
Operating Systems

Chapter 1: Introduction

General Info

 Course : Operating Systems (3 credit hours)

 Instructor : Assoc. Prof. Dr. Marenglen Biba

 Office : Faculty building 2nd floor

 Office Hours : Wednesday 11-13 PM or by appointment

 Phone : 42273056 / ext. 112

 E-mail : marenglenbiba@unyt.edu.al

 Course page : http://www.marenglenbiba.net/opsys/

 Use of E-mail: Always put “Operating Systems” in the subject

of your e-mail.

mailto:marenglenbiba@unyt.edu.al
http://www.marenglenbiba.net/opsys/

Where, when and why?

 Course Location and Time

 Laboratory Room 4B, Tuesday 16-19.

 Catalog Description

 This module covers the core concepts of modern operating systems, and

provides contextual application of theory, using examples of currently used

operating system environments.

 Course Purpose

 This course will provide an introduction to operating system design and

implementation. The operating system provides an efficient interface

between user programs and the hardware of the computer on which they

run. The operating system is responsible for allowing resources (such as

processors, disks or networks) to be shared, providing common services

needed by many different programs (e.g., file service, the ability to start or

stop processes, and access to the printer), and protecting individual

programs from one another.

What does the OS course contain?

 The course will start with an historical perspective of the evolution

of operating systems since their birth. Then it will cover the major

components of most operating systems and the tradeoffs that can

be made between performance and functionality during the design

and implementation of an operating system. Particular emphasis

will be given to three major OS subsystems:

 process management (processes, threads, CPU scheduling,

synchronization, and deadlock),

 memory management (segmentation, paging, swapping)

 storage management (file systems, disk management, I/O

operations).

Why bother with OS?

 Understand the design and implementation issues that have led to
the current modern operating systems.

 Understand and apply key concepts for process management in
modern operating systems.

 Understand and apply essential concepts for memory management
in modern operating systems.

 Understand and apply important concepts of storage management
in modern operating systems.

 Understand and compare different operating systems in order to be
able to select them in different use scenarios.

 Understand and apply essential concepts for increasing the
performance of modern operating systems.

Requisites and Readings

 Course Prerequisites

 Data Structures.

 Required Readings

 Silberschatz, Abraham, Galvin, Peter and Gagne, Greg,

(2012). Operating System Concepts, Ninth edition, New York,

NY: John Wiley & Sons. (required).

 Andrew Tanenbaum, Modern Operating Systems, Prentice

Hall. Second Edition. (only specific sections of the book will

be required for special topics).

Contents

 Introduction to Operating Systems

 Operating System Structure

 Processes

 Threads

 CPU Scheduling

 Process Synchronization

 Deadlocks

 Main Memory

 Virtual Memory

 File System Interface

 File System Implementation

 Mass-Storage Systems

 I/O Systems

Grading

Project 40%

Midterm 30%

Final 30%

• Internet use is necessary since students should regularly check

 the course home page. Material can be downloaded from course website!

• Continued and regular use of e-mail is expected

• Students must keep copies of all assignments and projects sent by e-mail.

 Reasons

 Lack of concentration?

 Lack of continuity?

 Lack of determination?

 Lack of target?

 Lack of work?

 …

 Response

 Hard work will help!!!

Before we start: why failure happens

Recommendations

 Start studying now

 Do not be shy! Ask any questions that you might have. Every

questions makes you a good candidate.

 The professor is a container of knowledge and the goal is to get

most of him, thus come and talk.

 Respect the deadlines

 Respect the appointments

 Try to study from more than one source, Internet is great!

 If you have any problems come and talk with me in advance so that

we can find an appropriate solution

GOOD LUCK!

Chapter 1: Introduction

 What Operating Systems Do

 History of Operating Systems

 Computer-System Organization

 Computer-System Architecture

 Operating-System Structure

 Operating-System Operations

 Process Management

 Memory Management

 Storage Management

 Protection and Security

 Kernel Data Structures

 Computing Environments

 Open-Source Operating Systems

Objectives

 To provide a grand tour of the major operating

systems components

 To provide coverage of basic computer system

organization

What is an Operating System?

 A program that acts as an intermediary

between a user of a computer and the computer

hardware.

 Operating system goals:

 Execute user programs and make solving

user problems easier.

 Make the computer system convenient to

use.

 Use the computer hardware in an efficient

manner.

Computer System Structure

 Computer system can be divided into four components

 Hardware – provides basic computing resources

CPU, memory, I/O devices

 Operating system

Controls and coordinates use of hardware among

various applications and users

 Application programs – define the ways in which the

system resources are used to solve the computing

problems of the users

Word processors, compilers, web browsers, database

systems, video games

 Users

People, machines, other computers

Four Components of a Computer System

Computer components hierarchy

Wish you were here!

Operating System Definition

 OS is a resource allocator

 Manages all resources

 Decides between conflicting requests for

efficient and fair resource use

 OS is a control program

 Controls execution of programs to prevent

errors and improper use of the computer

Operating System Definition (Cont.)

 No universally accepted definition

 “Everything a vendor ships when you order an operating

system” is good approximation

 But varies wildly

 “The one program running at all times on the computer” is

the kernel. Everything else is either a system program

(ships with the operating system) or an application program

What is an Operating System

 It is an extended machine

 Hides the messy details which must be

performed

 Presents user with a virtual machine, easier to

use

 It is a resource manager

 Each program gets time with the resource

 Each program gets space on the resource

History of Operating Systems

 First generation 1945 - 1955

 vacuum tubes, plug boards

 Second generation 1955 - 1965

 transistors, batch systems

 Third generation 1965 – 1980

 ICs and multiprogramming

 Fourth generation 1980 – present

 personal computers

First generation 1945 - 1955

 Not really Operating Systems

 Howard Aiken and John Von Neumann at Institute

for Advanced Study Princeton

 J. Eckert and William Mauchley at University of

Pennsylvania

 Vacuum Tubes, plug boards

 Computers were used for calculations and all

programming was done in MACHINE

LANGUAGE.

 Machine basic functions were controlled

through plugboards.

Second generation 1955 - 1965

 Introduction of transistors

 Programs were first written on paper in the FORTRAN

language then they were translated into punched cards.

 After the program had finished, a human operator would

take the result and take it into the output room.

 Batch system

 A collection of jobs given in input

 IBM 1401: read cards, copy tapes, print output

 Large 2nd generation computers with operating systems

 Programmed in Assembly and Fortran

 FMS: Fortran Monitor System

 IBSYS: IBM operating system for 7094.

History of Operating Systems (1)

Early batch system

 bring cards to 1401

 read cards to tape

 put tape on 7094 which does computing

 put tape on 1401 which prints output

History of Operating Systems (3)

 Structure of a typical FMS job – 2nd generation

History of OS: 3rd generation 1965 – 1980

 Multiprogramming system

 three jobs in memory – 3rd generation

3rd generation 1965 – 1980

 Integrated Circuits

 IBM: OS/360

 Weakness: all software including the OS would run on all

models

 Millions of lines of code written by hundreds of

programmers

 Spooling

 Copy jobs from cards onto disk

 Whenever a running job finishes, load a new one

 Time-sharing systems

 CPU allocation in turn to different jobs

 CTSS: Compatible Time Sharing System

 Developed at M.I.T on a specially modified 7094.

3rd generation 1965 – 1980

 Multics: MULTIplexed Information and Computing Service

Written in PL/I

 Introduced seminal idea into the computer literature

 DEC PDP-1

Only 4k of 18-bit words

120.000$

Culminating in PDP-11

 Unix

Ken Thompson, wrote from PDP-7 a one-user version of

MULTICS.

BSD: Berkeley Software Distribution

System V: AT&T.

Posix, Minix, Linux.

Fourth generation 1980 – present

 CP/M (Control Program for Microcomputers) 1974

 Disk-based operating system

 To run on 8-bit Intel 8080

 Digital Research rewrote CP/M and for 5 years it was the most

used system in the world

 1980s

 IBM released IBM Personal Computer

 DOS: Disk Operating System

 Bill Gates bought it from Seattle Computer Products

($50.000)

 Package DOS/Basic was offered by Gates to IBM

 IBM wanted some modifications on the system

Microsoft’s hired programmer Tim Paterson who wrote DOS

MS-DOS

Fourth generation 1980 – present

 Apple Macintosh

 GUI: Graphical User Interface

 Microsoft Windows: 90s

 Initially run over DOS

 Not really a different OS

 Windows 95

 Underlying DOS: only for booting and running old DOS
programs.

 Windows 98

 Both W95 and Win98 retain large portions of 16-bit assembly
language.

 Windows NT (New Technology)

 Full 32-bit system

 Would kill off DOS: Win NT 4.0

 Win NT 4.0 was renamed to Windows 2000.

Fourth generation 1980 – present

 UNIX

 Best for workstations, high-end computers, network

servers

 Popular on machines with high-performance RISC chips

 Linux is also going strong on Intel machines

 X Windows

 Graphical User Interface for UNIX developed at M.I.T.

 Distributed Operating Systems

 Network Operating Systems

The Operating System Zoo

 Mainframe operating systems

 Server operating systems

 Multiprocessor operating systems

 Personal computer operating systems

 Real-time operating systems

 Embedded operating systems

 Smart card operating systems

Computer Startup

 bootstrap program is loaded at power-up or reboot

 Typically stored in ROM or EPROM, generally known as

firmware

 Initializes all aspects of system

 Loads operating system kernel and starts execution

Computer System Organization

 Computer-system operation

 One or more CPUs, device controllers connect through

common bus providing access to shared memory

 Concurrent execution of CPUs and devices competing for

memory cycles

Bus

Bus

Computer-System Operation

 I/O devices and the CPU can execute concurrently.

 Each device controller is in charge of a particular device

type.

 Each device controller has a local buffer.

 CPU moves data from/to main memory to/from local buffers

 I/O is from the device to local buffer of controller.

 Device controller informs CPU that it has finished its

operation by causing an interrupt.

Common Functions of Interrupts

 Interrupt transfers control to the interrupt service routine

generally, through the interrupt vector, which contains the

addresses of all the service routines.

 Interrupt architecture must save the address of the

interrupted instruction.

 Incoming interrupts are disabled while another interrupt

is being processed to prevent a lost interrupt.

 Interrupts can be software or hardware generated.

 A trap is a software-generated interrupt caused either by an

error or a user request.

 Software may trigger an interrupt by executing a special

operation called a system call.

 An operating system is interrupt driven.

Interrupt Handling

 The operating system preserves the state of the CPU by storing

registers and the program counter.

 Determines which type of interrupt has occurred:

 Polling: a polled interrupt is a specific type of I/O interrupt that

notifies the part of the computer containing the I/O interface

that a device is ready to be read or otherwise handled but

does not indicate which device. The interrupt controller must

poll (send a signal out to) each device to determine which one

made the request.

 vectored interrupt system: The alternative to a polled

interrupt is a vectored interrupt, an interrupt signal that includes

the identity of the device sending the interrupt signal.

 Separate segments of code determine what action should be

taken for each type of interrupt

http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci214007,00.html
http://whatis.techtarget.com/definition/0,289893,sid9_gci212374,00.html

Two I/O Methods

1. After I/O starts, control returns to user program only
upon I/O completion: synchronous

2. After I/O starts, control returns to user program without
waiting for I/O completion: asynchronous

Two I/O Methods

Synchronous Asynchronous

Device-Status Table

Direct Memory Access Structure

 Used for high-speed I/O devices able to transmit

information at close to memory speeds.

 Device controller transfers blocks of data from

buffer storage directly to main memory without

CPU intervention.

 Only one interrupt is generated per block, rather

than the one interrupt per byte.

DMA

Storage Structure

 Main memory – only large storage media that the CPU can

access directly.

 Secondary storage – extension of main memory that

provides large nonvolatile storage capacity.

 Magnetic disks – rigid metal or glass platters covered with

magnetic recording material

 Disk surface is logically divided into tracks, which are

subdivided into sectors.

 The disk controller determines the logical interaction

between the device and the computer.

Storage Hierarchy

 Storage systems organized in hierarchy.

 Speed

 Cost

 Volatility

 Caching – copying information into faster storage

system; main memory can be viewed as a last

cache for secondary storage.

Storage-Device Hierarchy

Sub-levels within each level

Disk is slow

Caching

 Important principle, performed at many levels in a computer

 in hardware,

 operating system,

 software

 Information in use copied from slower to faster storage

temporarily

 Faster storage (cache) checked first to determine if

information is there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached

 Cache management important design problem

 Cache size and replacement policy

Performance of Various Levels of Storage

 Movement between levels of storage hierarchy can be explicit or

implicit

Operating System Structure

 Multiprogramming needed for efficiency

 Single user cannot keep CPU and I/O devices busy at all times

 Multiprogramming organizes jobs (code and data) so CPU always has
one to execute

 A subset of total jobs in system is kept in memory

 One job selected and run via job scheduling

 When it has to wait (for I/O for example), OS switches to another job

 Timesharing (multitasking) is logical extension in which CPU switches jobs
so frequently that users can interact with each job while it is running,
creating interactive computing

 Response time should be < 1 second

 Each user has at least one program executing in memory process

 If several jobs ready to run at the same time CPU scheduling

 If processes don’t fit in memory, swapping moves them in and out to
run

 Virtual memory allows execution of processes not completely in
memory

Migration of Integer A from Disk to Register

 Multitasking environments must be careful to use most recent

value, no matter where it is stored in the storage hierarchy

 Multiprocessor environment must provide cache coherency in

hardware such that all CPUs have the most recent value in their

cache

 Distributed environment situation even more complex

 Several copies of a datum can exist

Memory Layout for Multiprogrammed System

Computer-System Architecture

 Most systems use a single general-purpose processor

 Most systems have special-purpose processors as well

 Multiprocessors systems growing in use and importance

 Also known as parallel systems, tightly-coupled systems

 Advantages include:

1. Increased throughput

2. Economy of scale

3. Increased reliability – graceful degradation or fault tolerance

 Two types:

1. Asymmetric Multiprocessing – each processor is assigned

a specific task.

2. Symmetric Multiprocessing – each processor performs all

tasks

Symmetric Multiprocessing Architecture

A Dual-Core Design

 Multi-chip and multicore

 Systems containing all chips

 Chassis containing multiple separate systems

Clustered Systems

 Like multiprocessor systems, but multiple systems working

together

 Usually sharing storage via a storage-area network

(SAN)

 Provides a high-availability service which survives

failures

Asymmetric clustering has one machine in hot-

standby mode (a machine that just monitors the

others)

Symmetric clustering has multiple nodes running

applications, monitoring each other

 Some clusters are for high-performance computing

(HPC)

Applications must be written to use parallelization

 Some have distributed lock manager (DLM) to avoid

conflicting operations

Clustered Systems

Operating-System Operations

 Interrupt driven by hardware

 Software error or request creates exception or trap

 Division by zero, request for operating system service

 Other process problems include infinite loop, processes modifying
each other or the operating system

 Dual-mode operation allows OS to protect itself and other system
components

 User mode and kernel mode

 Mode bit provided by hardware

 Provides ability to distinguish when system is running user
code or kernel code

 Some instructions designated as privileged, only
executable in kernel mode

 System call changes mode to kernel, return from call resets
it to user

Transition from User to Kernel Mode

 Timer to prevent infinite loop / process hogging resources

 Set interrupt after specific period

 Operating system decrements counter

 When counter zero generate an interrupt

 Set up before scheduling process to regain control or terminate

program that exceeds allotted time

Process Management

 A process is a program in execution. It is a unit of work within
the system. Program is a passive entity, process is an active
entity.

 Process needs resources to accomplish its task

 CPU, memory, I/O, files

 Initialization data

 Process termination requires reclaim of any reusable resources

 Single-threaded process has one program counter specifying
location of next instruction to execute

 Process executes instructions sequentially, one at a time,
until completion

 Multi-threaded process has one program counter per thread

 Typically system has many processes, some user, some
operating system running concurrently on one or more CPUs

 Concurrency by multiplexing the CPUs among the
processes / threads

Process Management Activities

The operating system is responsible for the following activities

in connection with process management:

 Creating and deleting both user and system processes

 Suspending and resuming processes

 Providing mechanisms for process synchronization

 Providing mechanisms for process communication

 Providing mechanisms for deadlock handling

Memory Management

 All data in memory before and after processing

 All instructions in memory in order to execute

 Memory management determines what is in memory

 Optimizing CPU utilization and computer response to

users

 Memory management activities

 Keeping track of which parts of memory are currently

being used and by whom

 Deciding which processes (or parts thereof) and data

to move into and out of memory

 Allocating and deallocating memory space as needed

Storage Management

 OS provides uniform, logical view of information storage

 Abstracts physical properties to logical storage unit - file

 Each medium is controlled by device (i.e., disk drive, tape drive)

 Varying properties include access speed, capacity, data-
transfer rate, access method (sequential or random)

 File-System management

 Files usually organized into directories

 Access control on most systems to determine who can access
what

 OS activities include

 Creating and deleting files and directories

 Primitives to manipulate files and dirs

Mapping files onto secondary storage

 Backup files onto stable (non-volatile) storage media

Mass-Storage Management

 Usually disks used to store data that does not fit in main memory or

data that must be kept for a “long” period of time.

 Proper management is of central importance

 Entire speed of computer operation hinges on disk subsystem

and its algorithms

 OS activities

 Free-space management

 Storage allocation

 Disk scheduling

 Some storage need not be fast

 Tertiary storage includes optical storage, magnetic tape

 Still must be managed

 Varies between WORM (write-once, read-many-times) and RW

(read-write)

I/O Subsystem

 One purpose of OS is to hide peculiarities of hardware

devices from the user

 I/O subsystem responsible for

 Memory management of I/O including

buffering (storing data temporarily while it is being

transferred)

caching (storing parts of data in faster storage for

performance)

spooling (the overlapping of output of one job with

input of other jobs)

 General device-driver interface

 Drivers for specific hardware devices

Protection and Security

 Protection – any mechanism for controlling access of processes or
users to resources defined by the OS

 Security – defense of the system against internal and external
attacks

 Huge range, including denial-of-service, worms, viruses,
identity theft, theft of service

 Systems generally first distinguish among users, to determine who
can do what

 User identities (user IDs, security IDs) include name and
associated number, one per user

 User ID then associated with all files, processes of that user to
determine access control

 Group identifier (group ID) allows set of users to be defined
and controls managed, then also associated with each
process, file

 Privilege escalation allows user to change to effective ID with
more rights

Kernel Data Structures

 Many similar to standard programming data structures

 Singly linked list

 Doubly linked list

 Circular linked list

Kernel Data Structures

 Binary search tree

Kernel Data Structures

 Hash function can create a hash map

 Bitmap – string of n binary digits representing the status of n items

 Linux data structures defined in

 include files <linux/list.h>, <linux/kfifo.h>,

<linux/rbtree.h>

Computing Environments - Traditional

 Stand-alone general purpose machines

 But blurred as most systems interconnect with

others (i.e., the Internet)

 Portals provide web access to internal systems

 Network computers (thin clients) are like Web

terminals

 Mobile computers interconnect via wireless

networks

 Networking becoming ubiquitous – even home

systems use firewalls to protect home computers

from Internet attacks

Computing Environments - Mobile

 Handheld smartphones, tablets, etc

 What is the functional difference between

them and a “traditional” laptop?

 Extra feature – more OS features (GPS,

gyroscope)

 Allows new types of apps like augmented

reality

 Use IEEE 802.11 wireless, or cellular data

networks for connectivity

 Leaders are Apple iOS and Google Android

Computing Environments – Distributed

 Distributed computing

 Collection of separate, possibly heterogeneous, systems

networked together

Network is a communications path, TCP/IP most

common

– Local Area Network (LAN)

– Wide Area Network (WAN)

– Metropolitan Area Network (MAN)

– Personal Area Network (PAN)

 Network Operating System provides features between

systems across network

Communication scheme allows systems to exchange

messages

 Illusion of a single system

Computing Environments – Client-Server

 Client-Server Computing

 Dumb terminals supplanted by smart PCs

 Many systems now servers, responding to requests generated
by clients

 Compute-server system provides an interface to client to
request services (i.e., database)

 File-server system provides interface for clients to store
and retrieve files

Computing Environments - Peer-to-Peer

 Another model of distributed system

 P2P does not distinguish clients and

servers

 Instead all nodes are considered

peers

 May each act as client, server or

both

 Node must join P2P network

Registers its service with central

lookup service on network, or

Broadcast request for service

and respond to requests for

service via discovery protocol

 Examples include Napster and

Gnutella, Voice over IP (VoIP) such

as Skype

Computing Environments - Virtualization

 Allows operating systems to run applications within other

OSes

 Vast and growing industry

 Emulation used when source CPU type different from

target type (i.e. PowerPC to Intel x86)

 Generally slowest method

 When computer language not compiled to native

code – Interpretation

 Virtualization – OS natively compiled for CPU, running

guest OSes also natively compiled

 Consider VMware running WinXP guests, each

running applications, all on native WinXP host OS

 VMM (virtual machine Manager) provides

virtualization services

Computing Environments - Virtualization

 Use cases involve laptops and desktops running multiple

OSes for exploration or compatibility

 Apple laptop running Mac OS X host, Windows as a

guest

 Developing apps for multiple OSes without having

multiple systems

 QA testing applications without having multiple

systems

 Executing and managing compute environments

within data centers

 VMM can run natively, in which case they are also the

host

 There is no general purpose host then (VMware ESX

and Citrix XenServer)

Computing Environments - Virtualization

Computing Environments – Cloud Computing

 Delivers computing, storage, even apps as a service across a network

 Logical extension of virtualization because it uses virtualization as the

base for it functionality.

 Amazon EC2 has thousands of servers, millions of virtual machines,

petabytes of storage available across the Internet, pay based on

usage

 Many types

 Public cloud – available via Internet to anyone willing to pay

 Private cloud – run by a company for the company’s own use

 Hybrid cloud – includes both public and private cloud components

 Software as a Service (SaaS) – one or more applications available

via the Internet (i.e., word processor)

 Platform as a Service (PaaS) – software stack ready for application

use via the Internet (i.e., a database server)

 Infrastructure as a Service (IaaS) – servers or storage available over

Internet (i.e., storage available for backup use)

Computing Environments – Cloud Computing

 Cloud computing environments composed of traditional

OSes, plus VMMs, plus cloud management tools

 Internet connectivity requires security like firewalls

 Load balancers spread traffic across multiple

applications

Computing Environments – Real-Time Embedded Systems

 Real-time embedded systems most prevalent form of

computers

 Vary considerable, special purpose, limited purpose

OS, real-time OS

 Use expanding

 Many other special computing environments as well

 Some have OSes, some perform tasks without an OS

 Real-time OS has well-defined fixed time constraints

 Processing must be done within constraint

 Correct operation only if constraints met

Open-Source Operating Systems

 Operating systems made available in source-code format

rather than just binary closed-source

 Counter to the copy protection and Digital Rights

Management (DRM) movement

 Started by Free Software Foundation (FSF), which has

“copyleft” GNU Public License (GPL)

 Examples include GNU/Linux and BSD UNIX (including

core of Mac OS X), and many more

 Can use VMM like VMware Player (Free on Windows),

Virtualbox (open source and free on many platforms -

http://www.virtualbox.com)

 Use to run guest operating systems for exploration

Readings

 Silberschatz: Chapter 1.

 Tanenbaum: Sections 1.1, 1.2, 1.3

 Get slides from website

 http://www.marenglenbiba.net/opsys/

http://www.marenglenbiba.net/compapp/

Keep in mind

End of Chapter 1

