Lesson 6 — Part Il
Strings, Tokenization,
Characters

Assoc. Prof. Marenglen Biba

In this Chapter you'll learn:

m To create and manipulate immutable character-string objects of class String.

m To create and manipulate mutable character-string objects of class StringBuilder.
m To create and manipulate objects of class Character.

m To break a String object into tokens using String method sp1it.

m To use regular expressions to validate String data entered into an application.

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.1 Introduction
16.2 Fundamentals of Characters and Strings
16.3 Class String

16.3.1 String Constructors

16.3.2 String Methods Tength, charAt and getChars
16.3.3 Comparing Strings

16.3.4 Locating Characters and Substrings in Strings

16.3.5 Extracting Substrings from Strings

16.3.6 Concatenating Strings

16.3.7 Miscellaneous String Methods

16.3.8 String Method valueOf

16.4 Class StringBuilder

16.4.1 StringBuilder Constructors

16.4.2 StringBuilder Methods Tength, capacity, setLength and ensureCapacity
16.4.3 StringBuilder Methods charAt, setCharAt, getChars and reverse

16.4.4 StringBuilder append Methods

16.4.5 StringBuilder Insertion and Deletion Methods

16.5 Class Character
16.6 Tokenizing Strings

I'6.7 Regular Expressions, Class Pattern and Class Matcher
16.8 Wrap-Up

T

(C) 2010 Pearson Education, Inc. All
rights reserved.

Advanced
Java

16.1 Introduction

» This chapter discusses class String, class
StringBuilder and class Character from the
java. lang package.

» These classes provide the foundation for string and
character manipulation in Java.

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.2 Fundamentals of Characters and
Strings

» A program may contain character literals.
= An integer value represented as a character in single quotes.

= The value of a character literal is the integer value of the
character in the Unicode character set.

» String literals (stored in memory as String objects)
are written as a sequence of characters in double
guotation marks.

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.3 Class String

» Class String is used to represent strings in Java.

» The next several subsections cover many of class
String’s capabilities.

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.3.1 String Constructors

» No-argument constructor creates a String that
contains no characters (i.e., the empty string, which can
also be represented as "''') and has a length of 0.

» Constructor that takes a String object copies the
argument into the new String.

» Constructor that takes a char array creates a String
containing a copy of the characters in the array.

» Constructor that takes a char array and two Integers
creates a String containing the specified portion of
the array.

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Fig. 16.1: StringConstructors.java

2 // String class constructors.

3

4 public class StringConstructors

5 {

6 public static void main(String[] args)

7 {

8 char[] charArray = { 'b', "i', 'r', "t', 'h', " ', 'd", 'a',
9 String s = new String("hello");

10

11 // use String constructors

12 String sl = new String();

13 String s2 = new String(s);

14 String s3 = new String(charArray);

15 String s4 = new String(charArray, 6, 3);
16

17 System.out.printf(

18 "sl = %s\ns2 = %s\ns3 = %s\ns4 = %s\n",
19 sl, s2, s3, s4); // display strings
20 } // end main

21 } // end class StringConstructors

Fig. 16.1 | String class constructors. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

sl

s2 = hello
s3 = birth day
s4 = day

Fig. 16.1 | String class constructors. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

m, Software Engineering Observation 16.1

S8X [t not necessary to copy an existing String object.
String objects are immutable—their character
contents cannot be changed after they are created,
because class String does not provide any methods that
allow the contents of a String object to be modified.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Common Programming Error 16.1

Accessing a character outside the bounds of a String
(i.e., an index less than O or an index greater than or
equal to the String’s length) results in a
StringIndexOutOfBoundsException.

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.3.2 String Methods 1ength, charAt
and getChars

» String method 1ength determines the number of
characters in a string.

» String method charAt returns the character at a
speC|f|c position in the String.

» String method getChars copies the characters of a
String into a character array.

= The first argument is the starting index in the String from which
characters are to be copied

= The second argument is the index that is one past the last character to
be copied from the String.

= The third argument is the character array into which the characters
are to be copied.

= The last argument is the starting index where the copied characters
are placed in the target character array.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 16.2: StringMiscellaneous.java

2 // This application demonstrates the length, charAt and getChars
3 // methods of the String class.

4

5 public class StringMiscellaneous

6 {

7 public static void main(String[] args)

8 {

9 String sl = "hello there";

10 char[] charArray = new char[5];

11

12 System.out.printf("sl: %s", sl);

13

14 // test length method

15 System.out.printf("\nLength of sl: %d", sl.length());
16

17 // 1oop through characters in sl with charAt and display reversed
18 System.out.print("\nThe string reversed is: ");

19
20 for (int count = sl.length() - 1; count >= 0; count--)
21 System.out.printf("%c ", sl.charAt(count));
22

Fig. 16.2 | String class character-manipulation methods. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23 // copy characters from string into charArray

24 sl.getChars(0, 5, charArray, 0);

25 System.out.print("\nThe character array is: ");
26

27 for (char character : charArray)

28 System.out.print(character);

29

30 System.out.printin();

31 } // end main

32 } // end class StringMiscellaneous

sl: hello there

Length of sl: 11

The string reversed is: ere ht o1 1eh
The character array is: hello

Fig. 16.2 | String class character-manipulation methods. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.3.3 Comparing Strings

» Strings are compared using the numeric codes of the
characters in the strings.

» Figure 16.3 demonstrates String methods equals,
equalsIgnoreCase, compareTo and
regionMatches and using the equality operator ==
to compare String objects (only compares objects).

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 16.3: StringCompare.java

2 // String methods equals, equalsIgnoreCase, compareTo and regionMatches.
3

4 public class StringCompare

5 {

6 public static void main(String[] args)

7 {

8 String sl = new String("hello”™); // sl is a copy of "hello"
9 String s2 = "goodbye";

10 String s3 = "Happy Birthday";

11 String s4 = "happy birthday";

12

13 System.out.printf(

14 "sl = %s\ns2 = %s\ns3 = %s\ns4 = %s\n\n", sl, s2, s3, s4);
15

16 // test for equality

17 if (sl.equals("hello™)) // true

18 System.out.printin("s1 equals \"hello\"");

19 else
20 System.out.printin("sl does not equal \"hello\"");
21

Fig. 16.3 | String methods equals, equalsIgnoreCase, compareTo and
regionMatches. (Part | of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

22 // test for equality with ==

23 if (s1 == "hello") // false; they are not the same object
24 System.out.printin("s1 is the same object as \"hello\"");
25 else

26 System.out.printin("sl is not the same object as \"hello\"");
27

28 // test for equality (ignore case)

29 if (s3.equalsIgnoreCase(s4)) // true

30 System.out.printf("%s equals %s with case ignored\n", s3, s4);
31 else

32 System.out.printin("s3 does not equal s4");

33

34 // test compareTo

35 System.out.printf(

36 "\nsl.compareTo(s2) 1is %d", sl.compareTo(s2));

37 System.out.printf(

38 "\ns2.compareTo(sl) is %d", s2.compareTo(sl));

39 System.out.printf(

40 "\nsl.compareTo(sl) is %d", sl.compareTo(sl));

41 System.out.printf(

42 "\ns3.compareTo(s4) 1is %d", s3.compareTo(s4));

43 System.out.printf(

44 "\ns4.compareTo(s3) 1is %d\n\n", s4.compareTo(s3));

Fig. 16.3 | String methods equals, equalsIgnoreCase, compareTo and
regionMatches. (Part 2 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

45

46 // test regionMatches (case sensitive)

47 if (s3.regionMatches(0, s4, 0, 5))

48 System.out.println("First 5 characters of s3 and s4 match”);
49 else

50 System.out.printin(

51 "First 5 characters of s3 and s4 do not match”);

52

53 // test regionMatches (ignore case)

54 if (s3.regionMatches(true, 0, s4, 0, 5))

55 System.out.printin(

56 "First 5 characters of s3 and s4 match with case ignored"”);
57 else

58 System.out.println(

59 "First 5 characters of s3 and s4 do not match");

60 } // end main

61 } // end class StringCompare

Fig. 16.3 | String methods equals, equalsIgnoreCase, compareTo and
regionMatches. (Part 3 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

sl = hello

s2 = goodbye

s3 = Happy Birthday
s4 = happy birthday

sl equals "hello™
sl is not the same object as "hello"
Happy Birthday equals happy birthday with case ignored

sl.compareTo(s2) is 1
s2.compareTo(s1) 1is -1
sl.compareTo(s1) is O
s3.compareTo(s4) is -32
s4.compareTo(s3) is 32

First 5 characters of s3 and s4 do not match
First 5 characters of s3 and s4 match with case ignored

Fig. 16.3 | String methods equals, equalsIgnoreCase, compareTo and
regionMatches. (Part 4 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.3.3 Comparing Strings (cont.)

» Method equals tests any two objects for equality

= The method returns true if the contents of the objects are equal,
and false otherwise.

= Uses a lexicographical comparison.
» When primitive-type values are compared with ==, the
result is true if both values are identical.

» When references are compared with ==, the result is true
If both references refer to the same object in memory.

» Java treats all string literal objects with the same contents as
one String object to which there can be many references.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Common Programming Error 16.2

Comparing references with - can lead to logic errors, be-
cause == compares the references to determine whether
they refer to the same object, not whether two objects
have the same contents. When two identical (but sepa-
rate) objects are compared with ==, the result will be
false. When comparing objects to determine whether
they have the same contents, use method equals.

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.3.3 Comparing Strings (cont.)

» String methods startswWith and endsWith

determine whether strings start with or end with a
particular set of characters

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 16.4: StringStartEnd.java

2 // String methods startsWith and endsWith.

3

4 public class StringStartEnd

5 {

6 public static void main(String[] args)

7 {

8 String[] strings = { "started”, "starting”, "ended", "ending" };
9
10 // test method startsWith
11 for (String string : strings)
12 {
13 if (string.startsWith("st"))
14 System.out.printf("\"%s\" starts with \"st\"\n", string);
I5 } // end for
16
17 System.out.println();
18

Fig. 16.4 | String methods startswith and endswith. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

19 // test method startsWith starting from position 2 of string

20 for (String string : strings)

21 {

22 if (string.startsWith("art™, 2))

23 System.out.printf(

24 "\"%s\" starts with \"art\" at position 2\n", string);
25 } // end for

26

27 System.out.printin();

28

29 // test method endsWith

30 for (String string : strings)

31 {

32 if (string.endsWith("ed”))

33 System.out.printf("\"%s\" ends with \"ed\"\n", string);
34 } // end for

35 } // end main

36 } // end class StringStartEnd

Fig. 16.4 | String methods startswith and endswith. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

"started" starts with "st"
"starting" starts with "st"

"started" starts with "art" at position 2
"starting" starts with "art" at position 2

"started" ends with "ed"
"ended" ends with "ed"

Fig. 16.4 | String methods startsWith and endsWith. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.3.4 Locating Characters and
Substrings in Strings

» Figure 16.5 demonstrates the many versions of
String methods indexOf and 1lastIndexOf that

search for a specified character or substring in a
String.

» IndexOf(String str, int fromindex)
Returns the index within this string of the first occurrence of the specified
substring, starting at the specified index.

» lastindexOf (int ch, int fromIndex)
Returns the index within this string of the last occurrence of the specified
character, searching backward starting at the specified index.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 16.5: StringIndexMethods.java

2 // String searching methods indexOf and lastIndexOf.

3

4 public class StringIndexMethods

5 {

6 public static void main(String[] args)

7 {

8 String letters = "abcdefghijklmabcdefghijklm";

9

10 // test indexOf to locate a character in a string

11 System.out.printf(

12 "'c¢' is located at index %d\n", Tetters.indexOf('c'));
13 System.out.printf(

14 "'a' is located at index %d\n", letters.indexOf('a', 1));
15 System.out.printf(

16 "'$' is located at index %d\n\n", letters.indexOf('$'));
17

18 // test lastIndexOf to find a character in a string

19 System.out.printf("Last 'c¢' is located at index %d\n",
20 Tetters.lastIndexOf('c'));
21 System.out.printf("Last 'a' is located at index %d\n",
22 Tetters.lastIndexOf("a’, 25));
23 System.out.printf("Last '$' s located at index %d\n\n'",
24 lTetters.lastIndexOf("$"));

Fig. 16.5 | String-searching methods index0f and TastIndexOf. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// test indexOf to locate a substring in a string

System.out.
Tetters.
System.out.
.indexOf("def", 7));
System.out.
Tetters.

letters

printf("\"def\" is located at index %d\n",
indexOf("def"™));
printf("\"def\" is located at index %d\n",

printf("\"hello\" is Tocated at index %d\n\n",
indexOf("hello"™));

// test lastIndexOf to find a substring in a string

System.out.
.lastIndexOf("def"”));
System.out.
lTetters.
System.out.
letters.
} // end main
} // end class StringIndexMethods

letters

printf("Last \"def\" is located at index %d\n",

printf("Last \"def\" is located at index %d\n",
lastIndexOf("def”, 25));

printf("Last \"hello\" 1is located at index %d\n",
TastIndexOf("hello™));

Fig. 16.5 | String-searching methods index0f and TastIndexOf. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

c' is Tocated at index 2
a' is located at index 13
'$'" is located at index -1

Last 'c' is located at index 15
Last 'a' is Tocated at index 13
Last '$' is Tocated at index -1

"def" is located at index 3
"def" is located at index 16
"helTlo" 1is Tocated at index -1

Last "def" is Tocated at index 16
Last "def" is located at index 16
Last "hello™ 1is Tocated at index -1

Fig. 16.5 | String-searching methods index0Of and 1astIndexOf. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.3.5 Extracting Substrings from Strings

» Class String provides two substring methods to
enable a new String object to be created by copying
part of an existing String object. Each method
returns a new String object.

» The version that takes one integer argument specifies
the starting index in the original String from which
characters are to be copied.

» The version that takes two integer arguments receives
the starting index from which to copy characters in the
original String and the index one beyond the last
character to copy.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 16.6: SubString.java

2 // String class substring methods.

3

4 public class SubString

5 {

6 public static void main(String[] args)

7 {

8 String letters = "abcdefghijklmabcdefghijklm";

9

10 // test substring methods

11 System.out.printf("Substring from index 20 to end is \"%s\"\n",
12 lTetters.substring(20));

13 System.out.printf("%s \"%s\"\n",

14 "Substring from index 3 up to, but not including 6 is",
15 lTetters.substring(3, 6));

16 } // end main

1T } // end class SubString

Substring from index 20 to end is "hijkIm"
Substring from index 3 up to, but not including 6 is "def"

Fig. 16.6 | String class substring methods.

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.3.6 Concatenating Strings

» String method concat concatenates two String
objects and returns a new String object containing
the characters from both original Strings.

» The original Stringsto which s1 and s2 refer are
not modified.

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Fig. 16.7: StringConcatenation.java

2 // String method concat.

3

4 public class StringConcatenation

5 {

6 public static void main(String[] args)

7 {

8 String s1 = "Happy ";

9 String s2 = "Birthday";

10

11 System.out.printf("sl = %s\ns2 = %s\n\n",sl, s2);

12 System.out.printf(

13 "Result of sl.concat(s2) = %s\n", sl.concat(s2));
14 System.out.printf("sl1 after concatenation = %s\n", sl);
I5 } // end main

16 } // end class StringConcatenation

sl
s2

Happy
Birthday

Result of sl.concat(s2) = Happy Birthday
sl after concatenation = Happy

Fig. 16.7 | String method concat.

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.3.7 Miscellaneous String Methods

» Method replace return a new String object in which
every occurrence of the first char argument is replaced with
the second.
= An overloaded version enables you to replace substrings

rather than individual characters.

» Method toUpperCase generates a new String with
uppercase letters.

» Method toLowerCase returns a new String object with
lowercase letters.

» Method t rim generates a new String object that removes

all whitespace characters that appear at the beginning or end of
the String on which trim operates.

» Method toCharArray creates a new character array
containing a copy of the characters in the String.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 16.8: StringMiscellaneous2.java

2 // String methods replace, toLowerCase, toUpperCase, trim and toCharArray.
3

4 public class StringMiscellaneous2

5 {

6 public static void main(String[] args)

7 {

8 String sl = "hello";

9 String s2 = "GOODBYE";

10 String s3 =" spaces ",

11

12 System.out.printf("sl = %s\ns2 = %s\ns3 = %s\n\n", sl, s2, s3);
13

14 // test method replace

15 System.out.printf(

16 "Replace "1" with "L" in sl: %s\n\n", sl.replace("1, "L'));
17

18 // test tolLowerCase and toUpperCase

19 System.out.printf("sl.toUpperCase() = %s\n", sl.toUpperCase());
20 System.out.printf("s2.toLowerCase() = %s\n\n'", s2.tolLowerCase());
21

Fig. 16.8 | String methods replace, toLowerCase, toUpperCase, trim and
toCharArray. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

22 // test trim method

23 System.out.printf("s3 after trim = \"%s\"\n\n", s3.trimQ));
24

25 // test toCharArray method

26 char[] charArray = sl.toCharArray();

27 System.out.print("sl as a character array = ");
28

29 for (char character : charArray)

30 System.out.print(character);

31

32 System.out.println();

33 } // end main

34 } // end class StringMiscellaneous?2

Fig. 16.8 | String methods replace, toLowerCase, toUpperCase, trimand
toCharArray. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

sl = hello
s2 = GOODBYE
s3 = spaces

Replace '"1" with 'L" in sl: hello

sl.toUpperCase() = HELLO
s2.toLowerCase() = goodbye
s3 after trim = "spaces"

sl as a character array = hello

Fig. 16.8 | String methods replace, toLowerCase, toUpperCase, trim and
toCharArray. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.3.8 String Method valueOf

» Class String provides static valueOf methods
that take an argument of any type and convert it to a
String object.

» Class StringBuilder IS used to create and
manipulate dynamic string information.

» Every StringBui lder is capable of storing a
number of characters specified by Its capacity.

» If the capacity of a StringBui lder is exceeded, the
capacity expands to accommodate the additional
characters.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 16.9: StringValueOf.java

2 // String valueOf methods.

3

4 public class StringValueOf

5 {

6 public static void main(String[] args)

7 {

8 char[] charArray = { 'a', 'b", 'c', 'd", 'e"', "f' };

9 boolean booleanValue = true;

10 char characterValue = '7Z";

11 int integerValue = 7;

12 Tong longValue = 10000000000L; // L suffix indicates long
13 float floatValue = 2.5f; // f indicates that 2.5 is a float
14 double doubleValue = 33.333; // no suffix, double is default
15 Object objectRef = "hello"; // assign string to an Object reference
16

17 System.out.printf(

18 "char array = %s\n", String.valueOf(charArray));

19 System.out.printf(,
20 String.valueOf(charArray, 3, 3));
21 System.out.printf(
22 "boolean = %s\n", String.valueOf(booleanValue));
23 System.out.printf(
24 "char = %s\n", String.valueOf(characterValue));

Fig. 16.9 | String valueOf methods. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

25 System.out.printf("int = %s\n", String.valueOf(integerValue));

26 System.out.printf("long = %s\n", String.valueOf(longValue));
27 System.out.printf("float = %s\n", String.valueOf(floatValue));
28 System.out.printf(

29 "double = %s\n", String.valueOf(doubleValue));

30 System.out.printf("Object = %s", String.valueOf(objectRef));
31 } // end main

32 } // end class StringValueOf

char array = abcdef
part of char array = def
boolean = true

char = Z

int = 7

Tong = 10000000000
float = 2.5

double = 33.333
Object = hello

Fig. 16.9 | String valueOf methods. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.5 Class Character

» Elght type-wrapper classes that enable primitive-type
values to be treated as objects:

= Boolean, Character,Double, Float, Byte, Short,
Integer and Long

» Most Character methods are static methods

designed for convenience in processing individual
char values.

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.5 Class Character (cont.)

» Method isDefined determines whether a character iIs
defined in the Unicode character set.

» Method 1isDigit determines whether a character Is a
defined Unicode digit.

» Method 1sJavaIdentifierStart determines whether

a character can be the first character of an identifier in
Java—that is, a letter, an underscore (_) or a dollar sign ($).

» Method isJavaIdentifierPart determine whether a

character can be used in an identifier in Java—that is, a
digit, a letter, an underscore (_) or a dollar sign ($).

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 16.15: StaticCharMethods.java
2 // Character static methods for testing characters and converting case.
3 import java.util.Scanner;
4
5 public class StaticCharMethods
6 {
7 public static void main(String[] args)
8 {
9 Scanner scanner = new Scanner(System.in); // create scanner
10 System.out.printin("Enter a character and press Enter");
11 String input = scanner.next();
12 char ¢ = input.charAt(0); // get input character
13
14 // display character info
15 System.out.printf("is defined: %b\n", Character.isDefined(c));
16 System.out.printf("is digit: %b\n", Character.isDigit(c));
17 System.out.printf("is first character in a Java identifier: %b\n",
18 Character.isJavaldentifierStart(c));
19 System.out.printf("is part of a Java identifier: %b\n",
20 Character.isJavaldentifierPart(c));
21 System.out.printf("is letter: %b\n", Character.islLetter(c));

Fig. 16.15 | Character static methods for testing characters and converting
case. (Part | of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

22 System.out.printf(

23 "is letter or digit: %b\n", Character.islLetterOrDigit(c));
24 System.out.printf(

25 "is lower case: %b\n", Character.islLowerCase(c));

26 System.out.printf(

27 "1s upper case: %b\n", Character.isUpperCase(c));

28 System.out.printf(

29 "to upper case: %s\n", Character.toUpperCase(c));

30 System.out.printf(

31 "to lower case: %s\n", Character.tolLowerCase(c));

32 } // end main

33 } // end class StaticCharMethods

Fig. 16.15 | Character static methods for testing characters and converting
case. (Part 2 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

Enter a character and press Enter
A

is defined: true

is digit: false

is first character in a Java identifier: true
is part of a Java identifier: true
is letter: true

is letter or digit: true

is lower case: false

is upper case: true

to upper case: A

to lower case: a

Fig. 16.15 | Character static methods for testing characters and converting
case. (Part 3 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

Enter a character and press Enter
8

is defined: true

1s digit: true

is first character in a Java identifier: false
is part of a Java identifier: true
is letter: false

is letter or digit: true

is lower case: false

is upper case: false

to upper case: 8

to lower case: 8

Fig. 16.15 | Character static methods for testing characters and converting
case. (Part 4 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

Enter a character and press Enter
$

is defined: true

is digit: false

is first character in a Java identifier: true
is part of a Java identifier: true
is letter: false

is Tetter or digit: false

is Tower case: false

is upper case: false

to upper case: $

to Tower case: $

Fig. 16.15 | Character static methods for testing characters and converting
case. (Part 5 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.5 Class Character (cont.)

» Method isLetter determines whether a character Is a
letter.

» Method isLetterOrDigit determines whether a
character is a letter or a digit.

» Method isLowerCase determines whether a character Is
a lowercase letter.

» Method 1isUpperCase determines whether a character 1s
an uppercase letter.

» Method toUpperCase converts a character to its
uppercase equivalent.

» Method toLowerCase converts a character to its
lowercase equivalent.

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.5 Class Character (cont.)

» Java automatically converts char literals into
Character objects when they are assigned to
Character variables
= Process known as autoboxing.

» Method charvalue returns the char value stored in
the object.

» Method toString returns the String
representation of the char value stored in the object.

» Method equals determines if two Characters
have the same contents.

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Fig. 16.17: OtherCharMethods.java

2 // Character class non-static methods.

3 public class OtherCharMethods

4 {

5 public static void main(String[] args)

6 {

7 Character cl = "A";

8 Character c2 = 'a';

9
10 System.out.printf(
11 "cl = %s\nc2 = %s\n\n", cl.charValue(), c2.toString(Q));
12
13 if (cl.equals(c2))
14 System.out.println("cl and c2 are equal\n");
15 else
16 System.out.println("cl and c2 are not equali\n");
17 } // end main

I8 1} // end class OtherCharMethods

cl
c2

A
a

cl and c2 are not equal

Fig. 16.17 | Character class non-static methods.

(C) 2010 Pearson Education, Inc. All
rights reserved.

16.6 Tokenizing Strings

» When you read a sentence, your mind breaks it into
tokens—individual words and punctuation marks that
convey meaning.

» Compilers also perform tokenization.

» String method split breaksa String into its
component tokens and returns an array of Strings.

» Tokens are separated by delimiters

= Typically white-space characters such as space, tab, newline
and carriage return.

= Other characters can also be used as delimiters to separate
tokens.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 16.18: TokenTest.java

2 // StringTokenizer object used to tokenize strings.
3 import java.util.Scanner;

4 import java.util.StringTokenizer;

5

6 public class TokenTest

7 {

8 // execute application

9 public static void main(String[] args)

10 {

11 // get sentence

12 Scanner scanner = new Scanner(System.in);
13 System.out.printin("Enter a sentence and press Enter”);
14 String sentence = scanner.nextLine();

15

16 // process user sentence

17 String[] tokens = sentence.split(" ");

18 System.out.printf("Number of elements: %d\nThe tokens are:\n",
19 tokens.length);
20
21 for (String token : tokens)
22 System.out.printin(token);
23 } // end main

24 } // end class TokenTest

Fig. 16.18 | StringTokenizer object used to tokenize strings. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

Enter a sentence and press Enter
This is a sentence with seven tokens
Number of elements: 7

The tokens are:

This

is

a

sentence

with

seven

tokens

Fig. 16.18 | StringTokenizer object used to tokenize strings. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

Lab Session

» Savings Account Class. Create class SavingsAccount.

» Use a static variable annuallnterestRate to store the annual interest rate for
all account holders. Each object of the class contains a private instance
variable savingsBalance indicating the amount the saver currently has on
deposit.

» Provide method calculateMonthlylinterest to calculate the monthly interest
by multiplying the savingsBalance by annuallnterestRate divided by 12 -
this interest should be added to savings-Balance.

» Provide a static method modifylInterestRate that sets the annuallnterestRate
to a new value.

» Write a program to test class SavingsAccount.
= Instantiate two savingsAccount objects, saverl and saver2, with balances
of $2000.00 and $3000.00, respectively.
= Set annuallnterestRate to 4%, then calculate the monthly interest for
each of 12 months and print the new balances for both savers.

= Next, set the annuallnterestRate to 5%, calculate the next month’s
interest and print the new balances for both savers.

Lab Session

» Create a class Rectangle with attributes length and width, each
of which defaults to 1.

» Provide methods that calculate the rectangle’s perimeter and
drea.

» It has set and get methods for both length and width.

» The set methods should verify that length and width are each
floating-point numbers larger than 0.0 and less than 20.0.

» Write a program to test class Rectangle.

(C) 2010 Pearson Education, Inc. All
rights reserved.

End of Class

» Readings part |l
- Chapter 16

(C) 2010 Pearson Education, Inc. All
rights reserved.

