
Operating Systems

Chapter 1: Introduction

General Info

 Course : Operating Systems (3 credit hours)

 Instructor : Assoc. Prof. Dr. Marenglen Biba

 Office : Faculty building 2nd floor

 Office Hours : Wednesday 11-13 PM or by appointment

 Phone : 42273056 / ext. 112

 E-mail : marenglenbiba@unyt.edu.al

 Course page : http://www.marenglenbiba.net/opsys/

 Use of E-mail: Always put “Operating Systems” in the subject

of your e-mail.

mailto:marenglenbiba@unyt.edu.al
http://www.marenglenbiba.net/opsys/

Where, when and why?

 Course Location and Time

 Laboratory Room 4B, Tuesday 16-19.

 Catalog Description

 This module covers the core concepts of modern operating systems, and

provides contextual application of theory, using examples of currently used

operating system environments.

 Course Purpose

 This course will provide an introduction to operating system design and

implementation. The operating system provides an efficient interface

between user programs and the hardware of the computer on which they

run. The operating system is responsible for allowing resources (such as

processors, disks or networks) to be shared, providing common services

needed by many different programs (e.g., file service, the ability to start or

stop processes, and access to the printer), and protecting individual

programs from one another.

What does the OS course contain?

 The course will start with an historical perspective of the evolution

of operating systems since their birth. Then it will cover the major

components of most operating systems and the tradeoffs that can

be made between performance and functionality during the design

and implementation of an operating system. Particular emphasis

will be given to three major OS subsystems:

 process management (processes, threads, CPU scheduling,

synchronization, and deadlock),

 memory management (segmentation, paging, swapping)

 storage management (file systems, disk management, I/O

operations).

Why bother with OS?

 Understand the design and implementation issues that have led to
the current modern operating systems.

 Understand and apply key concepts for process management in
modern operating systems.

 Understand and apply essential concepts for memory management
in modern operating systems.

 Understand and apply important concepts of storage management
in modern operating systems.

 Understand and compare different operating systems in order to be
able to select them in different use scenarios.

 Understand and apply essential concepts for increasing the
performance of modern operating systems.

Requisites and Readings

 Course Prerequisites

 Data Structures.

 Required Readings

 Silberschatz, Abraham, Galvin, Peter and Gagne, Greg,

(2012). Operating System Concepts, Ninth edition, New York,

NY: John Wiley & Sons. (required).

 Andrew Tanenbaum, Modern Operating Systems, Prentice

Hall. Second Edition. (only specific sections of the book will

be required for special topics).

Contents

 Introduction to Operating Systems

 Operating System Structure

 Processes

 Threads

 CPU Scheduling

 Process Synchronization

 Deadlocks

 Main Memory

 Virtual Memory

 File System Interface

 File System Implementation

 Mass-Storage Systems

 I/O Systems

Grading

Project 40%

Midterm 30%

Final 30%

• Internet use is necessary since students should regularly check

 the course home page. Material can be downloaded from course website!

• Continued and regular use of e-mail is expected

• Students must keep copies of all assignments and projects sent by e-mail.

 Reasons

 Lack of concentration?

 Lack of continuity?

 Lack of determination?

 Lack of target?

 Lack of work?

 …

 Response

 Hard work will help!!!

Before we start: why failure happens

Recommendations

 Start studying now

 Do not be shy! Ask any questions that you might have. Every

questions makes you a good candidate.

 The professor is a container of knowledge and the goal is to get

most of him, thus come and talk.

 Respect the deadlines

 Respect the appointments

 Try to study from more than one source, Internet is great!

 If you have any problems come and talk with me in advance so that

we can find an appropriate solution

GOOD LUCK!

Chapter 1: Introduction

 What Operating Systems Do

 History of Operating Systems

 Computer-System Organization

 Computer-System Architecture

 Operating-System Structure

 Operating-System Operations

 Process Management

 Memory Management

 Storage Management

 Protection and Security

 Kernel Data Structures

 Computing Environments

 Open-Source Operating Systems

Objectives

 To provide a grand tour of the major operating

systems components

 To provide coverage of basic computer system

organization

What is an Operating System?

 A program that acts as an intermediary

between a user of a computer and the computer

hardware.

 Operating system goals:

 Execute user programs and make solving

user problems easier.

 Make the computer system convenient to

use.

 Use the computer hardware in an efficient

manner.

Computer System Structure

 Computer system can be divided into four components

 Hardware – provides basic computing resources

CPU, memory, I/O devices

 Operating system

Controls and coordinates use of hardware among

various applications and users

 Application programs – define the ways in which the

system resources are used to solve the computing

problems of the users

Word processors, compilers, web browsers, database

systems, video games

 Users

People, machines, other computers

Four Components of a Computer System

Computer components hierarchy

Wish you were here! 

Operating System Definition

 OS is a resource allocator

 Manages all resources

 Decides between conflicting requests for

efficient and fair resource use

 OS is a control program

 Controls execution of programs to prevent

errors and improper use of the computer

Operating System Definition (Cont.)

 No universally accepted definition

 “Everything a vendor ships when you order an operating

system” is good approximation

 But varies wildly

 “The one program running at all times on the computer” is

the kernel. Everything else is either a system program

(ships with the operating system) or an application program

What is an Operating System

 It is an extended machine

 Hides the messy details which must be

performed

 Presents user with a virtual machine, easier to

use

 It is a resource manager

 Each program gets time with the resource

 Each program gets space on the resource

History of Operating Systems

 First generation 1945 - 1955

 vacuum tubes, plug boards

 Second generation 1955 - 1965

 transistors, batch systems

 Third generation 1965 – 1980

 ICs and multiprogramming

 Fourth generation 1980 – present

 personal computers

First generation 1945 - 1955

 Not really Operating Systems

 Howard Aiken and John Von Neumann at Institute

for Advanced Study Princeton

 J. Eckert and William Mauchley at University of

Pennsylvania

 Vacuum Tubes, plug boards

 Computers were used for calculations and all

programming was done in MACHINE

LANGUAGE.

 Machine basic functions were controlled

through plugboards.

Second generation 1955 - 1965

 Introduction of transistors

 Programs were first written on paper in the FORTRAN

language then they were translated into punched cards.

 After the program had finished, a human operator would

take the result and take it into the output room.

 Batch system

 A collection of jobs given in input

 IBM 1401: read cards, copy tapes, print output

 Large 2nd generation computers with operating systems

 Programmed in Assembly and Fortran

 FMS: Fortran Monitor System

 IBSYS: IBM operating system for 7094.

History of Operating Systems (1)

Early batch system

 bring cards to 1401

 read cards to tape

 put tape on 7094 which does computing

 put tape on 1401 which prints output

History of Operating Systems (3)

 Structure of a typical FMS job – 2nd generation

History of OS: 3rd generation 1965 – 1980

 Multiprogramming system

 three jobs in memory – 3rd generation

3rd generation 1965 – 1980

 Integrated Circuits

 IBM: OS/360

 Weakness: all software including the OS would run on all

models

 Millions of lines of code written by hundreds of

programmers

 Spooling

 Copy jobs from cards onto disk

 Whenever a running job finishes, load a new one

 Time-sharing systems

 CPU allocation in turn to different jobs

 CTSS: Compatible Time Sharing System

 Developed at M.I.T on a specially modified 7094.

3rd generation 1965 – 1980

 Multics: MULTIplexed Information and Computing Service

Written in PL/I

 Introduced seminal idea into the computer literature

 DEC PDP-1

Only 4k of 18-bit words

120.000$

Culminating in PDP-11

 Unix

Ken Thompson, wrote from PDP-7 a one-user version of

MULTICS.

BSD: Berkeley Software Distribution

System V: AT&T.

Posix, Minix, Linux.

Fourth generation 1980 – present

 CP/M (Control Program for Microcomputers) 1974

 Disk-based operating system

 To run on 8-bit Intel 8080

 Digital Research rewrote CP/M and for 5 years it was the most

used system in the world

 1980s

 IBM released IBM Personal Computer

 DOS: Disk Operating System

 Bill Gates bought it from Seattle Computer Products

($50.000)

 Package DOS/Basic was offered by Gates to IBM

 IBM wanted some modifications on the system

Microsoft’s hired programmer Tim Paterson who wrote DOS

MS-DOS

Fourth generation 1980 – present

 Apple Macintosh

 GUI: Graphical User Interface

 Microsoft Windows: 90s

 Initially run over DOS

 Not really a different OS

 Windows 95

 Underlying DOS: only for booting and running old DOS
programs.

 Windows 98

 Both W95 and Win98 retain large portions of 16-bit assembly
language.

 Windows NT (New Technology)

 Full 32-bit system

 Would kill off DOS: Win NT 4.0

 Win NT 4.0 was renamed to Windows 2000.

Fourth generation 1980 – present

 UNIX

 Best for workstations, high-end computers, network

servers

 Popular on machines with high-performance RISC chips

 Linux is also going strong on Intel machines

 X Windows

 Graphical User Interface for UNIX developed at M.I.T.

 Distributed Operating Systems

 Network Operating Systems

The Operating System Zoo

 Mainframe operating systems

 Server operating systems

 Multiprocessor operating systems

 Personal computer operating systems

 Real-time operating systems

 Embedded operating systems

 Smart card operating systems

Computer Startup

 bootstrap program is loaded at power-up or reboot

 Typically stored in ROM or EPROM, generally known as

firmware

 Initializes all aspects of system

 Loads operating system kernel and starts execution

Computer System Organization

 Computer-system operation

 One or more CPUs, device controllers connect through

common bus providing access to shared memory

 Concurrent execution of CPUs and devices competing for

memory cycles

Bus

Bus

Computer-System Operation

 I/O devices and the CPU can execute concurrently.

 Each device controller is in charge of a particular device

type.

 Each device controller has a local buffer.

 CPU moves data from/to main memory to/from local buffers

 I/O is from the device to local buffer of controller.

 Device controller informs CPU that it has finished its

operation by causing an interrupt.

Common Functions of Interrupts

 Interrupt transfers control to the interrupt service routine

generally, through the interrupt vector, which contains the

addresses of all the service routines.

 Interrupt architecture must save the address of the

interrupted instruction.

 Incoming interrupts are disabled while another interrupt

is being processed to prevent a lost interrupt.

 Interrupts can be software or hardware generated.

 A trap is a software-generated interrupt caused either by an

error or a user request.

 Software may trigger an interrupt by executing a special

operation called a system call.

 An operating system is interrupt driven.

Interrupt Handling

 The operating system preserves the state of the CPU by storing

registers and the program counter.

 Determines which type of interrupt has occurred:

 Polling: a polled interrupt is a specific type of I/O interrupt that

notifies the part of the computer containing the I/O interface

that a device is ready to be read or otherwise handled but

does not indicate which device. The interrupt controller must

poll (send a signal out to) each device to determine which one

made the request.

 vectored interrupt system: The alternative to a polled

interrupt is a vectored interrupt, an interrupt signal that includes

the identity of the device sending the interrupt signal.

 Separate segments of code determine what action should be

taken for each type of interrupt

http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci214007,00.html
http://whatis.techtarget.com/definition/0,289893,sid9_gci212374,00.html

Two I/O Methods

1. After I/O starts, control returns to user program only
upon I/O completion: synchronous

2. After I/O starts, control returns to user program without
waiting for I/O completion: asynchronous

Two I/O Methods

Synchronous Asynchronous

Device-Status Table

Direct Memory Access Structure

 Used for high-speed I/O devices able to transmit

information at close to memory speeds.

 Device controller transfers blocks of data from

buffer storage directly to main memory without

CPU intervention.

 Only one interrupt is generated per block, rather

than the one interrupt per byte.

DMA

Storage Structure

 Main memory – only large storage media that the CPU can

access directly.

 Secondary storage – extension of main memory that

provides large nonvolatile storage capacity.

 Magnetic disks – rigid metal or glass platters covered with

magnetic recording material

 Disk surface is logically divided into tracks, which are

subdivided into sectors.

 The disk controller determines the logical interaction

between the device and the computer.

Storage Hierarchy

 Storage systems organized in hierarchy.

 Speed

 Cost

 Volatility

 Caching – copying information into faster storage

system; main memory can be viewed as a last

cache for secondary storage.

Storage-Device Hierarchy

Sub-levels within each level

Disk is slow

Caching

 Important principle, performed at many levels in a computer

 in hardware,

 operating system,

 software

 Information in use copied from slower to faster storage

temporarily

 Faster storage (cache) checked first to determine if

information is there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached

 Cache management important design problem

 Cache size and replacement policy

Performance of Various Levels of Storage

 Movement between levels of storage hierarchy can be explicit or

implicit

Operating System Structure

 Multiprogramming needed for efficiency

 Single user cannot keep CPU and I/O devices busy at all times

 Multiprogramming organizes jobs (code and data) so CPU always has
one to execute

 A subset of total jobs in system is kept in memory

 One job selected and run via job scheduling

 When it has to wait (for I/O for example), OS switches to another job

 Timesharing (multitasking) is logical extension in which CPU switches jobs
so frequently that users can interact with each job while it is running,
creating interactive computing

 Response time should be < 1 second

 Each user has at least one program executing in memory process

 If several jobs ready to run at the same time  CPU scheduling

 If processes don’t fit in memory, swapping moves them in and out to
run

 Virtual memory allows execution of processes not completely in
memory

Migration of Integer A from Disk to Register

 Multitasking environments must be careful to use most recent

value, no matter where it is stored in the storage hierarchy

 Multiprocessor environment must provide cache coherency in

hardware such that all CPUs have the most recent value in their

cache

 Distributed environment situation even more complex

 Several copies of a datum can exist

Memory Layout for Multiprogrammed System

Computer-System Architecture

 Most systems use a single general-purpose processor

 Most systems have special-purpose processors as well

 Multiprocessors systems growing in use and importance

 Also known as parallel systems, tightly-coupled systems

 Advantages include:

1. Increased throughput

2. Economy of scale

3. Increased reliability – graceful degradation or fault tolerance

 Two types:

1. Asymmetric Multiprocessing – each processor is assigned

a specific task.

2. Symmetric Multiprocessing – each processor performs all

tasks

Symmetric Multiprocessing Architecture

A Dual-Core Design

 Multi-chip and multicore

 Systems containing all chips

 Chassis containing multiple separate systems

Clustered Systems

 Like multiprocessor systems, but multiple systems working

together

 Usually sharing storage via a storage-area network

(SAN)

 Provides a high-availability service which survives

failures

Asymmetric clustering has one machine in hot-

standby mode (a machine that just monitors the

others)

Symmetric clustering has multiple nodes running

applications, monitoring each other

 Some clusters are for high-performance computing

(HPC)

Applications must be written to use parallelization

 Some have distributed lock manager (DLM) to avoid

conflicting operations

Clustered Systems

Operating-System Operations

 Interrupt driven by hardware

 Software error or request creates exception or trap

 Division by zero, request for operating system service

 Other process problems include infinite loop, processes modifying
each other or the operating system

 Dual-mode operation allows OS to protect itself and other system
components

 User mode and kernel mode

 Mode bit provided by hardware

 Provides ability to distinguish when system is running user
code or kernel code

 Some instructions designated as privileged, only
executable in kernel mode

 System call changes mode to kernel, return from call resets
it to user

Transition from User to Kernel Mode

 Timer to prevent infinite loop / process hogging resources

 Set interrupt after specific period

 Operating system decrements counter

 When counter zero generate an interrupt

 Set up before scheduling process to regain control or terminate

program that exceeds allotted time

Process Management

 A process is a program in execution. It is a unit of work within
the system. Program is a passive entity, process is an active
entity.

 Process needs resources to accomplish its task

 CPU, memory, I/O, files

 Initialization data

 Process termination requires reclaim of any reusable resources

 Single-threaded process has one program counter specifying
location of next instruction to execute

 Process executes instructions sequentially, one at a time,
until completion

 Multi-threaded process has one program counter per thread

 Typically system has many processes, some user, some
operating system running concurrently on one or more CPUs

 Concurrency by multiplexing the CPUs among the
processes / threads

Process Management Activities

The operating system is responsible for the following activities

in connection with process management:

 Creating and deleting both user and system processes

 Suspending and resuming processes

 Providing mechanisms for process synchronization

 Providing mechanisms for process communication

 Providing mechanisms for deadlock handling

Memory Management

 All data in memory before and after processing

 All instructions in memory in order to execute

 Memory management determines what is in memory

 Optimizing CPU utilization and computer response to

users

 Memory management activities

 Keeping track of which parts of memory are currently

being used and by whom

 Deciding which processes (or parts thereof) and data

to move into and out of memory

 Allocating and deallocating memory space as needed

Storage Management

 OS provides uniform, logical view of information storage

 Abstracts physical properties to logical storage unit - file

 Each medium is controlled by device (i.e., disk drive, tape drive)

 Varying properties include access speed, capacity, data-
transfer rate, access method (sequential or random)

 File-System management

 Files usually organized into directories

 Access control on most systems to determine who can access
what

 OS activities include

 Creating and deleting files and directories

 Primitives to manipulate files and dirs

Mapping files onto secondary storage

 Backup files onto stable (non-volatile) storage media

Mass-Storage Management

 Usually disks used to store data that does not fit in main memory or

data that must be kept for a “long” period of time.

 Proper management is of central importance

 Entire speed of computer operation hinges on disk subsystem

and its algorithms

 OS activities

 Free-space management

 Storage allocation

 Disk scheduling

 Some storage need not be fast

 Tertiary storage includes optical storage, magnetic tape

 Still must be managed

 Varies between WORM (write-once, read-many-times) and RW

(read-write)

I/O Subsystem

 One purpose of OS is to hide peculiarities of hardware

devices from the user

 I/O subsystem responsible for

 Memory management of I/O including

buffering (storing data temporarily while it is being

transferred)

caching (storing parts of data in faster storage for

performance)

spooling (the overlapping of output of one job with

input of other jobs)

 General device-driver interface

 Drivers for specific hardware devices

Protection and Security

 Protection – any mechanism for controlling access of processes or
users to resources defined by the OS

 Security – defense of the system against internal and external
attacks

 Huge range, including denial-of-service, worms, viruses,
identity theft, theft of service

 Systems generally first distinguish among users, to determine who
can do what

 User identities (user IDs, security IDs) include name and
associated number, one per user

 User ID then associated with all files, processes of that user to
determine access control

 Group identifier (group ID) allows set of users to be defined
and controls managed, then also associated with each
process, file

 Privilege escalation allows user to change to effective ID with
more rights

Kernel Data Structures

 Many similar to standard programming data structures

 Singly linked list

 Doubly linked list

 Circular linked list

Kernel Data Structures

 Binary search tree

Kernel Data Structures

 Hash function can create a hash map

 Bitmap – string of n binary digits representing the status of n items

 Linux data structures defined in

 include files <linux/list.h>, <linux/kfifo.h>,

<linux/rbtree.h>

Computing Environments - Traditional

 Stand-alone general purpose machines

 But blurred as most systems interconnect with

others (i.e., the Internet)

 Portals provide web access to internal systems

 Network computers (thin clients) are like Web

terminals

 Mobile computers interconnect via wireless

networks

 Networking becoming ubiquitous – even home

systems use firewalls to protect home computers

from Internet attacks

Computing Environments - Mobile

 Handheld smartphones, tablets, etc

 What is the functional difference between

them and a “traditional” laptop?

 Extra feature – more OS features (GPS,

gyroscope)

 Allows new types of apps like augmented

reality

 Use IEEE 802.11 wireless, or cellular data

networks for connectivity

 Leaders are Apple iOS and Google Android

Computing Environments – Distributed

 Distributed computing

 Collection of separate, possibly heterogeneous, systems

networked together

Network is a communications path, TCP/IP most

common

– Local Area Network (LAN)

– Wide Area Network (WAN)

– Metropolitan Area Network (MAN)

– Personal Area Network (PAN)

 Network Operating System provides features between

systems across network

Communication scheme allows systems to exchange

messages

 Illusion of a single system

Computing Environments – Client-Server

 Client-Server Computing

 Dumb terminals supplanted by smart PCs

 Many systems now servers, responding to requests generated
by clients

 Compute-server system provides an interface to client to
request services (i.e., database)

 File-server system provides interface for clients to store
and retrieve files

Computing Environments - Peer-to-Peer

 Another model of distributed system

 P2P does not distinguish clients and

servers

 Instead all nodes are considered

peers

 May each act as client, server or

both

 Node must join P2P network

Registers its service with central

lookup service on network, or

Broadcast request for service

and respond to requests for

service via discovery protocol

 Examples include Napster and

Gnutella, Voice over IP (VoIP) such

as Skype

Computing Environments - Virtualization

 Allows operating systems to run applications within other

OSes

 Vast and growing industry

 Emulation used when source CPU type different from

target type (i.e. PowerPC to Intel x86)

 Generally slowest method

 When computer language not compiled to native

code – Interpretation

 Virtualization – OS natively compiled for CPU, running

guest OSes also natively compiled

 Consider VMware running WinXP guests, each

running applications, all on native WinXP host OS

 VMM (virtual machine Manager) provides

virtualization services

Computing Environments - Virtualization

 Use cases involve laptops and desktops running multiple

OSes for exploration or compatibility

 Apple laptop running Mac OS X host, Windows as a

guest

 Developing apps for multiple OSes without having

multiple systems

 QA testing applications without having multiple

systems

 Executing and managing compute environments

within data centers

 VMM can run natively, in which case they are also the

host

 There is no general purpose host then (VMware ESX

and Citrix XenServer)

Computing Environments - Virtualization

Computing Environments – Cloud Computing

 Delivers computing, storage, even apps as a service across a network

 Logical extension of virtualization because it uses virtualization as the

base for it functionality.

 Amazon EC2 has thousands of servers, millions of virtual machines,

petabytes of storage available across the Internet, pay based on

usage

 Many types

 Public cloud – available via Internet to anyone willing to pay

 Private cloud – run by a company for the company’s own use

 Hybrid cloud – includes both public and private cloud components

 Software as a Service (SaaS) – one or more applications available

via the Internet (i.e., word processor)

 Platform as a Service (PaaS) – software stack ready for application

use via the Internet (i.e., a database server)

 Infrastructure as a Service (IaaS) – servers or storage available over

Internet (i.e., storage available for backup use)

Computing Environments – Cloud Computing

 Cloud computing environments composed of traditional

OSes, plus VMMs, plus cloud management tools

 Internet connectivity requires security like firewalls

 Load balancers spread traffic across multiple

applications

Computing Environments – Real-Time Embedded Systems

 Real-time embedded systems most prevalent form of

computers

 Vary considerable, special purpose, limited purpose

OS, real-time OS

 Use expanding

 Many other special computing environments as well

 Some have OSes, some perform tasks without an OS

 Real-time OS has well-defined fixed time constraints

 Processing must be done within constraint

 Correct operation only if constraints met

Open-Source Operating Systems

 Operating systems made available in source-code format

rather than just binary closed-source

 Counter to the copy protection and Digital Rights

Management (DRM) movement

 Started by Free Software Foundation (FSF), which has

“copyleft” GNU Public License (GPL)

 Examples include GNU/Linux and BSD UNIX (including

core of Mac OS X), and many more

 Can use VMM like VMware Player (Free on Windows),

Virtualbox (open source and free on many platforms -

http://www.virtualbox.com)

 Use to run guest operating systems for exploration

Readings

 Silberschatz: Chapter 1.

 Tanenbaum: Sections 1.1, 1.2, 1.3

 Get slides from website

 http://www.marenglenbiba.net/opsys/

http://www.marenglenbiba.net/compapp/

Keep in mind 

End of Chapter 1

