
(C) 2010 Pearson Education, Inc. All rights reserved.

Assoc. Prof. Marenglen Biba

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Inheritance

 A form of software reuse in which a new class is created by

absorbing an existing class’s members and enriching them with

new or modified capabilities.

 Can save time during program development by basing new

classes on existing proven and debugged high-quality software.

 Increases the likelihood that a system will be implemented and

maintained effectively.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 When creating a class, rather than declaring completely new
members, you can designate that the new class should
inherit the members of an existing class.
 Existing class is the superclass

 New class is the subclass

 Each subclass can be a superclass of future subclasses.

 A subclass can add its own fields and methods.

 A subclass is more specific than its superclass and
represents a more specialized group of objects.

 The subclass exhibits the behaviors of its superclass and can
add behaviors that are specific to the subclass.
 This is why inheritance is sometimes referred to as specialization.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The direct superclass is the superclass from which the

subclass explicitly inherits.

 An indirect superclass is any class above the direct

superclass in the class hierarchy.

 The Java class hierarchy begins with class Object (in

package java.lang)

 Every class in Java directly or indirectly extends (or “inherits

from”) Object.

 Java supports only single inheritance, in which each

class is derived from exactly one direct superclass.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 We distinguish between the is-a relationship and the

has-a relationship

 Is-a represents inheritance

 In an is-a relationship, an object of a subclass can also be

treated as an object of its superclass

 Has-a represents composition

 In a has-a relationship, an object contains as members

references to other objects

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Figure 9.1 lists several simple examples of superclasses

and subclasses

 Superclasses tend to be “more general” and subclasses “more

specific.”

 Because every subclass object is an object of its

superclass, and one superclass can have many

subclasses, the set of objects represented by a

superclass is typically larger than the set of objects

represented by any of its subclasses.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A superclass exists in a hierarchical relationship with its
subclasses.

 Fig. 9.2 shows a sample university community class hierarchy
 Also called an inheritance hierarchy.

 Each arrow in the hierarchy represents an is-a relationship.

 Follow the arrows upward in the class hierarchy
 an Employee is a CommunityMember”

 “a Teacher is a Faculty member.”

 CommunityMember is the direct superclass of Employee,
Student and Alumnus and is an indirect superclass of all the
other classes in the diagram.

 Starting from the bottom, you can follow the arrows and apply
the is-a relationship up to the topmost superclass.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Fig. 9.3 shows a Shape inheritance hierarchy.

 Follow the arrows from the bottom of the diagram to

the topmost superclass in this class hierarchy to identify

several is-a relationships.

 A Triangle is a TwoDimensionalShape and is a

Shape

 A Sphere is a ThreeDimensionalShape and is a

Shape.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Objects of all classes that extend a common superclass

can be treated as objects of that superclass.

 Commonality expressed in the members of the superclass.

 Inheritance issue

 A subclass can inherit methods that it does not need or should

not have.

 Even when a superclass method is appropriate for a subclass,

that subclass often needs a customized version of the method.

 The subclass can override (redefine) the superclass method

with an appropriate implementation.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A class’s public members are accessible wherever the
program has a reference to an object of that class or one of
its subclasses.

 A class’s private members are accessible only within the
class itself.

 protected access is an intermediate level of access
between public and private.
 A superclass’s protected members can be accessed by members

of that superclass, by members of its subclasses and by members of
other classes in the same package

 protected members also have package access.

 All public and protected superclass members retain their
original access modifier when they become members of the subclass.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 A superclass’s private members are hidden in its

subclasses

 They can be accessed only through the public or protected
methods inherited from the superclass

 Subclass methods can refer to public and protected
members inherited from the superclass simply by using the

member names.

 When a subclass method overrides an inherited superclass

method, the superclass method can be accessed from the

subclass by preceding the superclass method name with

keyword super and a dot (.) separator.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Inheritance hierarchy containing types of employees in

a company’s payroll application

 Commission employees are paid a percentage of their

sales

 Base-salaried commission employees receive a base

salary plus a percentage of their sales.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class CommissionEmployee (Fig. 9.4) extends

class Object (from package java.lang).

 CommissionEmployee inherits Object’s methods.

 If you don’t explicitly specify which class a new class extends,

the class extends Object implicitly.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Signatures: @Override

(C) 2010 Pearson Education, Inc. All
rights reserved.

 To override a superclass method, a subclass must

declare a method with the same signature as the

superclass method

 @Override annotation

 Indicates that a method should override a superclass method

with the same signature.

 If it does not, a compilation error occurs.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class BasePlusCommissionEmployee (Fig. 9.6)

contains a first name, last name, social security number,

gross sales amount, commission rate and base salary.

 All but the base salary are in common with class

CommissionEmployee.

 Class BasePlusCommissionEmployee’s

public services include a constructor, and methods

earnings, toString and get and set for each

instance variable

 Most of these are in common with class

CommissionEmployee.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class BasePlusCommissionEmployee does not

specify “extends Object”

 Implicitly extends Object.

 BasePlusCommissionEmployee’s constructor

invokes class Object’s default constructor implicitly.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Much of BasePlusCommissionEmployee’s code is
similar, or identical, to that of CommissionEmployee.

 private instance variables firstName and lastName
and methods setFirstName, getFirstName,
setLastName and getLastName are identical.
 Both classes also contain corresponding get and set methods.

 The constructors are almost identical
 BasePlusCommissionEmployee’s constructor also sets the
base-Salary.

 The toString methods are nearly identical
 BasePlusCommissionEmployee’s toString also outputs

instance variable baseSalary

(C) 2010 Pearson Education, Inc. All
rights reserved.

 We literally copied CommissionEmployee’s code,

pasted it into BasePlusCommissionEmployee,

then modified the new class to include a base salary

and methods that manipulate the base salary.

 This “copy-and-paste” approach is often error prone and time

consuming.

 It spreads copies of the same code throughout a system,

creating a code-maintenance nightmare.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class BasePlusCommissionEmployee class extends
class CommissionEmployee

 A BasePlusCommissionEmployee object is a
CommissionEmployee
 Inheritance passes on class CommissionEmployee’s capabilities.

 Class BasePlusCommissionEmployee also has
instance variable baseSalary.

 Subclass BasePlusCommissionEmployee inherits
CommissionEmployee’s instance variables and
methods
 Only the superclass’s public and protected members are

directly accessible in the subclass.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Each subclass constructor must implicitly or explicitly call
its superclass constructor to initialize the instance variables
inherited from the superclass.
 Superclass constructor call syntax—keyword super, followed by a

set of parentheses containing the superclass constructor arguments.

 Must be the first statement in the subclass constructor’s body.

 If the subclass constructor did not invoke the superclass’s
constructor explicitly, Java would attempt to invoke the
superclass’s no-argument or default constructor.
 Class CommissionEmployee does not have such a constructor,

so the compiler would issue an error.

 You can explicitly use super() to call the superclass’s
no-argument or default constructor, but this is rarely done.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Compilation errors occur when the subclass attempts to

access the superclass’s private instance variables.

 These lines could have used appropriate get methods to

retrieve the values of the superclass’s instance

variables.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 To enable a subclass to directly access superclass instance
variables, we can declare those members as protected in
the superclass.

 New CommissionEmployee class modified only lines
6–10 as follows:

protected String firstName;
protected String lastName;
protected String socialSecurityNumber;
protected double grossSales;
protected double commissionRate;

 With protected instance variables, the subclass gets
access to the instance variables, but classes that are not
subclasses and classes that are not in the same package
cannot access these variables directly.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class BasePlusCommissionEmployee (Fig. 9.9) extends
the new version of class CommissionEmployee with
protected instance variables.
 These variables are now protected members of
BasePlusCommissionEmployee.

 If another class extends this version of class
BasePlusCommissionEmployee, the new subclass also
can access the protected members.

 The source code in Fig. 9.9 (47 lines) is considerably shorter than
that in Fig. 9.6 (116 lines)
 Most of the functionality is now inherited from
CommissionEmployee

 There is now only one copy of the functionality.
 Code is easier to maintain, modify and debug — the code related to a

commission employee exists only in class CommissionEmployee.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Inheriting protected instance variables slightly

increases performance, because we can directly access

the variables in the subclass without incurring the

overhead of a set or get method call.

 In most cases, it’s better to use private instance

variables to encourage proper software engineering,

and leave code optimization issues to the compiler.

 Code will be easier to maintain, modify and debug.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Using protected instance variables creates several

potential problems.

 The subclass object can set an inherited variable’s value

directly without using a set method.

 A subclass object can assign an invalid value to the variable,

possibly leaving the object in an inconsistent state.

 Subclass methods are more likely to be written so that

they depend on the superclass’s data implementation.

 Subclasses should depend only on the superclass services and

not on the superclass data implementation.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 With protected instance variables in the superclass,
we may need to modify all the subclasses of the
superclass if the superclass implementation changes.
 Such software is said to be fragile or brittle, because a small

change in the superclass can “break” subclass implementation.

 You should be able to change the superclass implementation
while still providing the same services to the subclasses.

 If the superclass services change, we must reimplement our
subclasses.

 A class’s protected members are visible to all
classes in the same package as the class containing the
protected members—this is not always desirable.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Hierarchy reengineered using good software

engineering practices.

 Class CommissionEmployee declares instance

variables firstName, lastName,

socialSecurityNumber, grossSales and

commissionRate as private and provides

public methods for manipulating these values.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 CommissionEmployee methods earnings and
toString use the class’s get methods to obtain the values
of its instance variables.
 If we decide to change the internal representation of the data (e.g.,

variable names) only the bodies of the get and set methods that
directly manipulate the instance variables will need to change.

 These changes occur solely within the superclass-—no changes to
the subclass are needed.

 Localizing the effects of changes like this is a good software
engineering practice.

 Subclass BasePlusCommissionEmployee inherits
Commission-Employee’s non-private methods and
can access the private superclass members via those
methods.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class BasePlusCommissionEmployee
(Fig. 9.11) has several changes that distinguish it from

Fig. 9.9.

 Methods earnings and toString each invoke

their superclass versions and do not access instance

variables directly.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Method earnings overrides class the superclass’s
earnings method.

 The new version calls CommissionEmployee’s
earnings method with super.earnings().
 Obtains the earnings based on commission alone

 Placing the keyword super and a dot (.) separator
before the superclass method name invokes the
superclass version of an overridden method.

 Good software engineering practice
 If a method performs all or some of the actions needed by

another method, call that method rather than duplicate its code.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 BasePlusCommissionEmployee’s toString
method overrides class CommissionEmployee’s

toString method.

 The new version creates part of the String
representation by calling CommissionEmployee’s

toString method with the expression

super.toString().

(C) 2010 Pearson Education, Inc. All
rights reserved.

 All classes in Java inherit directly or indirectly from Object, so
its 11 methods are inherited by all other classes.

 Can learn more about Object’s methods in the online API
documentation and in The Java Tutorial at :

java.sun.com/javase-/7/docs/api/java/lang/Object.html
or
java.sun.com/docs/books/tutorial/java/IandI/

objectclass.html

 Every array has an overridden clone method that copies the
array.
 If the array stores references to objects, the objects are not copied—a

shallow copy is performed.

 For more information about the relationship between arrays and
class Object, see Java Language Specification, Chapter 10, at

java.sun.com/docs/books/jls/third_edition/
html/arrays.html

 Ex. 1. Write an inheritance hierarchy for classes Quadrilateral,

Trapezoid, Parallelogram, Rectangle and Square.

 Use Quadrilateral as the superclass of the hierarchy. Create

and use a Point class to represent the points in each shape.

 Make the hierarchy as deep (i.e., as many levels) as possible.

 Specify the instance variables and methods for each class.

 The private instance variables of Quadrilateral should be the x-

y coordinate pairs for the four endpoints of the Quadrilateral.

 Write a program that instantiates objects of your classes and

outputs each object’s area (except Quadrilateral).

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Ex.2. Many programs written with inheritance
could be written with composition instead,
and vice versa.

 Rewrite class BasePlusCommissionEmployee
(Fig. 9.11) of the CommissionEmployee-
BasePlusCommissionEmployee hierarchy to
use composition rather than inheritance.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Chapter 9.

