
(C) 2010 Pearson Education, Inc. All rights reserved.

Assoc. Prof. Marenglen Biba

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Section 13.2 shows how to convert class diagrams to

Java code.

 Section 13.3 tunes the design with inheritance and

polymorphism.

 Section 13.4 presents a full Java code implementation

of the ATM software.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Visibility

 Access modifiers determine the visibility or

accessibility of an object’s attributes and methods to

other objects.

◦ Before we can begin implementing our design, we must

consider which attributes and methods of our classes should be

public and which should be private.

◦ Attributes normally should be private and that methods

invoked by clients of a given class should be public.

◦ Methods that are called as ―utility methods‖ only by other

methods of the class normally should be private.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The UML employs visibility markers for modeling the

visibility of attributes and operations.

◦ Public visibility is indicated by placing a plus sign (+) before

an operation or an attribute, whereas a minus sign (–) indicates

private visibility.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Navigability

 The class diagram in Fig. 13.2 further refines the
relationships among classes in the ATM system by adding
navigability arrows to the association lines.

 Navigability arrows
◦ represented as arrows in the class diagram
◦ indicate in the direction which an association can be traversed.

 Programmers use navigability arrows to determine which
objects need references to other objects.

 Associations that have navigability arrows at both ends
indicate bidirectional navigability — navigation can
proceed in either direction across the association.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Implementing the ATM System from Its

UML Design

 We are now ready to begin implementing the ATM

system.

 Convert the classes in the diagrams of Fig. 13.1 and

Fig. 13.2 into Java code.

 The code will represent the ―skeleton‖ of the system.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Four guidelines for each class:

◦ 1.Use the name located in the first compartment to declare the class

as a public class with an empty no-argument constructor

(Fig. 13.3).

◦ 2.Use the attributes located in the second compartment to declare

the instance variables (Fig. 13.4).

◦ 3.Use the associations described in the class diagram to declare the

references to other objects (Fig. 13.5).

◦ 4.Use the operations located in the third compartment of Fig. 13.1

to declare the shells of the methods (Fig. 13.6). If we have not yet

specified a return type for an operation, we declare the method with

return type void. Refer to the class diagrams of Figs. 12.17–12.21

to declare any necessary parameters.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 To apply inheritance, look for commonality among

classes in the system.

 Create an inheritance hierarchy to model similar (yet

not identical) classes in a more elegant and efficient

manner.

 Modify class diagram to incorporate the new

inheritance relationships.

 Translate updated design into Java code.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Problem of representing a financial transaction in the system.

 Created three individual transaction classes —BalanceInquiry,
Withdrawal and Deposit—to represent the transactions that the ATM
system can perform.

 Figure 13.7 shows the attributes and operations of classes
BalanceInquiry, Withdrawal- and Deposit.

◦ Each has one attribute (accountNumber) and one operation
(execute) in common.

◦ Each class requires attribute accountNumber to specify the account
to which the transaction applies.

◦ Each class contains operation execute, which the ATM invokes to
perform the transaction.

 BalanceInquiry, Withdrawal- and Deposit represent types of
transactions.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Figure 13.7 reveals commonality among the transaction

classes.

 Use inheritance to factor out the common features.

 Place the common functionality in a superclass,

Transaction, that classes BalanceInquiry,

Withdrawal- and Deposit extend.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 The UML specifies a relationship called a generalization to
model inheritance.

 Figure 13.8 is the class diagram that models the
generalization of superclass Transaction and subclasses
BalanceInquiry, Withdrawal and Deposit.

 Arrows with triangular hollow arrowheads indicate that
classes BalanceInquiry, Withdrawal and
Deposit extend class Transaction.

 Class Transaction is said to be a generalization of
classes BalanceInquiry, Withdrawal and
Deposit.

 Class BalanceInquiry, Withdrawal and Deposit
are said to be specializations of class Transaction.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Polymorphism provides the ATM with an elegant way

to execute all transactions ―in the general.‖

 The polymorphic approach also makes the system

easily extensible.

 To create a new transaction type, just create an

additional Transaction subclass that overrides the

execute method with a version of the method

appropriate for executing the new transaction type.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Figure 13.11 shows the declaration of class

Withdrawal.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Figure 13.12 is the Java code for class Withdrawal

from Fig. 13.9 and Fig. 13.10.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Our ATM design does not specify all the program logic

and may not specify all the attributes and operations

required to complete the ATM implementation.

◦ This is a normal part of the object-oriented design process.

 As we implement the system, we complete the program

logic and add attributes and behaviors as necessary to

construct the ATM system specified by the

requirements document in Section 12.2.

 The Java application (ATMCaseStudy) starts the

ATM and puts the other classes in the system in use.

 Implementation in NetBeans of the Case
Study

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class ATM (Fig. 13.13) represents the ATM as a whole.

 Line 7 declares an attribute not found in our UML
design—an int attribute
currentAccountNumber that keeps track of the
account number of the current authenticated user.

 Lines 8–12 declare reference-type attributes
corresponding to the ATM class’s associations modeled
in Fig. 13.9.
◦ These attributes allow the ATM to access its parts (i.e., its
Screen, Keypad, CashDispenser and DepositSlot)
and interact with the bank’s account-information database (i.e.,
a BankDatabase object).

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class Screen (Fig. 13.14) represents the screen of the

ATM and encapsulates all aspects of displaying output

to the user.

 We designed class Screen to have one operation—

displayMessage.

◦ For greater flexibility in displaying messages to the Screen,

we now declare three Screen methods—

displayMessage, displayMessageLine and

displayDollar-Amount.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class Keypad (Fig. 13.15) represents the keypad of

the ATM and is responsible for receiving all user input.

 We assume that the user presses only the keys on the

computer keyboard that also appear on the keypad—the

keys numbered 0–9 and the Enter key.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class CashDispenser (Fig. 13.16) represents the cash

dispenser of the ATM.

 Constant INITIAL_COUNT indicates the initial count of

bills in the cash dispenser when the ATM starts (i.e., 500).

 The class trusts that a client (i.e., Withdrawal) calls

dispenseCash only after establishing that sufficient

cash is available by calling

isSufficientCashAvailable.

 Thus, dispenseCash simply simulates dispensing the

requested amount without checking whether sufficient cash

is available.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class DepositSlot (Fig. 13.17) represents the

ATM’s deposit slot.

 DepositSlot has no attributes and only one

method—isEnvelopeReceived (lines 8–11)—

which indicates whether a deposit envelope was

received.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class Account (Fig. 13.18) represents a bank

account.

 Each Account has four attributes (modeled in

Fig. 13.10)—accountNumber, pin,

availableBalance and totalBalance.

 Variable availableBalance represents the amount

of funds available for withdrawal.

 Variable totalBalance represents the amount of

funds available, plus the amount of deposited funds still

pending confirmation or clearance.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class BankDatabase (Fig. 13.19) models the bank’s

database with which the ATM interacts to access and

modify a user’s account information.

 We determine one reference-type attribute for class

BankDatabase based on its composition relationship

with class Account.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class Transaction (Fig. 13.20) is an abstract

superclass that represents the notion of an ATM

transaction.

 It contains the common features of subclasses

BalanceInquiry, Withdrawal and Deposit.

 The class has three public get methods—

getAccountNumber (lines 20–23), get-Screen

(lines 26–29) and getBankDatabase (lines 32–35).

◦ These are inherited by Transaction subclasses and used to

gain access to class Transaction’s private attributes.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class BalanceInquiry (Fig. 13.21) extends

Transaction and represents a balance-inquiry ATM

transaction.

 BalanceInquiry does not have any attributes of its

own, but it inherits Transaction attributes

accountNumber, screen and bankDatabase,

which are accessible through Transaction’s

public get methods.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class Withdrawal (Fig. 13.22) extends

Transaction and represents a withdrawal ATM

transaction.

 Figure 13.9 models associations between class

Withdrawal and classes Keypad and

CashDispenser, for which lines 7–8 implement

reference-type attributes keypad and

cashDispenser, respectively.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class Deposit (Fig. 13.23) extends Transaction

and represents a deposit transaction.

 Lines 7–8 create reference-type attributes keypad and

depositSlot that implement the associations

between class Deposit and classes Keypad and

DepositSlot modeled in Fig. 13.9.

 Line 9 declares a constant CANCELED that corresponds

to the value a user enters to cancel.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Class ATMCaseStudy (Fig. 13.24) is a simple class

that allows us to start, or ―turn on,‖ the ATM and test

the implementation of our ATM system model.

(C) 2010 Pearson Education, Inc. All
rights reserved.

(C) 2010 Pearson Education, Inc. All
rights reserved.

 Readings

◦ Chapter 12 and 13

