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Objectives 

 To describe the details of implementing local file systems and 

directory structures 

 To describe the implementation of remote file systems 

 To discuss block allocation and free-block algorithms and trade-

offs 

 



File-System Structure 

 File structure 

 Logical storage unit 

 Collection of related information 

 File system resides on secondary storage (disks) 

 Provided user interface to storage, mapping logical to physical 

 Provides efficient and convenient access to disk by allowing 

data to be stored, located retrieved easily 

 Disk provides in-place rewrite and random access 

 I/O transfers performed in blocks of sectors (usually 512 

bytes) 

 File control block – storage structure consisting of information 

about a file 

 Device driver controls the physical device  

 File system organized into layers 

 



Layered File System 



File System Layers 

 Device drivers manage I/O devices at the I/O control layer 

 Given commands like “read drive1, cylinder 72, track 2, sector 

10, into memory location 1060” outputs low-level hardware 

specific commands to hardware controller 

 Basic file system given command like “retrieve block 123” 

translates to device driver 

 Also manages memory buffers and caches (allocation, freeing, 

replacement)  

 Buffers hold data in transit 

 Caches hold frequently used data 

 File organization module understands files, logical address, and 

physical blocks 

 Translates logical block # to physical block # 

 Manages free space, disk allocation 

 

 

 

 



File System Layers (Cont.) 

 Logical file system manages metadata information 

 Translates file name into file number, file handle, location by 

maintaining file control blocks (inodes in UNIX) 

 Directory management 

 Protection 

 Layering useful for reducing complexity and redundancy, but 

adds overhead and can decrease performance. 

 Translates file name into file number, file handle, location by 

maintaining file control blocks (inodes in UNIX) 

 Logical layers can be implemented by any coding method 

according to OS designer 



File System Layers (Cont.) 

 Many file systems, sometimes many within an operating 

system 

 Each with its own format (CD-ROM is ISO 9660; Unix has 

UFS, FFS;  Windows has FAT, FAT32, NTFS as well as 

floppy, CD, DVD Blu-ray, Linux has more than 40 types, 

with extended file system ext2 and ext3 leading; plus 

distributed file systems, etc.) 

 New ones still arriving – ZFS, GoogleFS, Oracle ASM, 

FUSE 

 



File-System Implementation 

 We have system calls at the API level, but how do we implement 

their functions? 

 On-disk and in-memory structures 

 Boot control block contains info needed by system to boot OS 

from that volume 

 Needed if volume contains OS, usually first block of volume 

 Volume control block (superblock, master file table) contains 

volume details 

 Total # of blocks, # of free blocks, block size, free block 

pointers or array 

 Directory structure organizes the files 

 Names and inode numbers, master file table 



File-System Implementation (Cont.) 

 Per-file File Control Block (FCB) contains many details about 

the file 

 inode number, permissions, size, dates 

 NFTS stores into in master file table  using relational DB 

structures 



In-Memory File System Structures 

 Mount table storing file system mounts, mount points, file 

system types 

 The following figure illustrates the necessary file system 

structures provided by the operating systems 

 Figure 12-3(a) refers to opening a file 

 Figure 12-3(b) refers to reading a file 

 Plus buffers hold data blocks from secondary storage 

 Open returns a file handle for subsequent use 

 Data from read eventually copied to specified user process 

memory address 



In-Memory File System Structures 



Partitions and Mounting 

 Partition can be a volume containing a file system (“cooked”) or 

raw – just a sequence of blocks with no file system 

 Boot block can point to boot volume or boot loader set of blocks that 

contain enough code to know how to load the kernel from the file 

system 

 Or a boot management program for multi-os booting 

 Root partition contains the OS, other partitions can hold other 

Oses, other file systems, or be raw 

 Mounted at boot time 

 Other partitions can mount automatically or manually 

 At mount time, file system consistency checked 

 Is all metadata correct? 

 If not, fix it, try again 

 If yes, add to mount table, allow access 



Virtual File Systems 

 Virtual File Systems (VFS) on Unix provide an object-oriented 

way of implementing file systems 

 VFS allows the same system call interface (the API) to be used 

for different types of file systems 

 Separates file-system generic operations from 

implementation details 

 Implementation can be one of many file systems types, or 

network file system 

 Implements vnodes which hold inodes or network file 

details 

 Then dispatches operation to appropriate file system 

implementation routines 



Virtual File Systems (Cont.) 
 

 The API is to the VFS interface, rather than any specific type of 

file system 



Virtual File System Implementation 

 For example, Linux has four object types: 

 inode, file, superblock, dentry 

 VFS defines set of operations on the objects that must be 

implemented 

 Every object has a pointer to a function table 

 Function table has addresses of routines to implement that 

function on that object 

 For example: 

 • int open(. . .)—Open a file 

 • int close(. . .)—Close an already-open file 

 • ssize t read(. . .)—Read from a file 

 • ssize t write(. . .)—Write to a file 

 • int mmap(. . .)—Memory-map a file 

 

 



Directory Implementation 

 Linear list of file names with pointer to the data blocks 

 Simple to program 

 Time-consuming to execute 

 Linear search time 

 Could keep ordered alphabetically via linked list or use 

B+ tree 

 Hash Table – linear list with hash data structure 

 Decreases directory search time 

 Collisions – situations where two file names hash to the 

same location 

 Only good if entries are fixed size, or use chained-overflow 

method 



Allocation Methods - Contiguous 

 An allocation method refers to how disk blocks are allocated for 

files: 

 Contiguous allocation – each file occupies set of contiguous 

blocks 

 Best performance in most cases 

 Simple – only starting location (block #) and length (number 

of blocks) are required 

 Problems include finding space for file, knowing file size, 

external fragmentation, need for compaction off-line 

(downtime) or on-line 

 



Contiguous Allocation 

 Mapping from logical to physical 

LA/512 

Q 

R 

Block to be accessed = Q + 

starting address 

Displacement into block = R 



Extent-Based Systems 

 Many newer file systems (i.e., Veritas File System) use a 

modified contiguous allocation scheme 

 

 Extent-based file systems allocate disk blocks in extents 

 

 An extent is a contiguous block of disks 

 Extents are allocated for file allocation 

 A file consists of one or more extents 



Allocation Methods - Linked 

 Linked allocation – each file a linked list of blocks 

 File ends at nil pointer 

 No external fragmentation 

 Each block contains pointer to next block 

 No compaction, external fragmentation 

 Free space management system called when new block 

needed 

 Improve efficiency by clustering blocks into groups but 

increases internal fragmentation 

 Reliability can be a problem 

 Locating a block can take many I/Os and disk seeks 

 

 



Allocation Methods – Linked (Cont.) 

 FAT (File Allocation Table) variation 

 Beginning of volume has table, indexed by block number 

 Much like a linked list, but faster on disk and cacheable  

 New block allocation simple 

 

 



Linked Allocation 

 Each file is a linked list of disk blocks: blocks may be scattered 

anywhere on the disk 

pointer block      = 

 

 Mapping 

Block to be accessed is the Qth block in the linked chain of blocks 

representing the file. 

 

Displacement into block = R + 1 

LA/511 

Q 

R 



Linked Allocation 



File-Allocation Table 



Allocation Methods - Indexed 

 Indexed allocation 

 Each file has its own index block(s) of pointers to its data blocks 

 

 Logical view 

 

index table



Example of Indexed Allocation 



Indexed Allocation (Cont.) 

 Need index table 
 

 Random access 
 

 Dynamic access without external fragmentation, but have overhead 
of index block 
 

 Mapping from logical to physical in a file of maximum size of 256K 
bytes and block size of 512 bytes.  We need only 1 block for index 
table 

LA/512 

Q 

R 

Q = displacement into index table 

R = displacement into block 



Indexed Allocation – Mapping (Cont.) 

 Mapping from logical to physical in a file of unbounded length (block 
size of 512 words) 

 

 Linked scheme – Link blocks of index table (no limit on size) 

LA / (512 x 511) 

Q1 

R1 

Q1 = block of index table 

R1 is used as follows: 

R1 / 512 

Q2 

R2 

Q2 = displacement into block of index table 

R2 displacement into block of file: 



Indexed Allocation – Mapping (Cont.) 

 Two-level index (4K blocks could store 1,024 four-byte pointers in outer 

index -> 1,048,567 data blocks and file size of up to 4GB) 

LA / (512 x 512) 

Q1 

R1 

Q1 = displacement into outer-index 

R1 is used as follows: 

R1 / 512 

Q2 

R2 

Q2 = displacement into block of index table 

R2 displacement into block of file: 



Indexed Allocation – Mapping (Cont.) 



Combined Scheme:  UNIX UFS  
 

More index blocks than can be addressed with 32-bit file pointer 

4K bytes per block, 32-bit addresses 



Performance 

 Best method depends on file access type 

 Contiguous great for sequential and random 

 Linked good for sequential, not random 

 Declare access type at creation -> select either contiguous or 

linked 

 Indexed more complex 

 Single block access could require 2 index block reads then 

data block read 

 Clustering can help improve throughput, reduce CPU 

overhead 

 



Performance (Cont.) 

 Adding instructions to the execution path to save one disk I/O is 

reasonable 

 Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000 

MIPS 

 http://en.wikipedia.org/wiki/Instructions_per_second 

 Typical disk drive at 250 I/Os per second 

 159,000 MIPS / 250 = 630 million instructions during one 

disk I/O  

 Fast SSD drives provide 60,000 IOPS 

 159,000 MIPS / 60,000 = 2.65 millions instructions during 

one disk I/O 

 



Free-Space Management 

 File system maintains free-space list to track available blocks/clusters 

 (Using term “block” for simplicity) 

 Bit vector or bit map  (n blocks) 

… 

0 1 2 n-1 

bit[i] = 





 
1  block[i] free 

0   block[i] occupied 

Block number calculation 

(number of bits per word) * 

(number of 0-value words) + 

offset of first 1 bit 

CPUs have instructions to return offset within word of first “1” bit 



Free-Space Management (Cont.) 

 Bit map requires extra space 

 Example: 

  block size = 4KB =  212 bytes 

  disk size = 240 bytes (1 terabyte) 

  n = 240/212 = 228 bits (or 32MB) 

  if clusters of 4 blocks -> 8MB of memory 
 

 Easy to get contiguous files 
  



Linked Free Space List on Disk 

  

 Linked list (free list) 

 Cannot get contiguous 
space easily 

 No waste of space 

 No need to traverse the 
entire list (if # free blocks 
recorded) 
 



Free-Space Management (Cont.) 

 Grouping  

 Modify linked list to store address of next n-1 free blocks in first 
free block, plus a pointer to next block that contains free-block-
pointers (like this one) 

 

 Counting 

 Because space is frequently contiguously used and freed,  with 
contiguous-allocation allocation, extents, or clustering 

 Keep address of first free block and count of following free 
blocks 

 Free space list then has entries containing addresses and 
counts 

 



Free-Space Management (Cont.) 

 Space Maps 

 Used in ZFS 

 Consider meta-data I/O on very large file systems 

 Full data structures like bit maps couldn’t fit in memory -> 
thousands of I/Os 

 Divides device space into metaslab units and manages metaslabs 

 Given volume can contain hundreds of metaslabs 

 Each metaslab has associated space map 

 Uses counting algorithm 

 But records to log file rather than file system 

 Log of all block activity, in time order, in counting format 

 Metaslab activity -> load space map into memory in balanced-tree 
structure, indexed  by offset 

 Replay log into that structure 

 Combine contiguous free blocks into single entry 

 

 

 

 



Efficiency and Performance 

 Efficiency dependent on: 

 Disk allocation and directory algorithms 

 Types of data kept in file’s directory entry 

 Pre-allocation or as-needed allocation of metadata 

structures 

 Fixed-size or varying-size data structures 

 



Efficiency and Performance (Cont.) 
 

 Performance 

 Keeping data and metadata close together 

 Buffer cache – separate section of main memory for frequently 

used blocks 

 Synchronous writes sometimes requested by apps or needed 

by OS 

 No buffering / caching – writes must hit disk before 

acknowledgement 

 Asynchronous writes more common, buffer-able, faster 

 Free-behind and read-ahead – techniques to optimize 

sequential access 

 Reads frequently slower than writes 

 

 



Page Cache 

 A page cache caches pages rather than disk blocks using virtual 

memory techniques and addresses 

 

 Memory-mapped I/O uses a page cache 

 

 Routine I/O through the file system uses the buffer (disk) cache 

 

 This leads to the following figure 

 

 



I/O Without a Unified Buffer Cache 



Unified Buffer Cache 

 A unified buffer cache uses the same page cache to cache 

both memory-mapped pages and ordinary file system I/O to 

avoid double caching 

 

 But which caches get priority, and what replacement 

algorithms to use? 

 



I/O Using a Unified Buffer Cache 



Recovery 

 Consistency checking – compares data in directory structure 

with data blocks on disk, and tries to fix inconsistencies 

 Can be slow and sometimes fails 

 

 Use system programs to back up data from disk to another 

storage device (magnetic tape, other magnetic disk, optical) 

 

 Recover lost file or disk by restoring data from backup 



Log Structured File Systems 

 Log structured (or journaling) file systems record each metadata 

update to the file system as a transaction 

 All transactions are written to a log 

  A transaction is considered committed once it is written to the 

log (sequentially) 

 Sometimes to a separate device or section of disk 

 However, the file system may not yet be updated 

 The transactions in the log are asynchronously written to the file 

system structures 

  When the file system structures are modified, the transaction is 

removed from the log 

 If the file system crashes, all remaining transactions in the log must 

still be performed 

 Faster recovery from crash, removes chance of inconsistency of 

metadata 

 

 



The Sun Network File System (NFS) 

 An implementation and a specification of a software system 

for accessing remote files across LANs (or WANs) 

 

 The implementation is part of the Solaris and SunOS 

operating systems running on Sun workstations using an 

unreliable datagram protocol (UDP/IP protocol and Ethernet 



NFS (Cont.) 

 Interconnected workstations viewed as a set of independent machines 
with independent file systems, which allows sharing among these file 
systems in a transparent manner 

 A remote directory is mounted over a local file system directory 

 The mounted directory looks like an integral subtree of the local 
file system, replacing the subtree descending from the local 
directory 

 Specification of the remote directory for the mount operation is 
nontransparent; the host name of the remote directory has to be 
provided 

 Files in the remote directory can then be accessed in a 
transparent manner 

 Subject to access-rights accreditation, potentially any file system 
(or directory within a file system), can be mounted remotely on top 
of any local directory 



NFS (Cont.) 

 NFS is designed to operate in a heterogeneous environment of 

different machines, operating systems, and network architectures; 

the NFS specifications independent of these media 

 

 This independence is achieved through the use of RPC primitives 

built on top of an External Data Representation (XDR) protocol 

used between two implementation-independent interfaces 

 

 The NFS specification distinguishes between the services provided 

by a mount mechanism and the actual remote-file-access services  



Three Independent File Systems 



Mounting in NFS  

Mounts Cascading mounts 



NFS Mount Protocol 

 Establishes initial logical connection between server and client 

 Mount operation includes name of remote directory to be mounted 

and name of server machine storing it 

 Mount request is mapped to corresponding RPC and forwarded 

to mount server running on server machine  

 Export list – specifies local file systems that server exports for 

mounting, along with names of machines that are permitted to 

mount them  

 Following a mount request that conforms to its export list, the 

server returns a file handle—a key for further accesses 

 File handle – a file-system identifier, and an inode number to 

identify the mounted directory within the exported file system 

 The mount operation changes only the user’s view and does not 

affect the server side  



NFS Protocol 

 Provides a set of remote procedure calls for remote file operations.  
The procedures support the following operations: 

 searching for a file within a directory  

 reading a set of directory entries  

 manipulating links and directories  

 accessing file attributes 

 reading and writing files 

 NFS servers are stateless; each request has to provide a full set 
of arguments  (NFS V4 is just coming available – very different, 
stateful) 

 Modified data must be committed to the server’s disk before 
results are returned to the client (lose advantages of caching) 

 The NFS protocol does not provide concurrency-control 
mechanisms 



Three Major Layers of NFS Architecture  

 UNIX file-system interface (based on the open, read, write, and 

close calls, and file descriptors) 

 

 Virtual File System (VFS) layer – distinguishes local files from 

remote ones, and local files are further distinguished according to 

their file-system types 

 The VFS activates file-system-specific operations to handle 

local requests according to their file-system types  

 Calls the NFS protocol procedures for remote requests 

 

 NFS service layer – bottom layer of the architecture 

 Implements the NFS protocol 



Schematic View of NFS Architecture  



NFS Path-Name Translation 

 Performed by breaking the path into component names and 

performing a separate NFS lookup call for every pair of 

component name and directory vnode 

 

 To make lookup faster, a directory name lookup cache on the 

client’s side holds the vnodes for remote directory names 



NFS Remote Operations 

 Nearly one-to-one correspondence between regular UNIX  system 

calls and the NFS protocol RPCs (except opening and closing 

files) 

 NFS adheres to the remote-service paradigm, but employs 

buffering and caching techniques for the sake of performance  

 File-blocks cache – when a file is opened, the kernel checks with 

the remote server whether to fetch or revalidate the cached 

attributes 

 Cached file blocks are used only if the corresponding cached 

attributes are up to date 

 File-attribute cache – the attribute cache is updated whenever new 

attributes arrive from the server 

 Clients do not free delayed-write blocks until the server confirms 

that the data have been written to disk 



Example: WAFL File System 

 Used on Network Appliance “Filers” – distributed file system 

appliances 

 “Write-anywhere file layout” 

 Serves up NFS, CIFS, http, ftp 

 Random I/O optimized, write optimized 

 NVRAM for write caching 

 Similar to Berkeley Fast File System, with extensive 

modifications 



The WAFL File Layout 



Snapshots in WAFL 



End of Chapter 12 


