case Study: Creating
Packages

>

Each class in the Java API belongs to a package that
contains a group of related classes.

Packages are defined once, but can be imported into many
programs.

Pac

app
Pac

Kages help programmers manage the complexity of
ication components.

kages facilitate software reuse by enabling programs to

Import classes from other packages, rather than copying the
classes into each program that uses them.

Packages provide a convention for unique class names,
which helps prevent class-name conflicts.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.15 Time Class Case Study: Creating
Packages (Cont.)

» The steps for creating a reusable class:

» Declare a pub 11 c class; otherwise, it can be used only by
other classes in the same package.

» Choose a unigue package name and add a package

declaration to the source-code file for the reusable class
declaration.

= |n each Java source-code file there can be only one package
declaration, and it must precede all other declarations and
statements.

» Compile the class so that i1t’s placed in the appropriate
package directory.

» Import the reusable class into a program and use the class.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.

15 Ti1me Class Case Study: Creating

Packages (Cont.)

>

Placing a package declaration at the beginning of a Java
source file indicates that the class declared in the file is part of
the specified package.

Only package declarations, import declarations and
comments can appear outside the braces of a class declaration.

A Java source-code file must have the following order:
= a package declaration (if any),

= import declarations (if any), then

= class declarations.

Only one of the class declarations in a particular file can be
public.

Other classes in the file are placed in the package and can be
used only by the other classes in the package.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 8.18: Timel.java

2 // Timel class declaration maintains the time in 24-hour format. Hel T - i
3 package com.deitel.jhtp.ch08; = ep;nm € Timel a unique ciass
4 name; must be first statement in file
5 public class Timel

6 {

7 private int hour; // 0 - 23

8 private int minute; // 0 - 59

9 private int second; // 0 - 59

10

11 // set a new time value using universal time; ensure that

12 // the data remains consistent by setting invalid values to zero

13 public void setTime(int h, int m, int s)

14 {

15 hour = ((h>=0&& h <24) ?2h :0); // validate hour

16 minute = ((m>=0& & m< 60) ?m: 0); // validate minute

17 second = ((s >=0&&% s < 60) ?2s :0); // validate second

18 } // end method setTime

19
20 // convert to String in universal-time format (HH:MM:SS)
21 pubTic String toUniversalString()
22 {
23 return String.format("%02d:%02d:%02d", hour, minute, second);
24 } // end method toUniversalString

Fig. 8.18 | Packaging class Timel for reuse. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

25

26 // convert to String in standard-time format (H:MM:SS AM or PM)
27 public String toString()

28 {

29 return String.format("%d:%02d:%02d %s",

30 ((hour == 0 || hour == 12) ? 12 : hour % 12),

31 minute, second, (hour < 12 ? "AM" : "PM"));

32 } // end method toString

33 1} // end class Timel

Fig. 8.18 | Packaging class Time1 for reuse. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.15 Time Class Case Study: Creating
Packages (Cont.)

4
>

Compile the class so that it’s stored in the appropriate package.

When a Java file containing a package declaration is compiled,
the resulting class file is placed in the directory specified by the
declaration.

The package declaration
package com.deitel.jhtp.ch08§;
indicates that class T1mel should be placed in the directory

com
deitel
Jhtp
ch08
The directory names in the package declaration specify the exact

location of the classes in the package.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.15 Time Class Case Study: Creating
Packages (Cont.)

» Javac command-line option —d causes the javac
compiler to create appropriate directories based on the

class’s package declaration.
= The option also specifies where the directories should be
stored.

» Example:
javac -d . Timel.java
» specifies that the first directory in our package name
should be placed in the current directory (.).

» The compiled classes are placed into the directory that
IS named last in the package statement.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.15 Time Class Case Study: Creating

Packages (Cont.)

» The package name is part of the fully qualified class

Nname.

= Class T1mel’s name is actually
com.deitel.jhtp.ch08.Timel

» Can use the fully qualified name in programs, or
1mport the class and use its simple name (the class

name by itself).

» If another package contains a class by the same name,
the fully qualified class names can be used to
distinguish between the classes in the program and

prevent a name conflict (also callec

a name collision).

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 8.19: TimelPackageTest.java

2 // Timel object used 1in an application.] R E—— .
3 import com.deitel.jhtp.ch08.Timel; // import class Timel «— | MPOTts €lass Timel for use in this
4 source code file
5 public class TimelPackageTest

6 {

7 public static void main(String[] args)

8 {

9 // create and initialize a Timel object

10 Timel time = new Timel(); // calls Timel constructor

11

12 // output string representations of the time

13 System.out.print("The initial universal time is: ");

14 System.out.println(time.toUniversalString());

15 System.out.print("The initial standard time 1is: ");

16 System.out.printin(time.toString());

17 System.out.printin(); // output a blank Tine

18

19 // change time and output updated time
20 time.setTime(13, 27, 6);
21 System.out.print("Universal time after setTime is: ");
22 System.out.printin(time.toUniversalString());
23 System.out.print("Standard time after setTime is: ");
24 System.out.printin(time.toString());

Fig. 8.19 | Timel object used in an application. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

25 System.out.printin(); // output a blank Tine
26

27 // set time with invalid values; output updated time

28 time.setTime(99, 99, 99);

29 System.out.println("After attempting invalid settings:");
30 System.out.print("Universal time: ");

31 System.out.printin(time.toUniversalString());

32 System.out.print("Standard time: ");

33 System.out.printin(time.toString());

34 } // end main

35 } // end class TimelPackageTest

The initial universal time is: 00:00:00
The initial standard time is: 12:00:00 AM

Universal time after setTime is: 13:27:06
Standard time after setTime is: 1:27:06 PM

After attempting invalid settings:
Universal time: 00:00:00
Standard time: 12:00:00 AM

Fig. 8.19 | Timel object used in an application. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.15 Time Class Case Study: Creating
Packages (Cont.)

» Fig. 8.19, line 3 Is a single-type-import declaration
= |t specifies one class to import.

» When your program uses multiple classes from the same
package, you can import those classes with a type-import-
on-demand declaration.

» Example:
import java.util.*; // import java.util classes
» uses an asterisk (*) at the end of the 1mport declaration to
inform the compiler that all pub 11 c classes from the
java.uti 1 package are available for use in the program.

= Only the classes from package java-.ut1i1 that are used in the
program are loaded by the JVM.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.15 Time Class Case Study: Creating
Packages (Cont.)

» Specifying the Classpath During Compilation

» When compiling a class that uses classes from other
packages, Javac must locate the . class files for all
other classes being used.

» The compiler uses a special object called a class loader
to locate the classes it needs.

= The class loader begins by searching the standard Java classes
that are bundled with the JDK.
= Then it searches for optional packages.

= |If the class Is not found In the standard Java classes or in the
extension classes, the class loader searches the classpath,
which contains a list of locations in which classes are stored.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.15 Time Class Case Study: Creating
Packages (Cont.)

» The classpath consists of a list of directories or archive
files, each separated by a directory separator
= Semicolon (;) on Windows or a colon (:) on
UNIX/Linux/Mac OS X.
» Archive files are individual files that contain directories
of other files, typically in a compressed format.
= Archive files normally end with the . jar or . z1p file-name
extensions.
» The directories and archive files specified in the
classpath contain the classes you wish to make
available to the Java compiler and the JVM.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.15 Time Class Case Study: Creating
Packages (Cont.)

» By default, the classpath consists only of the current
directory.
» The classpath can be modified by:
= providing the —classpath option to the Javac compiler
= setting the CLASSPATH environment variable (not
recommended).
> Classpath
- http://docs.oracle.com/javase/7/docs/technot

es/tools/1ndex.html#genera

* The section entitled “General Information” contains information
on setting the classpath for UNIX/Linux and Windows.

(C) 2010 Pearson Education, Inc. All
rights reserved.

http://docs.oracle.com/javase/7/docs/technotes/tools/index.html#genera

Common Programming Error 8.13

Specifying an explicit classpath eliminates the current di-
rectory from the classpath. This prevents classes in the
current dirvectory (including packages in the current di-
rectory) from loading properly. If classes must be loaded
from the current directory, include a dot (.) in the class-
path to specify the current directory.

(C) 2010 Pearson Education, Inc. All
rights reserved.

y Software Engineering Observation 8.12
In general, its a better practice to use the -classpath
option of the compiler, rather than the CLASSPATH
environment variable, to specify the classpath for a
program. This enables each application to have its own
classpath.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.15 Time Class Case Study: Creating
Packages (Cont.)

» Specifying the Classpath When Executing an Application

» When you execute an application, the JVM must be able to
locate the . class files of the classes used in that
application.

» Like the compiler, the Java command uses a class loader
that searches the standard classes and extension classes
first, then searches the classpath (the current directory by
default).

» The classpath can be specified explicitly by using either of
the techniques discussed for the compiler.
» As with the compiler, it’s better to specify an individual

program’s classpath via command-line JVM options.

= If classes must be loaded from the current directory, be sure to
Include a dot (.) in the classpath to specify the current directory.

(C) 2010 Pearson Education, Inc. All
rights reserved.

8.16 Package Access

» If no access modifier is specified for a method or
variable when 1t’s declared 1n a class, the method or
variable Is considered to have package access.

» If a program uses multiple classes from the same
package, these classes can access each other’s package-
access members directly through references to objects
of the appropriate classes, or in the case of static
members through the class name.

» Package access Is rarely used.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 8.20: PackageDataTest.java

2 // Package-access members of a class are accessible by other classes

3 // in the same package.

4

5 public class PackageDataTest

6 {

7 public static void main(String[] args)

8 {

9 PackageData packageData = new PackageData();

10

11 // output String representation of packageData

12 System.out.printf("After instantiation:\n%s\n", packageData);

13

14 // change package access data 1n packageData object - - ,
I5 packageData.number = 77; - F‘:ccessm%(pacl;age access variables in
16 packageData.string = "Goodbye"; class PackageData
17

18 // output String representation of packageData

19 System.out.printf("\nAfter changing values:\n%s\n", packageData);
20 } // end main
21 } // end class PackageDataTest
22

Fig. 8.20 | Package-access members of a class are accessible by other classes in the
same package. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23 // class with package access instance variables

24 class PackageData = Class has package access; can be used

25 { only by other classes in the same
26 int number; // package-access instance variable directory

2 String string; ackage-access instance variable

z;) H— ’ “———_ | Package access data can be accessed

by other classes in the same package

g: éﬁbi?zsggzﬁzggData() via a reference to an object of the class
31 {

32 number = 0;

33 string = "Hello";

34 } // end PackageData constructor

35

36 // return PackageData object String representation

37 pubTic String toString()

38 {

39 return String.format("number: %d; string: %s', number, string);
40 } // end method toString

41 } // end class PackageData

Fig. 8.20 | Package-access members of a class are accessible by other classes in the
same package. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

After instantiation:
number: 0; string: Hello

After changing values:
number: 77; string: Goodbye

Fig. 8.20 | Package-access members of a class are accessible by other classes in the
same package. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

End of Part |

» Chapter 8

> Java™ How to Program, 9/e

(C) 2010 Pearson Education, Inc. All
rights reserved.

