Lesson 7
Object-Oriented
Programming: Inheritance

Assoc. Prof. Marenglen Biba

OBJECTIVES
In this Chapter you'll learn:

m How inheritance promotes software reusability.
m The notions of superclasses and subclasses.

m To use keyword extends to create a class that inherits attributes and behaviors from another
class.

m To use access modifier protected to give subclass methods access to superclass members.
m To access superclass members with super.
m How constructors are used in inheritance hierarchies.

m The methods of class Object, the direct or indirect superclass of all classes in Java.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.1 Introduction
9.2 Superclasses and Subclasses
9.3 protected Members

9.4 Relationship between Superclasses and Subclasses

9.4.1 Creating and Using a CommissionEmpTloyee Class
9.4.2 Creating and Using a BasePTusCommissionEmployee Class
9.4.3 Creating a CommissionEmployee-BasePTusCommissionEmployee Inheritance Hierarchy

9.4.4 CommissionEmployee-BasePTusCommissionEmployee Inheritance Hierarchy Using
protected Instance Variables

9.4.5 CommissionEmployee-BasePTusCommissionEmployee Inheritance Hierarchy Using
private Instance Variables

9.5 Constructors in Subclasses
9.6 Software Engineering with Inheritance
9.7 Object Class

9.8 (Optional) GUI and Graphics Case Study: Displaying Text and Images
Using Labels

9.9 Wrap-Up

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.1 Introduction

» Inheritance

= A form of software reuse in which a new class is created by
absorbing an existing class’s members and enriching them with
new or modified capabilities.

= Can save time during program development by basing new
classes on existing proven and debugged high-quality software.

= Increases the likelihood that a system will be implemented and
maintained effectively.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.1 Introduction (Cont.)

» When creating a class, rather than declaring completely new
members, you can designate that the new class should
Inherit the members of an existing class.
= EXisting class is the superclass
= New class is the subclass

» Each subclass can be a superclass of future subclasses.
» Asubclass can add its own fields and methods.

» A subclass is more specific than its superclass and
represents a more specialized group of objects.

» The subclass exhibits the behaviors of its superclass and can
add behaviors that are specific to the subclass.
= This is why inheritance is sometimes referred to as specialization.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.1 Introduction (Cont.)

» The direct superclass Is the superclass from which the
subclass explicitly inherits.

» An indirect superclass Is any class above the direct
superclass in the class hierarchy.

» The Java class hierarchy begins with class Object (in

package java. lang)

= Every class in Java directly or indirectly extends (or “inherits
from”) Object.

» Java supports only single inheritance, in which each
class Is derived from exactly one direct superclass.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.1 Introduction (Cont.)

» We distinguish between the is-a relationship and the
has-a relationship

» Is-a represents inheritance

= In an is-a relationship, an object of a subclass can also be
treated as an object of its superclass

» Has-a represents composition

= In a has-a relationship, an object contains as members
references to other objects

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.2 Superclasses and Subclasses

» Figure 9.1 lists several simple examples of superclasses

and subclasses
= Superclasses tend to be “more general” and subclasses “more

specific.”
» Because every subclass object is an object of its
superclass, and one superclass can have many
subclasses, the set of objects represented by a
superclass is typically larger than the set of objects
represented by any of its subclasses.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Superclass Subclasses

Student GraduateStudent, UndergraduateStudent
Shape Circle, Triangle, Rectangle, Sphere, Cube
Loan CarLoan, HomeImprovementLoan, Mortgageloan
Employee Faculty, Staff
BankAccount CheckingAccount, SavingsAccount

Fig. 9.1 | Inheritance examples.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.2 Superclasses and Subclasses (Cont.)

» Asuperclass exists in a hierarchical relationship with its
subclasses.

» Fig. 9.2 shows a sample university community class hierarchy
= Also called an inheritance hierarchy.

» Each arrow in the hierarchy represents an is-a relationship.

» Follow the arrows upward in the class hierarchy
= an Employee is a CommunityMember”
= “aTeacherisa Faculty member.”

» CommunityMember is the direct superclass of Employee,

Student and Alumnus and is an indirect superclass of all the
other classes in the diagram.

» Starting from the bottom, you can follow the arrows and apply
the 1s-a relationship up to the topmost superclass.

(C) 2010 Pearson Education, Inc. All
rights reserved.

CommunityMember

Employee I Student I Alumnus I

Faculty I Staff I

Administrator I Teacher I

Fig. 9.2 | Inheritance hierarchy for university CommunityMembers.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.2 Superclasses and Subclasses (Cont.)

» Fig. 9.3 shows a Shape inheritance hierarchy.

» Follow the arrows from the bottom of the diagram to
the topmost superclass in this class hierarchy to identify
several is-a relationships.

= ATriangleisaTwoDimensionalShapeandisa
Shape

= ASphereisaThreeDimensionalShapeandisa
Shape.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Shape

TwoDimensionalShape ThreeDimensionalShape

Circle I Square I Triangle I Sphere I Cube I Tetrahedronl

Fig. 9.3 | Inheritance hierarchy for Shapes.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.2 Superclasses and Subclasses (Cont.)

» Objects of all classes that extend a common superclass
can be treated as objects of that superclass.
= Commonality expressed in the members of the superclass.

» Inheritance Issue

= A subclass can inherit methods that it does not need or should
not have.

= Even when a superclass method is appropriate for a subclass,
that subclass often needs a customized version of the method.

= The subclass can override (redefine) the superclass method
with an appropriate implementation.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.3 protected Members

» A class’s pub11¢c members are accessible wherever the

program has a reference to an object of that class or one of
Its subclasses.

» A class’s private members are accessible only within the
class itself.

» protected access Is an intermediate level of access
between public and private.

= A superclass’s protected members can be accessed by members
of that superclass, by members of its subclasses and by members of
other classes in the same package
- protected members also have package access.

= All public and protected superclass members retain their
original access modifier when they become members of the subclass.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.4 protected Members (Cont.)

» A superclass’s private members are hidden in its
subclasses

= They can be accessed only through the pub1ic or protected
methods inherited from the superclass

» Subclass methods can refer to pub1ic and protected

members inherited from the superclass simply by using the
member names.

» When a subclass method overrides an inherited superclass
method, the superclass method can be accessed from the

subclass by preceding the superclass method name with
keyword super and a dot (.) separator.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5 Relationship between Superclasses
and Subclasses

» Inheritance hierarchy containing types of employees In
a company’s payroll application

» Commission employees are paid a percentage of their
sales

» Base-salaried commission employees receive a base
salary plus a percentage of their sales.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.1 Creating and Using a
CcommissionEmployee Class

» Class CommissionEmployee (Fig. 9.4) extends
class Object (from package java. lang).

= CommissionEmployee inherits Object’s methods.

= If you don’t explicitly specify which class a new class extends,
the class extends Object implicitly.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 9.4: CommissionEmployee.java

2 // CommissionEmployee class represents an employee paid a

3 // percentage of gross sales. : : .
4 public class CommissionEmployee extends Object = extenngnggtnotmqune¢th5vw”
5 { be done implicitly
6 private String firstName;

7 private String lastName;

8 private String socialSecurityNumber;

9 private double grossSales; // gross weekly sales

10 private double commissionRate; // commission percentage

11

12 // five-argument constructor

13 public CommissionEmployee(String first, String last, String ssn,

14 double sales, double rate)

15 {

16 // implicit call to Object constructor occurs here

17 firstName = first;

18 TastName = last;

19 socialSecurityNumber = ssn;
20 setGrossSales(sales); // validate and store gross sales
21 setCommissionRate(rate); // validate and store commission rate
22 } // end five-argument CommissionEmployee constructor

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of
gross sales. (Part | of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

// set first name
public void setFirstName(String first)
{

firstName = first; // should validate
} // end method setFirstName

// return first name
public String getFirstName()
{
return firstName;
} // end method getFirstName

// set Tast name
public void setLastName(String last)
{

TastName = last; // should validate
} // end method setLastName

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of
gross sales. (Part 2 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

// return last name
public String getLastName()
{
return lastName;
} // end method getLastName

// set social security number
public void setSocialSecurityNumber(String ssn)
{

socialSecurityNumber = ssn; // should validate
} // end method setSocialSecurityNumber

// return social security number
public String getSocialSecurityNumber()
{
return socialSecurityNumber;
} // end method getSocialSecurityNumber

// set gross sales amount
public void setGrossSales(double sales)
{
grossSales = (sales < 0.0) ? 0.0 : sales;
} // end method setGrossSales

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of
gross sales. (Part 3 of 5.)

(C) 2010 Pearson Education, Inc. All

rights reserved.

65

66 // return gross sales amount

67 public double getGrossSales()

68 {

69 return grossSales;

70 } // end method getGrossSales

71

72 // set commission rate

73 public void setCommissionRate(double rate)
74 {

75 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;
76 } // end method setCommissionRate

77

78 // return commission rate

79 public double getCommissionRate()

80 {

8l return commissionRate;

82 } // end method getCommissionRate

83

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of
gross sales. (Part 4 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

Signatures: @Override

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
29

// calculate earnings
public double earnings()

{

ote

return commissionRate * grossSales;
} // end method earnings

// return String representation of CommissionEmployee object
@Override // indicates that this method overrides a superclass method «—|
public String toString()
{
return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f",
"commission employee”, firstName, lastName,
"social security number", socialSecurityNumber,
"gross sales", grossSales,
"commission rate”, commissionRate);
} // end method toString

100 } // end class CommissionEmployee

Overridden toString
customizes how this
method works for a
CommissionEmploye;
@override helps
compiler ensure that
the method has the
same signature as a
method in the
superclass

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of
gross sales. (Part 5 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.1 Creating and Using a
commissionEmployee Class (Cont.)

» To override a superclass method, a subclass must

declare a method with the same signature as the
superclass method

» Q0verride annotation

= Indicates that a method should override a superclass method
with the same signature.

= If it does not, a compilation error occurs.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Common Programming Error 9.2

Its a syntax error to override a method with a more re-
stricted access modifier—a pub 11 c method of the super-
class cannot become a protected or private method
in the subclass; a protected method of the superclass
cannot become a private method in the subclass. Do-
ing so would break the is-a relationship in which it's re-
quired that all subclass objects be able to respond to
method calls that are made to pub11ic methods declared
in the superclass. If a pub1ic method, for example,
could be overridden as a protected or private meth-
od, the subclass objects would not be able to respond to
the same method calls as superclass objects. Once a meth-
od is declared pub1ic in a superclass, the method re-
mains pub11ic for all that class’s direct and indirect
subclasses.

=

¥

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 9.5: CommissionEmployeeTest.java

2 // CommissionEmployee class test program.

3

4 public class CommissionEmployeeTest

5 {

6 public static void main(String[] args)

7 {

8 // instantiate CommissionEmployee object

9 CommissionEmployee employee = new CommissionEmployee(
10 "Sue", "Jones", "222-22-2222", 10000, .06);

11

12 // get commission employee data

13 System.out.printin(

14 "Employee information obtained by get methods: \n");
15 System.out.printf("%s %s\n", "First name 1is",

16 employee.getFirstName());

17 System.out.printf("%s %s\n", "Last name is",

18 employee.getLastName());

19 System.out.printf("%s %s\n", "Social security number 1is",
20 employee.getSocialSecurityNumber());
21 System.out.printf("%s %.2f\n", "Gross sales is",
22 employee.getGrossSales());
23 System.out.printf("%s %.2f\n", "Commission rate is",
24 employee.getCommissionRate());

Fig. 9.5 | CommissionEmployee class test program. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

25

26 employee.setGrossSales(500); // set gross sales

27 employee.setCommissionRate(.1); // set commission rate

28

29 System.out.printf("\n%s:\n\n%s\n", — :

30 "Updated employee information obtained by toString”, employee); - Implicit toString call
. occurs here

31 } // end main

32 } // end class CommissionEmployeeTest

Employee information obtained by get methods:

First name 1is Sue

Last name is Jones

Social security number is 222-22-2222
Gross sales is 10000.00

Commission rate 1is 0.06

Updated employee information obtained by toString:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 500.00

commission rate: 0.10

Fig. 9.5 | CommissionEmployee class test program. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.2 Creating and Using a BasePlus-
commissionEmployee Class

» Class BasePlusCommissionEmployee (Fig. 9.6)
contains a first name, last name, social security number,
gross sales amount, commission rate and base salary.

= All but the base salary are in common with class
commissionEmployee.

» Class BasePlusCommissionEmployee’s
pub11c services include a constructor, and methods
earnings, toString and get and set for each
Instance variable

= Most of these are in common with class
CommissionEmployee.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 9.6: BasePlusCommissionEmployee.java

2 // BasePlusCommissionEmployee class represents an employee that receives

3 // a base salary in addition to commission.

4

5 public class BasePlusCommissionEmployee

6 {

7 private String firstName;

8 private String lastName;

9 private String socialSecurityNumber;

10 private double grossSales; // gross weekly sales

11 private double commissionRate; // commission percentage T I : f data in dl
12 private double baseSalary; // base salary per week e——o— eonyrm“’?mc?o ata In class
13 BasePlusCommissionEmployee
14 // six-argument constructor

15 public BasePTusCommissionEmployee(String first, String last,

16 String ssn, double sales, double rate, double salary)

17 {

18 // implicit call to Object constructor occurs here

19 firstName = first;
20 TastName = last;
21 socialSecurityNumber = ssn;
22 setGrossSales(sales); // validate and store gross sales

Fig. 9.6 | BasePlusCommissionEmpTloyee class represents an employee who
receives a base salary in addition to a commission. (Part | of 6.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

setCommissionRate(rate); // validate and store commission rate
setBaseSalary(salary); // validate and store base salary «—— o |
} // end six-argument BasePlusCommissionEmployee constructor

// set first name

Initializes the base
salary

public void setFirstName(String first)

{

firstName = first; // should validate

} // end method setFirstName

// return first name
public String getFirstName()
{
return firstName;
} // end method getFirstName

// set Tlast name
public void setLastName(String last)
{

TastName = last; // should validate
} // end method setLastName

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 2 of 6.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

// return last name
public String getLastName()
{
return lastName;
} // end method getLastName

// set social security number
public void setSocialSecurityNumber(String ssn)
{

socialSecurityNumber = ssn; // should validate
} // end method setSocialSecurityNumber

// return social security number
public String getSocialSecurityNumber()
{
return socialSecurityNumber;
} // end method getSocialSecurityNumber

// set gross sales amount
public void setGrossSales(double sales)
{
grossSales = (sales < 0.0) ? 0.0 : sales;
} // end method setGrossSales

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 3 of 6.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

68

69 // return gross sales amount

70 public double getGrossSales()

71 {

72 return grossSales;

73 } // end method getGrossSales

74

75 // set commission rate

76 public void setCommissionRate(double rate)
77 {

78 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;
79 } // end method setCommissionRate

80

81 // return commission rate

82 public double getCommissionRate()

83 {

84 return commissionRate;

85 } // end method getCommissionRate

86

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 4 of 6.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

// set base salary
public void setBaseSalary(double salary)
{
baseSalary = (salary < 0.0) ? 0.0 : salary;
} // end method setBaseSalary

// return base salary
public double getBaseSalary()
{
return baseSalary;
} // end method getBaseSalary

// calculate earnings
public double earnings()
{
return baseSalary + (commissionRate * grossSales);
} // end method earnings

Similar to
Commission-
Employee’s earnings
method

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 5 of 6.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

105
106
107
108
109
110
i
112
113
114
115

// return String representation of BasePTusCommissionEmployee
@Jverride // indicates that this method overrides a superclass method
public String toString() =

{
return String.format(

"%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f\n%s: %.2f",
"base-salaried commission employee"”, firstName, lastName,
"social security number"”, socialSecurityNumber,
"gross sales”, grossSales, "commission rate", commissionRate,
"base salary"”, baseSalary);

} // end method toString

116 } // end class BasePlusCommissionEmployee

Similar to
Commission-
Employee’s toString
method

Fig. 9.6 | BasePlusCommissionEmpTloyee class represents an employee who
receives a base salary in addition to a commission. (Part 6 of 6.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.2 Creating and Using a BasePlus-
commissionEmployee Class (Cont.)

» Class BasePlusCommissionEmployee does not
specify “extends Object”
= Implicitly extends Object.

» BasePlusCommissionEmployee’s constructor
invokes class Object’s default constructor implicitly.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 9.7: BasePlusCommissionEmployeeTest.java

2 // BasePlusCommissionEmployee test program.

3

4 public class BasePlusCommissionEmployeeTest

5 {

6 public static void main(String[] args)

7 {

8 // instantiate BasePlusCommissionEmployee object

9 BasePlusCommissionEmployee employee =

10 new BasePTusCommissionEmployee(

I "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
12

13 // get base-salaried commission employee data

14 System.out.printin(

15 "Employee information obtained by get methods: \n");
16 System.out.printf("%s %s\n", "First name 1is",

17 employee.getFirstName());

18 System.out.printf("%s %s\n", "Last name 1is",

19 employee.getLastName());
20 System.out.printf("%s %s\n", "Social security number 1is",
21 employee.getSocialSecurityNumber());
22 System.out.printf("%s %.2f\n", "Gross sales is",
23 employee.getGrossSales());

Fig. 9.7 | BasePlusCommissionEmpTloyee test program. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

24 System.out.printf("%s %.2f\n", "Commission rate 1is",

25 employee.getCommissionRate());

26 System.out.printf("%s %.2f\n", "Base salary 1is",

27 employee.getBaseSalary());

28

29 employee.setBaseSalary(1000); // set base salary

30

31 System.out.printf("\n%s:\n\n%s\n",

32 "Updated employee information obtained by toString",
33 employee.toString());

34 } // end main

35 1} // end class BasePlusCommissionEmployeeTest

Fig. 9.7 | BasePlusCommissionEmpTloyee test program. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

Employee information obtained by get methods:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333
Gross sales 1is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information obtained by toString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Fig. 9.7 | BasePlusCommissionEmpTloyee test program. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.2 Creating and Using a BasePlus-
commissionEmployee Class (Cont.)

» Much of BasePlusCommissionEmployee’s code is
similar, or identical, to that of CommissionEmployee.

» private instance variables firstName and TastName
and methods setFirstName, getFirstName,
setLastName and getLastName are identical.
= Both classes also contain corresponding get and set methods.

» The constructors are almost identical
= BasePlusCommissionEmployee’s constructor also sets the
base-Salary.
» The toString methods are nearly identical

= BasePlusCommissionEmployee’s toString also outputs
instance variable baseSalary

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.2 Creating and Using a BasePlus-
commissionEmployee Class (Cont.)

» We literally copied CommissionEmployee’s code,
pasted it into BasePlusCommissionEmployee,
then modified the new class to include a base salary
and methods that manipulate the base salary.

= This “copy-and-paste” approach is often error prone and time
consuming.

= It spreads copies of the same code throughout a system,
creating a code-maintenance nightmare.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.3 Creating a CommissionEmployee—
BasePlusCommissionEmployee
Inheritance Hierarchy

» Class BasePlusCommissionEmployee class extends
class CommissionEmployee

» ABasePlusCommissionEmployee objectis a
commissionEmployee
= Inheritance passes on class CommissionEmployee’s capabilities.

» Class BasePlusCommissionEmployee also has
instance variable baseSalary.

» Subclass BasePlusCommissionEmployee inherits
CommissionEmployee’s instance variables and
methods

= Only the superclass’s pub11c and protected members are
directly accessible in the subclass.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Voo ~NONUND WN =

// Fig. 9.8: BasePlusCommissionEmployee.java
// private superclass members cannot be accessed in a subclass.

public class BasePlusCommissionEmployee extends CommissionEmployee

{

private double baseSalary; // base salary per week

// six-argument constructor

public BasePTusCommissionEmployee(String first, String last,
String ssn, double sales, double rate, double salary)

{
// explicit call to superclass CommissionEmployee constructor
super(first, last, ssn, sales, rate);

setBaseSalary(salary); // validate and store base salary
} // end six-argument BasePlusCommissionEmployee constructor

// set base salary
public void setBaseSalary(double salary)
{
baseSalary = (salary < 0.0) ? 0.0 : salary;
} // end method setBaseSalary

-

New subclass of
CommissionEmployee

Must call superclass
constructor first

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part | of

5)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// return base salary
public double getBaseSalary()
{
return baseSalary;
} // end method getBaseSalary

// calculate earnings
@verride // indicates that this method overrides a superclass method
public double earnings()
{
// not allowed: commissionRate and grossSales private in superclass
return baseSalary + (commissionRate * grossSales);
} // end method earnings

‘_CommissionEmp1oyee

private instance
variables are not
accessible here

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 2 of

5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

38 // return String representation of BasePTusCommissionEmployee

39 @Override // indicates that this method overrides a superclass method

40 public String toString()

41 {

42 // not allowed: attempts to access private superclass members

43 return String.format(

44 "%s: %S %s\n%s: %s\n%s: %.2f\n%s: %.2f\n%s: %.2f", —

45 "base-salaried commission employee"”, firstName, lastName, - Con_1m1ss1.onEmp'|oyee
46 "social security number", socialSecurityNumber, prTvatelﬂﬁﬂnCE
47 "gross sales", grossSales, "commission rate", commissionRate, vambksamrmt
48 "base salary"”, baseSalary); accessible here
49 } // end method toString

50 1} // end class BasePlusCommissionEmployee

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 3 of
5.

(C) 2010 Pearson Education, Inc. All
rights reserved.

BasePTusCommissionEmployee.java:35: commissionRate has private access in
CommissionEmployee
return baseSalary + (commissionRate * grossSales);
A
BasePlusCommissionEmployee.java:35: grossSales has private access in
CommissionEmployee
return baseSalary + (commissionRate * grossSales);
A
BasePlusCommissionEmployee.java:45: firstName has private access in
CommissionEmployee
"base-salaried commission employee", firstName, lastName,
A
BasePlTusCommissionEmployee.java:45: TastName has private access in
CommissionEmployee

"base-salaried commission employee", firstName, TastName,
A

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 4 of
5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

BasePTusCommissionEmployee.java:46: socialSecurityNumber has private access
in CommissionEmployee

"social security number"”, socialSecurityNumber,
A

BasePTusCommissionEmployee.java:47: grossSales has private access in
CommissionEmpTloyee
"gross sales", grossSales, "commission rate"”, commissionRate,
A
BasePlusCommissionEmployee.java:47: commissionRate has private access in

CommissionEmployee
"gross sales", grossSales, "commission rate", commissionRate,
A

7 errors

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 5 of
5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.3 Creating a CommissionEmployee—
BasePlusCommissionEmployee
Inheritance Hierarchy (Cont.)
» Each subclass constructor must implicitly or explicitly call
Its superclass constructor to initialize the instance variables

Inherited from the superclass.

= Superclass constructor call syntax—keyword super, followed by a
set of parentheses containing the superclass constructor arguments.

= Must be the first statement in the subclass constructor’s body.
» If the subclass constructor did not invoke the superclass’s
constructor explicitly, Java would attempt to invoke the

superclass’s no-argument or default constructor.

= Class CommissionEmployee does not have such a constructor,
so the compiler would issue an error.

» You can explicitly use super () to call the superclass’s
no-argument or default constructor, but this is rarely done.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.3 Creating a CommissionEmployee—
BasePlusCommissionEmployee
Inheritance Hierarchy (Cont.)

» Compilation errors occur when the subclass attempts to
access the superclass’s private instance variables.

» These lines could have used appropriate get methods to
retrieve the values of the superclass’s instance
variables.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.4 CommissionEmployee-
BasePlusCommissionEmployee Inheritance
Hierarchy Using protected Instance Variables

» To enable a subclass to directly access superclass instance
variables, we can declare those members as protected in
the superclass.

» New CommissionEmployee class modified only lines
6-10 as follows:

protected String firstName;

protected String lastName;

protected String socialSecurityNumber;
protected double grossSales;

protected double commissionRate;

» With protected instance variables, the subclass gets
access to the instance variables, but classes that are not
subclasses and classes that are not in the same package
cannot access these variables directly.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.4 CommissionEmployee-BasePlus-
commissionEmployee Inheritance Hierarchy
Using protected Instance Variables (Cont.)

» Class BasePlusCommissionEmployee (Fig. 9.9) extends
the new version of class CommissionEmployee with
protected instance variables.
= These variables are now protected members of

BasePlusCommissionEmployee.

» If another class extends this version of class
BasePlusCommissionEmployee, the new subclass also
can access the protected members.

» The source code in Fig. 9.9 (47 lines) is considerably shorter than

that in Fig. 9.6 (116 lines)

= Most of the functionality is now inherited from
CcommissionEmployee
= There is now only one copy of the functionality.

= Code Is easier to maintain, modify and debug — the code related to a
commission employee exists only in class CommissionEmployee.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 9.9: BasePlusCommissionEmployee.java

2 // BasePlusCommissionEmployee inherits protected instance

3 // variables from CommissionEmployee.

4

5 public class BasePlusCommissionEmployee extends CommissionEmployee
6 {

7 private double baseSalary; // base salary per week

8

9 // six-argument constructor

10 public BasePTusCommissionEmployee(String first, String last,
11 String ssn, double sales, double rate, double salary)

12 {

13 super(first, last, ssn, sales, rate);

14 setBaseSalary(salary); // validate and store bhase salary
15 } // end six-argument BasePlusCommissionEmployee constructor
16

17 // set base salary

18 public void setBaseSalary(double salary)

19 {
20 baseSalary = (salary < 0.0) ? 0.0 : salary;
21 } // end method setBaseSalary
22

Fig. 9.9 | BasePlusCommissionEmpTloyee inherits protected instance variables
from CommissionEmployee. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23 // return base salary

24 public double getBaseSalary()

25 {

26 return baseSalary;

27 } // end method getBaseSalary

28

29 // calculate earnings

30 @Override // indicates that this method overrides a superclass method

31 public double earnings()

32 { .

33 return baseSalary + (commissionRate * grossSales); = STl sl Ep ey

34 } // end method earnings prqtected mstanc_e

35 Eanablesareaccesmb]e
ere

Fig. 9.9 | BasePTusCommissionEmployee inherits protected instance variables
from CommissionEmployee. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

36 // return String representation of BasePTusCommissionEmployee

37 @Jverride // indicates that this method overrides a superclass method

38 public String toString()

39 {

40 return String.format(

41 "%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f\n%s: %.2f", —

42 "base-salaried commission employee"”, firstName, lastName, ‘4447Comm1ss1oqup1oyee
43 "social security number', socialSecurityNumber, pr(.)teCted 1nstange
44 "gross sales”, grossSales, "commission rate", commissionRate, variables are accessible
45 "base salary"”, baseSalary); here

46 } // end method toString

47 1} // end class BasePlusCommissionEmployee

Fig. 9.9 | BasePTlusCommissionEmployee inherits protected instance variables
from CommissionEmployee. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.4 CommissionEmployee-BasePlus-
commissionEmployee Inheritance Hierarchy
Using protected Instance Variables (Cont.)

» Inheriting protected instance variables slightly
Increases performance, because we can directly access
the variables in the subclass without incurring the
overhead of a set or get method call.

» In most cases, it’s better to use private instance
variables to encourage proper software engineering,
and leave code optimization issues to the compiler.
= Code will be easier to maintain, modify and debug.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.4 CommissionEmployee-BasePlus-
commissionEmployee Inheritance Hierarchy
Using protected Instance Variables (Cont.)

» Using protected instance variables creates several
potential problems.

» The subclass object can set an inherited variable’s value
directly without using a set method.
= A subclass object can assign an invalid value to the variable,
possibly leaving the object in an inconsistent state.
» Subclass methods are more likely to be written so that
they depend on the superclass’s data implementation.

= Subclasses should depend only on the superclass services and
not on the superclass data implementation.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.4 CommissionEmployee-BasePlus-
commissionEmployee Inheritance Hierarchy
Using protected Instance Variables (Cont.)

» With protected instance variables in the superclass,
we may need to modify all the subclasses of the
superclass If the superclass implementation changes.

= Such software is said to be fragile or brittle, because a small
change in the superclass can “break’ subclass implementation.

= You should be able to change the superclass implementation
while still providing the same services to the subclasses.

= |f the superclass services change, we must reimplement our
subclasses.

» A class’s protected members are visible to all
classes in the same package as the class containing the
protected members—this is not always desirable.

(C) 2010 Pearson Education, Inc. All
rights reserved.

y Software Engineering Observation 9.4

‘.‘,‘.._, Use the protected access modifier when a superclass
should provide a method only to its subclasses and other
classes in the same package, but not to other clients.

(C) 2010 Pearson Education, Inc. All
rights reserved.

m, Software Engineering Observation 9.5

86X Declaring superclass instance variables private (as
opposed to protected) enables the superclass
implementation of these instance variables to change
without affecting subclass implementations.

(C) 2010 Pearson Education, Inc. All
rights reserved.

%_

Error-Prevention Tip 9.2

When possible, do not include protected instance
variables in a superclass. Instead, include non-private
methods that access private instance variables. This
will help ensure that objects of the class maintain consis-
tent states.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.5 CommissionEmployee-BasePlus-
commissionEmployee Inheritance Hierarchy
Using private Instance Variables

» Hierarchy reengineered using good software
engineering practices.

» Class Comm1ssionEmployee declares instance
variables f1rstName, lastName,
socialSecurityNumber, grossSales and
commissionRate as private and provides
pub 11 c methods for manipulating these values.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.5 CommissionEmployee—-BasePlus-
commissionEmployee Inheritance Hierarchy
Using private Instance Variables (Cont.)

» CommissionEmployee methods earnings and
toString use the class’s get methods to obtain the values
of its instance variables.

= If we decide to change the internal representation of the data (e.g.,
variable names) only the bodies of the get and set methods that
directly manipulate the instance variables will need to change.

= These changes occur solely within the superclass-—no changes to
the subclass are needed.

= Localizing the effects of changes like this is a good software
engineering practice.

» Subclass BasePlusCommissionEmployee inherits
commission-Employee’s non-private methods and
can access the private superclass members via those
methods.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 9.10: CommissionEmployee.java

2 // CommissionEmployee class uses methods to manipulate its

3 // private instance variables.

4 public class CommissionEmployee

: { private String firstName; - DamiSpﬁvatgﬂxbeﬂgncqmuhﬂom
. private String lastName: makes code easier to maintain/debug.
8 private String socialSecurityNumber;

9 private double grossSales; // gross weekly sales

10 private double commissionRate; // commission percentage

11

12 // five-argument constructor

13 public CommissionEmployee(String first, String last, String ssn,
14 double sales, double rate)

15 {

16 // implicit call to Object constructor occurs here

17 firstName = first;

18 TastName = Tlast;

19 socialSecurityNumber = ssn;
20 setGrossSales(sales); // validate and store gross sales
21 setCommissionRate(rate); // validate and store commission rate
22 } // end five-argument CommissionEmployee constructor
23

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private
instance variables. (Part | of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

// set first name

public void setFirstName(String first)

{

firstName = first; // should validate

} // end method setFirstName

// return first name
public String getFirstName()
{
return firstName;
} // end method getFirstName

// set Tast name
public void setLastName(String last)
{

TastName = last; // should validate
} // end method setLastName

// return last name
public String getLastName()
{
return lastName;
} // end method getLastName

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private
instance variables. (Part 2 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

// set social security number
public void setSocialSecurityNumber(String ssn)
{

socialSecurityNumber = ssn; // should validate
} // end method setSocialSecurityNumber

// return social security number
public String getSocialSecurityNumber()
{
return socialSecurityNumber;
} // end method getSocialSecurityNumber

// set gross sales amount
public void setGrossSales(double sales)
{
grossSales = (sales < 0.0) ? 0.0 : sales;
} // end method setGrossSales

// return gross sales amount
public double getGrossSales()
{

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private
instance variables. (Part 3 of 5.)

(C) 2010 Pearson Education, Inc. All

rights reserved.

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

return grossSales;
} // end method getGrossSales

// set commission rate
public void setCommissionRate(double rate)
{
commissionRate = (rate > 0.0 && rate < 1.0) ? rate
} // end method setCommissionRate

// return commission rate
public double getCommissionRate()
{
return commissionRate;
} // end method getCommissionRate

// calculate earnings
public double earnings()

{

: 0.0;

return getCommissionRate() * getGrossSales(); =
} // end method earnings

No longer accessing instance variables
directly here

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private

instance variables. (Part 4 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

920 // return String representation of CommissionEmployee object

91 @0verride // indicates that this method overrides a superclass method

92 public String toString()

93 {

94 return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %'Hﬁleon or accessing instance varables
95 "commission employee”, getFirstName(), getLastName(), ‘A'dhaxlghem 8

96 "social security number”, getSocialSecurityNumber(), Y

97 "gross sales", getGrossSales(),

98 "commission rate", getCommissionRate());

99 } // end method toString

100 } // end class CommissionEmployee

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private
instance variables. (Part 5 of 5.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.5 CommissionEmployee-BasePlus-
commissionEmployee Inheritance Hierarchy
Using private Instance Variables (Cont.)

» Class BasePlusCommissionEmployee
(Fig. 9.11) has several changes that distinguish it from
Fig. 9.9.

» Methods earnings and toString each invoke
their superclass versions and do not access instance
variables directly.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // Fig. 9.11: BasePlusCommissionEmployee.java

2 // BasePlusCommissionEmployee class inherits from CommissionEmployee
3 // and accesses the superclass’s private data via inherited

4 // public methods.

5

6 public class BasePlusCommissionEmployee extends CommissionEmployee
7 {

8 private double baseSalary; // base salary per week

9

10 // six-argument constructor

11 public BasePlusCommissionEmployee(String first, String last,
12 String ssn, double sales, double rate, double salary)

13 {

14 super(first, last, ssn, sales, rate);

15 setBaseSalary(salary); // validate and store base salary
16 } // end six-argument BasePlusCommissionEmployee constructor
17

18 // set base salary

19 public void setBaseSalary(double salary)
20 {
21 baseSalary = (salary < 0.0) ? 0.0 : salary;
22 } // end method setBaseSalary

Fig. 9.11 | BasePlusCommissionEmployee class inherits from
CommissionEmpTloyee and accesses the superclass’s private data via inherited
pub1ic methods. (Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23

24 // return base salary

25 public double getBaseSalary()

26 {

27 return baseSalary;

28 } // end method getBaseSalary

29

30 // calculate earnings

31 @verride // indicates that this method overrides a superclass method
32 public double earnings()

33 {

34 return getBaseSalary() + super.earnings();

35 } // end method earnings

36

37 // return String representation of BasePlTusCommissionEmployee

38 @verride // indicates that this method overrides a superclass method
39 public String toString()

40 {

41 return String.format("%s %s\n%s: %.2f", "base-salaried",

42 super.toString(), "base salary"”, getBaseSalary());

43 } // end method toString

44 } // end class BasePlusCommissionEmployee

Fig. 9.11 | BasePlusCommissionEmployee class inherits from
CommissionEmployee and accesses the superclass’s private data via inherited
pub1ic methods. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.5 CommissionEmployee-BasePlus-
commissionEmployee Inheritance Hierarchy
Using private Instance Variables (Cont.)

» Method earnings overrides class the superclass’s
earnings method.

» The new version calls CommissionEmployee’s
earnings method with super.earnings().
= Obtains the earnings based on commission alone

» Placing the keyword super and a dot (.) separator
before the superclass method name invokes the
superclass version of an overridden method.

» Good software engineering practice

= |f a method performs all or some of the actions needed by
another method, call that method rather than duplicate its code.

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.5.5 CommissionEmployee-BasePlus-
commissionEmployee Inheritance Hierarchy
Using private Instance Variables (Cont.)

» BasePlusCommissionEmployee’s toString
method overrides class CommissionEmployee’s
toString method.

» The new version creates part of the String
representation by calling CommissionEmployee’s
toString method with the expression
super.toString().

(C) 2010 Pearson Education, Inc. All
rights reserved.

9.8 Object Class

» All classes in Java inherit directly or indirectly from Object, so
Its 11 methods are inherited by all other classes.

» Can learn more about ObJject’s methods in the online API
documentation and in The Java Tutorial at :
java.sun.com/javase-/7/docs/api/java/lang/Object.html

or

java.sun.com/docs/books/tutorial/java/Iandi/
objectclass.html

» Every array has an overridden c 1one method that copies the
array.

= |If the array stores references to objects, the objects are not copied—a
shallow copy is performed.
» For more information about the relationship between arrays and
class Object, see Java Language Specification, Chapter 10, at

java.sun.com/docs/books/jls/third_edition/
html/arrays.html

(C) 2010 Pearson Education, Inc. All
rights reserved.

Lab Session

» EX. 1. Write an inheritance hierarchy for classes Quadrilateral,
Trapezoid, Parallelogram, Rectangle and Square.

» Use Quadrilateral as the superclass of the hierarchy. Create
and use a Point class to represent the points in each shape.

» Make the hierarchy as deep (i.e., as many levels) as possible.
» Specify the instance variables and methods for each class.

» The private instance variables of Quadrilateral should be the x-
y coordinate pairs for the four endpoints of the Quadrilateral.

» Write a program that instantiates objects of your classes and
outputs each object’s area (except Quadrilateral).

(C) 2010 Pearson Education, Inc. All
rights reserved.

Lab Session

» EX.2. Many programs written with inheritance
could be written with composition instead,
and vice versa.

» Rewrite class BasePlusCommissionEmployee
(Fig. 9.11) of the CommissionEmployee-
BasePlusCommissionEmployee hierarchy to
use composition rather than inheritance.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Readings

» Chapter 9.

(C) 2010 Pearson Education, Inc. All
rights reserved.

