Lesson 10

ATM Case Study Part 2:
Implementing an Object-
Oriented Design

Assoc. Prof. Marenglen Biba

OBJECTIVES
In this chapter you'll:

m Incorporate inheritance into the design of the ATM.
m Incorporate polymorphism into the design of the ATM.
m Fully implement in Java the UML-based object-oriented design of the ATM software.

m Study a detailed code walkthrough of the ATM software system that explains the
implementation issues.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.1 Introduction
13.2 Starting to Program the Classes of the ATM System

13.3 Incorporating Inheritance and Polymorphism into the ATM System
13.3.1 Implementing the ATM System Design (Incorporating Inheritance)

13.4 ATM Case Study Implementation

13.4.1 Class ATM
13.4.2 Class Screen
13.4.3 Class Keypad
13.4.4 Class CashD1ispenser
13.4.5 Class DepositSlot
13.4.6 Class Account
13.4.7 Class BankDatabase
13.4.8 Class Transaction
13.4.9 Class BalanceInquiry
13.4.10 Class Withdrawal
13.4.11 Class Deposit
13.4.12 Class ATMCaseStudy

13.5 Wrap-Up

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.1 Introduction

» Section 13.2 shows how to convert class diagrams to
Java code.

» Section 13.3 tunes the design with inheritance and
polymorphism.

» Section 13.4 presents a full Java code implementation
of the ATM software.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.2 Starting to Program the Classes of
the ATM System
» Visibility
» Access modifiers determine the visibility or
accessibility of an object’s attributes and methods to

other objects.

- Before we can begin implementing our design, we must
consider which attributes and methods of our classes should be
pub11c and which should be private.

o Attributes normally should be private and that methods
invoked by clients of a given class should be pub11c.

> Methods that are called as “utility methods” only by other
methods of the class normally should be private.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.2 Starting to Program the Classes of
the ATM System (cont.)

» The UML employs visibility markers for modeling the
visibility of attributes and operations.
> Public visibility is indicated by placing a plus sign (+) before
an operation or an attribute, whereas a minus sign (-) indicates
private visibility.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Fig. 13.1 | Class diagram with visibility markers.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.2 Starting to Program the Classes of
the ATM System (cont.)

» Navigability

» The class diagram in Fig. 13.2 further refines the
relationships among classes in the ATM system by adding
navigability arrows to the association lines.

» Navigability arrows
o represented as arrows in the class diagram
o Indicate in the direction which an association can be traversed.

» Programmers use navigability arrows to determine which
objects need references to other objects.

» Associations that have navigability arrows at both ends
Indicate bidirectional navigability — navigation can
proceed in either direction across the association.

(C) 2010 Pearson Education, Inc. All
rights reserved.

| | |

Screen
|
0..1 0..1 0..1
E tes B
recwres = Withdrawal I
0..1
0..1

- Accesses/modifies an
account balance through

Account I

Fig. 13.2 | Class diagram with navigability arrows.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.2 Starting to Program the Classes of
the ATM System (cont.)

» Implementing the ATM System from Its
UML Design

» We are now ready to begin implementing the ATM
system.

» Convert the classes In the diagrams of Fig. 13.1 and
Fig. 13.2 into Java code.

» The code will represent the “skeleton” of the system.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.2 Starting to Program the Classes of
the ATM System (cont.)

» Four guidelines for each class:

> 1 -Use the name located in the first compartment to declare the class
as a pub11c class with an empty no-argument constructor
(Fig. 13.3).

> 2 .Use the attributes located in the second compartment to declare
the instance variables (Fig. 13.4).

> 3 .Use the associations described in the class diagram to declare the
references to other objects (Fig. 13.5).

> 4 .Use the operations located in the third compartment of Fig. 13.1
to declare the shells of the methods (Fig. 13.6). If we have not yet
specified a return type for an operation, we declare the method with
return type vo1d. Refer to the class diagrams of Figs. 12.17-12.21
to declare any necessary parameters.

(C) 2010 Pearson Education, Inc. All
rights reserved.

// Class Withdrawal represents an ATM withdrawal transaction
public class Withdrawal
{
// no-argument constructor
public Withdrawal()
{
} // end no-argument Withdrawal constructor
} // end class Withdrawal

O~ h WN =—-

Fig. 13.3 | Java code for class Withdrawal based on Figs. 13.1-13.2.

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Class Withdrawal represents an ATM withdrawal transaction
2 public class Withdrawal

3 {

4 // attributes

5 private int accountNumber; // account to withdraw funds from
6 private double amount; // amount to withdraw

7

8 // no-argument constructor

9 pubTic Withdrawal()
10 {
11 } // end no-argument Withdrawal constructor

12 3} // end class Withdrawal

Fig. 13.4 | Java code for class Withdrawal based on Figs. 13.1-13.2,

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Class Withdrawal represents an ATM withdrawal transaction

2 public class Withdrawal

3 {

4 // attributes

5 private int accountNumber; // account to withdraw funds from
6 private double amount; // amount to withdraw

7

8 // references to associated objects

9 private Screen screen; // ATM’s screen

10 private Keypad keypad; // ATM’s keypad

11 private CashDispenser cashDispenser; // ATM’s cash dispenser
12 private BankDatabase bankDatabase; // account info database
13

14 // no-argument constructor

15 pubTic Withdrawal()

16 {

17 } // end no-argument Withdrawal constructor

I8 1} // end class Withdrawal

Fig. 13.5 | Java code for class Withdrawal based on Figs. 13.1-13.2,

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Class Withdrawal represents an ATM withdrawal transaction

2 public class Withdrawal

3 {

4 // attributes

5 private int accountNumber; // account to withdraw funds from
6 private double amount; // amount to withdraw

7

8 // references to associated objects

9 private Screen screen; // ATM’s screen

10 private Keypad keypad; // ATM’s keypad

11 private CashDispenser cashDispenser; // ATM’s cash dispenser
12 private BankDatabase bankDatabase; // account info database
13

14 // no-argument constructor

15 pubTic Withdrawal()

16 {

17 } // end no-argument Withdrawal constructor

18

19 // operations
20 public void execute()
21 {
22 } // end method execute

23 1} // end class Withdrawal

Fig. 13.6 | Java code for class Withdrawal based on Figs. 13.1-13.2.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.3 Incorporating Inheritance and
Polymorphism into the ATM System

» To apply inheritance, look for commonality among
classes In the system.

» Create an inheritance hierarchy to model similar (yet

not identical) classes in a more elegant and efficient
manner.

» Modify class diagram to incorporate the new
Inheritance relationships.

» Translate updated design into Java code.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.3 Incorporating Inheritance and

Polymorphism into the ATM System
(cont.)

» Problem of representing a financial transaction in the system.

» Created three individual transaction classes —BalanceInquiry,
withdrawal and Deposit—to represent the transactions that the ATM
system can perform.

» Figure 13.7 shows the attributes and operations of classes
BalanceInquiry,wWithdrawal- and Deposit.
> Each has one attribute (accountNumber) and one operation

(execute) in common.

> Each class requires attribute accountNumber to specify the account
to which the transaction applies.

o Each class contains operation execute, which the ATM invokes to
perform the transaction.

» BalanceInquiry,wWithdrawal- and Deposit represent types of
transactions.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.3 Incorporating Inheritance and
Polymorphism into the ATM System (cont.)

» Figure 13.7 reveals commonality among the transaction
classes.

» Use inheritance to factor out the common features.

» Place the common functionality in a superclass,
Transaction, that classes BalanceInquiry,
withdrawal- and Deposit extend.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Fig. 13.7 | Attributes and operations of BalanceInquiry, Withdrawal and
Deposit.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.3 Incorporating Inheritance and
Polymorphism into the ATM System (cont.)

>

>

The UML specifies a relationship called a generalization to
model inheritance.

Figure 13.8 is the class diagram that models the
generalization of superclass Transaction and subclasses
BalanceInquiry, Withdrawal and Deposit.

Arrows with triangular hollow arrowheads indicate that
classes BalanceInquiry, Withdrawal and
Depos1t extend class Transaction.

Class Transaction is said to be a generalization of
classes BalanceInquiry, Withdrawal and
Deposit.

Class BalanceInquiry, Withdrawal and Deposit
are said to be specializations of class Transaction.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Transaction

— accountNumber : Integer

+ getAccountNumber()

+ execute()
Balancelnquiry Withdrawal Deposit
- amount : Double - amount : Double
+ execute() + execute() + execute()

Fig. 13.8 | Class diagram modeling generalization of superclass Transaction
and subclasses BalanceInquiry, Withdrawal and Deposit. Note that abstract
class names (e.g., Transaction) and method names (e.g., execute in class

Transaction) appear in italics.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.3 Incorporating Inheritance and
Polymorphism into the ATM System (cont.)

» Polymorphism provides the ATM with an elegant way
to execute all transactions “in the general.”

» The polymorphic approach also makes the system
easily extensible.

» To create a new transaction type, just create an
additional Transaction subclass that overrides the
execute method with a version of the method
appropriate for executing the new transaction type.

(C) 2010 Pearson Education, Inc. All
rights reserved.

| l/ \L |
| | .
Keypad CashDispenser
|
. | 0.1 |0.1
DepositSlot Screen
| | Withdrawal
I | | |
o ¢ £ 0. i’ 0.1 |o.l
Executes B
ATM e Transaction <t+—— Deposit
| 0..1
| 0..1
Authenticates user against
' |
| Balancelnquiry
BankDatabase

-« Accesses/modifies an
account balance through

Contains

Vo

Account

Fig. 13.9 | Class diagram of the ATM system (incorporating inheritance). Note
that the abstract class name Transaction appears in italics.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Fig. 13.10 | Class diagram with attributes and operations (incorporating
inheritance). Note that the abstract class name Transaction and the abstract

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.3.1 Implementing the ATM System
Design (Incorporating Inheritance)

» Figure 13.11 shows the declaration of class
withdrawal.

(C) 2010 Pearson Education, Inc. All
rights reserved.

// Class Withdrawal represents an ATM withdrawal transaction

|

2 public class Withdrawal extends Transaction
3 {

4 1} // end class Withdrawal

Fig. 13.11 | Java code for shell of class Withdrawal.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.3.1 Implementing the ATM System
Design (Incorporating Inheritance) (cont.)

» Figure 13.12 is the Java code for class Withdrawal
from Fig. 13.9 and Fig. 13.10.

(C) 2010 Pearson Education, Inc. All
rights reserved.

oeo~NSNKND WN =—

20

// Withdrawal.java
// Generated using the class diagrams in Fig. 13.9 and Fig. 13.10
public class Withdrawal extends Transaction
{
// attributes
private double amount; // amount to withdraw
private Keypad keypad; // reference to keypad
private CashDispenser cashDispenser; // reference to cash dispenser

// no-argument constructor
pubTic Withdrawal()
{

} // end no-argument Withdrawal constructor

// method overriding execute
@Override
pubTic void execute()
{
} // end method execute
} // end class Withdrawal

Fig. 13.12 | Java code for class Withdrawal based on Figs. 13.9 and 13.10.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.5 ATM Case Study Implementation
(cont.)

» Our ATM design does not specify all the program logic
and may not specify all the attributes and operations

required to complete the ATM implementation.
> This iIs a normal part of the object-oriented design process.

» As we Implement the system, we complete the program
logic and add attributes and behaviors as necessary to
construct the ATM system specified by the
requirements document in Section 12.2.

» The Java application (ATMCaseStudy) starts the
ATM and puts the other classes in the system in use.

(C) 2010 Pearson Education, Inc. All
rights reserved.

Lab Session

» Implementation in NetBeans of the Case
Study

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.5.1 Class ATM

» Class ATM (Fig. 13.13) represents the ATM as a whole.

» Line 7 declares an attribute not found in our UML
design—an 1nt attribute
currentAccountNumber that keeps track of the
account number of the current authenticated user.

» Lines 8-12 declare reference-type attributes
corresponding to the ATM class’s associations modeled

In Fig. 13.9.

> These attributes allow the ATM to access its parts (i.e., its
Screen, Keypad, CashDispenser and DepositSlot)
and interact with the bank’s account-information database (i.e.,
a BankDatabase object).

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // ATM.java

2 // Represents an automated teller machine

3

4 public class ATM

5 {

6 private boolean userAuthenticated; // whether user is authenticated
7 private int currentAccountNumber; // current user's account number
8 private Screen screen; // ATM's screen

9 private Keypad keypad; // ATM's keypad

10 private CashDispenser cashDispenser; // ATM's cash dispenser

11 private DepositSlot depositSlot; // ATM's deposit slot

12 private BankDatabase bankDatabase; // account information database
13

14 // constants corresponding to main menu options

15 private static final int BALANCE INQUIRY = 1;

16 private static final int WITHDRAWAL = 2;

17 private static final int DEPOSIT = 3;

18 private static final int EXIT = 4;

19
20 // no-argument ATM constructor initializes instance variables
21 public ATM()
22 {
23 userAuthenticated = false; // user is not authenticated to start

Fig. 13.13 | Class ATM represents the ATM. (Part | of 7.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

currentAccountNumber = 0; // no current account number to start
screen = new Screen(); // create screen

keypad = new Keypad(); // create keypad

cashDispenser = new CashDispenser(); // create cash dispenser
depositSlot = new DepositSlot(); // create deposit slot
bankDatabase = new BankDatabase(); // create acct info database

} // end no-argument ATM constructor

// start ATM
public void run()

// welcome and authenticate user; perform transactions
while (true)
{
// lToop while user is not yet authenticated
while (!userAuthenticated)
{
screen.displayMessagelLine("\nWelcome!");
authenticateUser(); // authenticate user
} // end while

performTransactions(); // user 1is now authenticated
userAuthenticated = false; // reset before next ATM session

Fig. 13.13 | Class ATM represents the ATM. (Part 2 of 7.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

47 currentAccountNumber = 0; // reset before next ATM session

48 screen.displayMessagelLine("\nThank vyou! Goodbye!"™);

49 } // end while

50 } // end method run

51

52 // attempts to authenticate user against database

53 private void authenticateUser()

54 {

55 screen.displayMessage("\nPlease enter your account number: ");
56 int accountNumber = keypad.getInput(); // input account number
57 screen.displayMessage("\nEnter your PIN: "); // prompt for PIN
58 int pin = keypad.getInput(); // input PIN

59

60 // set userAuthenticated to boolean value returned by database
61 userAuthenticated =

62 bankDatabase.authenticateUser(accountNumber, pin);

63

64 // check whether authentication succeeded

65 if (userAuthenticated)

66 {

67 currentAccountNumber = accountNumber; // save user's account #
68 Y // end if

Fig. 13.13 | Class ATM represents the ATM. (Part 3 of 7.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

69 else

70 screen.displayMessagelLine(

71 "Invalid account number or PIN. Please try again.");
72 } // end method authenticateUser

73

74 // display the main menu and perform transactions

75 private void performTransactions()

76 {

77 // local variable to store transaction currently being processed
78 Transaction currentTransaction = null;

79

80 boolean userExited = false; // user has not chosen to exit
81

82 // 1oop while user has not chosen option to exit system

83 while (luserExited)

84 {

85 // show main menu and get user selection

86 int mainMenuSelection = displayMainMenu();

87

88 // decide how to proceed based on user's menu selection
89 switch (mainMenuSelection)

90 {

Fig. 13.13 | Class ATM represents the ATM. (Part 4 of 7.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

91
92
93
94
95
96
97
98
29
100
101
102
103
104
105
106
107
108
109
110
11
112
113

// user chose to perform one of three transaction types
case BALANCE_INQUIRY:

case WITHDRAWAL:

case DEPOSIT:

// initialize as new object of chosen type
currentTransaction =
createTransaction(mainMenuSelection);

currentTransaction.execute(); // execute transaction
break;

case EXIT: // user chose to terminate session
screen.displayMessagelLine("\nExiting the system...");
userExited = true; // this ATM session should end
break;

default: // user did not enter an integer from 1-4
screen.displayMessageline(

"\nYou did not enter a valid selection. Try again.");

break;
} // end switch

} // end while
} // end method performTransactions

Fig. 13.13 | Class ATM represents the ATM. (Part 5 of 7.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

114 // display the main menu and return an input selection

115 private int displayMainMenu()

116 {

117 screen.displayMessagelLine("\nMain menu:");

118 screen.displayMessagelLine("1 - View my balance"”);
119 screen.displayMessagelLine("2 - Withdraw cash");

120 screen.displayMessagelLine("3 - Deposit funds");

121 screen.displayMessagelLine("4 - Exit\n");

122 screen.displayMessage("Enter a choice: ");

123 return keypad.getInput(); // return user's selection
124 } // end method displayMainMenu

125

126 // return object of specified Transaction subclass

127 private Transaction createTransaction(int type)

128 {

129 Transaction temp = null; // temporary Transaction variable
130

131 // determine which type of Transaction to create

132 switch (type)

133 {

134 case BALANCE_INQUIRY: // create new BalancelInquiry transaction
135 temp = new BalancelInquiry(

136 currentAccountNumber, screen, bankDatabase);
137 break;

Fig. 13.13 | Class ATM represents the ATM. (Part 6 of 7.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

138 case WITHDRAWAL: // create new Withdrawal transaction

139 temp = new Withdrawal(currentAccountNumber, screen,
140 bankDatabase, keypad, cashDispenser);

141 break;

142 case DEPOSIT: // create new Deposit transaction

143 temp = new Deposit(currentAccountNumber, screen,
144 bankDatabase, keypad, depositSlot);

145 break;

146 } // end switch

147

148 return temp; // return the newly created object

149 } // end method createTransaction

150 } // end class ATM

Fig. 13.13 | Class ATM represents the ATM. (Part 7 of 7.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.5.2 Class Screen

» Class Screen (Fig. 13.14) represents the screen of the
ATM and encapsulates all aspects of displaying output
to the user.

» We designed class Screen to have one operation—
displayMessage.
> For greater flexibility in displaying messages to the Screen,
we now declare three Screen methods—
displayMessage, displayMessagelLine and
displaybDollar-Amount.

(C) 2010 Pearson Education, Inc. All
rights reserved.

oeo~NSNKND WN =—

23

// Screen.java
// Represents the screen of the ATM

public class Screen

{

// display a message without a carriage return
public void displayMessage(String message)
{
System.out.print(message);
} // end method displayMessage

// display a message with a carriage return
public void displayMessagelLine(String message)
{

System.out.printin(message);
} // end method displayMessageline

// displays a dollar amount
public void displayDollarAmount(double amount)
{
System.out.printf("$%,.2f", amount);
} // end method displayDollarAmount

} // end class Screen

Fig. 13.14 | Class Screen represents the screen of the ATM.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.5.3 Class Keypad

» Class Keypad (Fig. 13.15) represents the keypad of
the ATM and is responsible for receiving all user input.

» We assume that the user presses only the keys on the
computer keyboard that also appear on the keypad—the
keys numbered 0-9 and the Enter key.

(C) 2010 Pearson Education, Inc. All
rights reserved.

oeo~NSNKND WN =—

20

// Keypad.java
// Represents the keypad of the ATM
import java.util.Scanner; // program uses Scanner to obtain user input

public class Keypad
{

private Scanner input; // reads data from the command Tline

// no-argument constructor initializes the Scanner
pubTic Keypad()
{
input = new Scanner(System.in);
} // end no-argument Keypad constructor

// return an integer value entered by user
pubTic int getInput()
{
return input.nextInt(); // we assume that user enters an integer
} // end method getInput
} // end class Keypad

Fig. 13.15 | Class Keypad represents the ATM’s keypad.

(C) 2010 Pearson Education, Inc. All
rights reserved.

3.5.4 Class CashD1spenser

Class CashD1spenser (Fig. 13.16) represents the cash
dispenser of the ATM.

Constant INITIAL_COUNT indicates the initial count of
bills in the cash dispenser when the ATM starts (i.e., 500).

The class trusts that a client (i.e., withdrawal) calls
dispensecCash only after establishing that sufficient
cash Is available by calling
1sSufficientCashAvailable.

Thus, d1spenseCash simply simulates dispensing the
requested amount without checking whether sufficient cash
IS available.

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // CashDispenser.java

2 // Represents the cash dispenser of the ATM

3

4 public class CashDispenser

5 {

6 // the default initial number of bills in the cash dispenser
7 private final static int INITIAL_COUNT = 500;

8 private int count; // number of $20 bills remaining

9

10 // no-argument CashDispenser constructor initializes count to default
11 public CashDispenser()

12 {

13 count = INITIAL_COUNT:; // set count attribute to default
14 } // end CashDispenser constructor

I5

16 // simulates dispensing of specified amount of cash

17 pubTic void dispenseCash(int amount)

18 {

19 int billsRequired = amount / 20; // number of $20 bills required
20 count -= billsRequired; // update the count of bills
21 } // end method dispenseCash
22

Fig. 13.16 | Class CashDispenser represents the ATM’s cash dispenser. (Part | of
2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23 // indicates whether cash dispenser can dispense desired amount

24 public boolean 1isSufficientCashAvailable(int amount)

25 {

26 int billsRequired = amount / 20; // number of $20 bills required
27

28 if (count >= billsRequired)

29 return true; // enough bills available

30 else

31 return false; // not enough bills available

32 } // end method isSufficientCashAvailable

33 } // end class CashDispenser

Fig. 13.16 | Class CashDispenser represents the ATM'’s cash dispenser. (Part 2 of
2)

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.5.5 Class DepositSlot

» Class DepositSlot (Fig. 13.17) represents the
ATM’s deposit slot.

» Deposi1tSlot has no attributes and only one
method—1sEnvelopeReceived (lines 8-11)—
which indicates whether a deposit envelope was
recelved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // DepositSlot.java

2 // Represents the deposit slot of the ATM

3

4 public class DepositSlot

5 {

6 // indicates whether envelope was received (always returns true,
7 // because this is only a software simulation of a real deposit slot)
8 pubTic boolean isEnvelopeReceived()

9 {

10 return true; // deposit envelope was received

11 } // end method isEnvelopeReceived

12 } // end class DepositSlot

Fig. 13.17 | Class DepositSlot represents the ATM’s deposit slot.

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.5.6 Class Account

» Class Account (Fig. 13.18) represents a bank
account.

» Each Account has four attributes (modeled in
Fig. 13.10)—accountNumber, pin,
availlableBalance and totalBalance.

» Variable avai lableBalance represents the amount
of funds available for withdrawal.

» Variable totalBalance represents the amount of

funds available, plus the amount of deposited funds still
pending confirmation or clearance.

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Account.java

2 // Represents a bank account

3

4 public class Account

5 {

6 private int accountNumber; // account number

7 private int pin; // PIN for authentication

8 private double availableBalance; // funds available for withdrawal
9 private double totalBalance; // funds available + pending deposits
10

11 // Account constructor initializes attributes

12 pubTic Account(int theAccountNumber, int thePIN,

13 doubTe theAvailableBalance, double theTotalBalance)

14 {

15 accountNumber = theAccountNumber;

16 pin = thePIN;

17 availableBalance = theAvailableBalance;

18 totalBalance = theTotalBalance;

19 } // end Account constructor
20
21 // determines whether a user-specified PIN matches PIN in Account
22 public boolean validatePIN(int userPIN)
23 {

Fig. 13.18 | Class Account represents a bank account. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

if (userPIN == pin)
return true;
else
return false;
} // end method validatePIN

// returns available balance
public double getAvailableBalance()
{

return availableBalance;
} // end getAvailableBalance

// returns the total balance
public double getTotalBalance()
{

return totalBalance;
} // end method getTotalBalance

// credits an amount to the account
pubTic void credit(double amount)

{

totalBalance += amount; // add to total balance

} // end method credit

Fig. 13.18 | Class Account represents a bank account. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

48 // debits an amount from the account

49 public void debit(double amount)

50 {

51 availableBalance -= amount; // subtract from available balance
52 totalBalance -= amount; // subtract from total balance
53 } // end method debit

54

55 // returns account number

56 public int getAccountNumber()

57 {

58 return accountNumber;

59 } // end method getAccountNumber

60 } // end class Account

Fig. 13.18 | Class Account represents a bank account. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

J

13.5.7 Class BankbDatabase

» Class BankDatabase (Fig. 13.19) models the bank’s
database with which the ATM Iinteracts to access and
modify a user’s account information.

» We determine one reference-type attribute for class
BankDatabase based on its composition relationship
with class Account.

(C) 2010 Pearson Education, Inc. All
rights reserved.

1 // BankDatabase.java

2 // Represents the bank account information database

3

4 public class BankDatabase

5 {

6 private Account[] accounts; // array of Accounts

7

8 // no-argument BankDatabase constructor initializes accounts

9 pubTic BankDatabase()

10 {

11 accounts = new Account[2]; // just 2 accounts for testing
12 accounts[0] = new Account(12345, 54321, 1000.0, 1200.0);
13 accounts[1] = new Account(98765, 56789, 200.0, 200.0);
14 } // end no-argument BankDatabase constructor

15

16 // retrieve Account object containing specified account number
17 private Account getAccount(int accountNumber)

18 {

19 // loop through accounts searching for matching account number
20 for (Account currentAccount : accounts)
21 {

Fig. 13.19 | Class BankDatabase represents the bank’s account information
database. (Part | of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

// return current account if match found

if (currentAccount.getAccountNumber() == accountNumber)
return currentAccount;
} // end for

return null; // if no matching account was found, return null
} // end method getAccount

// determine whether user-specified account number and PIN match
// those of an account in the database
pubTic boolean authenticateUser(int userAccountNumber, int userPIN)
{
// attempt to retrieve the account with the account number
Account userAccount = getAccount(userAccountNumber);

// if account exists, return result of Account method validatePIN

if (userAccount != null)
return userAccount.validatePIN(userPIN);
else

return false; // account number not found, so return false
} // end method authenticateUser

Fig. 13.19 | Class BankDatabase represents the bank’s account information
database. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

// return available balance of Account with specified account number
public double getAvailableBalance(int userAccountNumber)
{
return getAccount(userAccountNumber).getAvailableBalance();
} // end method getAvailableBalance

// return total balance of Account with specified account number
public double getTotalBalance(int userAccountNumber)
{
return getAccount(userAccountNumber).getTotalBalance();
} // end method getTotalBalance

// credit an amount to Account with specified account number
public void credit(int userAccountNumber, double amount)
{
getAccount(userAccountNumber).credit(amount);
} // end method credit

// debit an amount from Account with specified account number
pubTic void debit(int userAccountNumber, double amount)
{
getAccount(userAccountNumber).debit(amount);
} // end method debit

} // end class BankDatabase

Fig. 13.19 | Class BankDatabase represents the bank’s account information
database (Part 3 nf 3)

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.5.8 Class Transaction

» Class Transaction (Fig. 13.20) is an abstract
superclass that represents the notion of an ATM
transaction.

» It contains the common features of subclasses
BalanceInquiry,wWithdrawal and Deposit.

» The class has three pub 11 c get methods—
getAccountNumber (lines 20-23), get-Screen
(lines 26-29) and getBankDatabase (lines 32-35).

> These are inherited by Transaction subclasses and used to
gain access to class Transaction’s private attributes.

(C) 2010 Pearson Education, Inc. All
rights reserved.

oeo~NSNKND WN =—

23

// Transaction.java
// Abstract superclass Transaction represents an ATM transaction

public abstract class Transaction

{

private int accountNumber; // indicates account involved
private Screen screen; // ATM's screen
private BankDatabase bankDatabase; // account info database

// Transaction constructor invoked by subclasses using super()
pubTic Transaction(int userAccountNumber, Screen atmScreen,
BankDatabase atmBankDatabase)
{
accountNumber = userAccountNumber;
screen = atmScreen;
bankDatabase = atmBankDatabase;
} // end Transaction constructor

// return account number
public int getAccountNumber()
{
return accountNumber;
} // end method getAccountNumber

Fig. 13.20 | Abstract superclass Transaction represents an ATM transaction.
(Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23

25 // return reference to screen

26 public Screen getScreen()

27 {

28 return screen;

29 } // end method getScreen

30

31 // return reference to bank database
32 public BankDatabase getBankDatabase()
33 {

34 return bankDatabase;

35 } // end method getBankDatabase

36

37 // perform the transaction (overridden by each subclass)
38 abstract public void execute();

390 } // end class Transaction

Fig. 13.20 | Abstract superclass Transaction represents an ATM transaction.
(Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

4

13.5.9 Class BalanceInquiry

L

» Class BalanceInquiry (Fig. 13.21) extends
Transaction and represents a balance-inquiry ATM

transaction.

» BalanceInquiry does not have any attributes of its
own, but it inherits Transaction attributes
accountNumber, screen and bankDatabase,
which are accessible through Transaction’s

pub 11 c get methods.

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Balancelnquiry.java

2 // Represents a balance inquiry ATM transaction

3

4 public class Balancelnquiry extends Transaction

5 {

6 // BalanceInquiry constructor

7 public BalanceInquiry(int userAccountNumber, Screen atmScreen,
8 BankDatabase atmBankDatabase)

9 {

10 super(userAccountNumber, atmScreen, atmBankDatabase);
] } // end Balancelnquiry constructor

12

13 // performs the transaction

14 @verride

15 pubTic void execute()

16 {

17 // get references to bank database and screen

18 BankDatabase bankDatabase = getBankDatabase();

19 Screen screen = getScreen();
20
21 // get the available balance for the account involved
22 double availableBalance =
23 bankDatabase.getAvailableBalance(getAccountNumber());

Fig. 13.21 | ClassBalanceInquiry represents a balance-inquiry ATM transaction.
(Part | of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

24

25 // get the total balance for the account involved

26 double totalBalance =

27 bankDatabase.getTotalBalance(getAccountNumber());
28

29 // display the balance information on the screen

30 screen.displayMessagelLine("\nBalance Information:");
31 screen.displayMessage(" - Available balance: ");

32 screen.displayDollarAmount(availableBalance);

33 screen.displayMessage("\n - Total balance: "
34 screen.displayDollarAmount(totalBalance);

35 screen.displayMessagelLine("");

36 } // end method execute

37 } // end class BalanceInquiry

Fig. 13.21 | ClassBalanceInquiry represents a balance-inquiry ATM transaction.
(Part 2 of 2.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

4

13.5.10 Class Withdrawal

» Class Wwithdrawal (Fig. 13.22) extends
Transaction and represents a withdrawal ATM
transaction.

» Figure 13.9 models associations between class
withdrawal and classes Keypad and
CcashD1ispenser, for which lines 7-8 implement
reference-type attributes keypad and
cashDi1spenser, respectively.

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Withdrawal.java

2 // Represents a withdrawal ATM transaction

3

4 public class Withdrawal extends Transaction

5 {

6 private int amount; // amount to withdraw

7 private Keypad keypad; // reference to keypad

8 private CashDispenser cashDispenser; // reference to cash dispenser
9

10 // constant corresponding to menu option to cancel

11 private final static int CANCELED = 6;

12

13 // Withdrawal constructor

14 pubTic Withdrawal(int userAccountNumber, Screen atmScreen,
15 BankDatabase atmBankDatabase, Keypad atmKeypad,

16 CashDispenser atmCashDispenser)

17 {

18 // initialize superclass variables

19 super(userAccountNumber, atmScreen, atmBankDatabase);
20
21 // initialize references to keypad and cash dispenser
22 keypad = atmKeypad;

Fig. 13.22 | Classwithdrawal represents a withdrawal ATM transaction. (Part | of
7.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

cashDispenser = atmCashDispenser;

} // end Withdrawal constructor

// perform transaction
@Override
public void execute()

{

boolean cashDispensed = false; // cash was not dispensed yet
double availableBalance; // amount available for withdrawal

// get references to bank database and screen
BankDatabase bankDatabase = getBankDatabase();
Screen screen = getScreen();

// loop until cash is dispensed or the user cancels
do
{
// obtain a chosen withdrawal amount from the user
amount = displayMenuOfAmounts();

// check whether user chose a withdrawal amount or canceled
if (amount != CANCELED)
{

Fig. 13.22 | ClassWithdrawal represents a withdrawal ATM transaction. (Part 2 of

7)

(C) 2010 Pearson Education, Inc. All
rights reserved.

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

// get available balance of account involved
availableBalance =
bankDatabase.getAvailableBalance(getAccountNumber());

// check whether the user has enough money in the account
if (amount <= availableBalance)
{
// check whether the cash dispenser has enough money
if (cashDispenser.isSufficientCashAvailable(amount))
{
// update the account involved to reflect the withdrawal
bankDatabase.debit(getAccountNumber(), amount);

cashDispenser.dispenseCash(amount); // dispense cash
cashDispensed = true; // cash was dispensed

// instruct user to take cash
screen.displayMessagelLine("\nYour cash has been” +
" dispensed. Please take your cash now.");
} // end if

Fig. 13.22 | Classwithdrawal represents a withdrawal ATM transaction. (Part 3 of

7)

(C) 2010 Pearson Education, Inc. All
rights reserved.

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

else // cash dispenser does not have enough cash
screen.displayMessageline(
"\nInsufficient cash available in the ATM." +
"\n\nPlease choose a smaller amount.");

} // end if
else // not enough money available in user's account
{

screen.displayMessageline(
"\nInsufficient funds in your account." +
"\n\nPlease choose a smaller amount.");
} // end else

} // end if
else // user chose cancel menu option
{
screen.displayMessagelLine("\nCanceling transaction...”);

return; // return to main menu because user canceled
} // end else
} while (!cashDispensed);

} // end method execute

Fig. 13.22 | Classwithdrawal represents a withdrawal ATM transaction. (Part 4 of

7.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

87 // display a menu of withdrawal amounts and the option to cancel;

88 // return the chosen amount or 0 if the user chooses to cancel
89 private int displayMenuOfAmounts()

90 {

91 int userChoice = 0; // local variable to store return value
92

93 Screen screen = getScreen(); // get screen reference

94

95 // array of amounts to correspond to menu numbers

96 int[] amounts = { 0, 20, 40, 60, 100, 200 };

97

98 // loop while no valid choice has been made

99 while (userChoice == 0)

100 {

101 // display the menu

102 screen.displayMessagelLine("\nWithdrawal Menu:");

103 screen.displayMessagelLine("1 - $20");

104 screen.displayMessagelLine("2 - $40");

105 screen.displayMessagelLine("3 - $60");

106 screen.displayMessagelLine("4 - $100");

107 screen.displayMessageLine("5 - $200");

108 screen.displayMessageLine("6 - Cancel transaction"”);

109 screen.displayMessage("\nChoose a withdrawal amount: ");

Fig. 13.22 | ClassWithdrawal represents a withdrawal ATM transaction. (Part 5 of
7.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

110

11 int input = keypad.getInput(); // get user 1input through keypad
112

113 // determine how to proceed based on the input value

114 switch (input)

115 {

116 case 1: // if the user chose a withdrawal amount

117 case 2: // (i.e., chose option 1, 2, 3, 4 or 5), return the
118 case 3: // corresponding amount from amounts array

119 case 4:

120 case 5:

121 userChoice = amounts[input]; // save user's choice
122 break;

123 case CANCELED: // the user chose to cancel

124 userChoice = CANCELED; // save user's choice

125 break;

126 default: // the user did not enter a value from 1-6

127 screen.displayMessagelLine(

128 "\nInvalid selection. Try again.");

129 } // end switch

130 } // end while

131

Fig. 13.22 | Classwithdrawal represents a withdrawal ATM transaction. (Part 6 of
7.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

132 return userChoice; // return withdrawal amount or CANCELED
133 } // end method displayMenuOfAmounts
134 } // end class Withdrawal

Fig. 13.22 | ClassWithdrawal represents a withdrawal ATM transaction. (Part 7 of
7.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.5.11 Class Deposit
» Class Deposit (Fig. 13.23) extends Transaction
and represents a deposit transaction.

» Lines 7-8 create reference-type attributes keypad and
depositSlot that implement the associations
between class Depos1t and classes Keypad and
DepositSlot modeled in Fig. 13.9.

» Line 9 declares a constant CANCELED that corresponds
to the value a user enters to cancel.

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // Deposit.java

2 // Represents a deposit ATM transaction

3

4 public class Deposit extends Transaction

5 {

6 private double amount; // amount to deposit

7 private Keypad keypad; // reference to keypad

8 private DepositSlot depositSlot; // reference to deposit slot
9 private final static int CANCELED = 0; // constant for cancel option
10

11 // Deposit constructor

12 pubTic Deposit(int userAccountNumber, Screen atmScreen,
13 BankDatabase atmBankDatabase, Keypad atmKeypad,

14 DepositSlot atmDepositSTlot)

I5 {

16 // initialize superclass variables

17 super(userAccountNumber, atmScreen, atmBankDatabase);
18

19 // initialize references to keypad and deposit slot
20 keypad = atmKeypad;
21 depositSlot = atmDepositSlot;
22 } // end Deposit constructor
23

Fig. 13.23 | Class Deposit represents a deposit ATM transaction. (Part | of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

24 // pertorm transaction

25 @verride

26 public void execute()

27 {

28 BankDatabase bankDatabase = getBankDatabase(); // get reference
29 Screen screen = getScreen(); // get reference

30

31 amount = promptForDepositAmount(); // get deposit amount from user
32

33 // check whether user entered a deposit amount or canceled

34 if (amount != CANCELED)

35 {

36 // request deposit envelope containing specified amount

37 screen.displayMessage(

38 "\nPlease insert a deposit envelope containing ");

39 screen.displayDollarAmount(amount);

40 screen.displayMessagelLine(".");

41

42 // receive deposit envelope

43 boolean envelopeReceived = depositSlot.isEnvelopeReceived();
44

45 // check whether deposit envelope was received

46 if (envelopeReceived)

47 {

48 screen.displayMessagelLine("\nYour envelope has been " +

Fig. 13.23 | Class Deposit represents a deposit ATM transaction. (Part 2 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

LLJ

49 "received.\nNOTE: The money just deposited will not +

50 "be available until we verify the amount of any " +
51 "enclosed cash and your checks clear." };

52

53 // credit account to reflect the deposit

54 bankDatabase.credit(getAccountNumber(), amount);

55 } // end if

56 else // deposit envelope not received

57 {

58 screen.displayMessagelLine("\nYou did not insert an " +
59 "envelope, so the ATM has canceled your transaction.");
60 } // end else

61 } // end if

62 else // user canceled instead of entering amount

63 {

64 screen.displayMessagelLine("\nCanceling transaction...”);
65 } // end else

66 } // end method execute

67

68 // prompt user to enter a deposit amount in cents

69 private double promptForDepositAmount()

70 {

71 Screen screen = getScreen(); // get reference to screen

72

Fig. 13.23 | Class Deposit represents a deposit ATM transaction. (Part 3 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

73 // display the prompt

74 screen.displayMessage("\nPlease enter a deposit amount in " +
75 "CENTS (or 0 to cancel): ");

76 int input = keypad.getInput(); // receive input of deposit amount
77

78 // check whether the user canceled or entered a valid amount
79 if (input == CANCELED)

80 return CANCELED;

8l else

82 {

83 return (double) dinput / 100; // return dollar amount

84 } // end else

85 } // end method promptForDepositAmount

86 } // end class Deposit

Fig. 13.23 | Class Deposit represents a deposit ATM transaction. (Part 4 of 4.)

(C) 2010 Pearson Education, Inc. All
rights reserved.

13.5.12 Class ATMCaseStudy

» Class ATMCaseStudy (Fig. 13.24) is a simple class

that allows us to start, or “turn on,” the ATM and test
the implementation of our ATM system model.

(C) 2010 Pearson Education, Inc. All
rights reserved.

I // ATMCaseStudy.java

2 // Driver program for the ATM case study

3

4 public class ATMCaseStudy

5 {

6 // main method creates and runs the ATM
7 public static void main(String[] args)
8 {

9 ATM theATM = new ATM(Q);
10 theATM.run(Q);
11 } // end main

12 1} // end class ATMCaseStudy

Fig. 13.24 | ATMCaseStudy.java starts the ATM.

(C) 2010 Pearson Education, Inc. All
rights reserved.

End of class

» Readings
> Chapter 12 and 13

(C) 2010 Pearson Education, Inc. All
rights reserved.

