
Chapter 12: File System

Implementation

 Chapter 12: File System Implementation

 File-System Structure

 File-System Implementation

 Directory Implementation

 Allocation Methods

 Free-Space Management

 Efficiency and Performance

 Recovery

 NFS

 Example: WAFL File System

Objectives

 To describe the details of implementing local file systems and

directory structures

 To describe the implementation of remote file systems

 To discuss block allocation and free-block algorithms and trade-

offs

File-System Structure

 File structure

 Logical storage unit

 Collection of related information

 File system resides on secondary storage (disks)

 Provided user interface to storage, mapping logical to physical

 Provides efficient and convenient access to disk by allowing

data to be stored, located retrieved easily

 Disk provides in-place rewrite and random access

 I/O transfers performed in blocks of sectors (usually 512

bytes)

 File control block – storage structure consisting of information

about a file

 Device driver controls the physical device

 File system organized into layers

Layered File System

File System Layers

 Device drivers manage I/O devices at the I/O control layer

 Given commands like “read drive1, cylinder 72, track 2, sector

10, into memory location 1060” outputs low-level hardware

specific commands to hardware controller

 Basic file system given command like “retrieve block 123”

translates to device driver

 Also manages memory buffers and caches (allocation, freeing,

replacement)

 Buffers hold data in transit

 Caches hold frequently used data

 File organization module understands files, logical address, and

physical blocks

 Translates logical block # to physical block #

 Manages free space, disk allocation

File System Layers (Cont.)

 Logical file system manages metadata information

 Translates file name into file number, file handle, location by

maintaining file control blocks (inodes in UNIX)

 Directory management

 Protection

 Layering useful for reducing complexity and redundancy, but

adds overhead and can decrease performance.

 Translates file name into file number, file handle, location by

maintaining file control blocks (inodes in UNIX)

 Logical layers can be implemented by any coding method

according to OS designer

File System Layers (Cont.)

 Many file systems, sometimes many within an operating

system

 Each with its own format (CD-ROM is ISO 9660; Unix has

UFS, FFS; Windows has FAT, FAT32, NTFS as well as

floppy, CD, DVD Blu-ray, Linux has more than 40 types,

with extended file system ext2 and ext3 leading; plus

distributed file systems, etc.)

 New ones still arriving – ZFS, GoogleFS, Oracle ASM,

FUSE

File-System Implementation

 We have system calls at the API level, but how do we implement

their functions?

 On-disk and in-memory structures

 Boot control block contains info needed by system to boot OS

from that volume

 Needed if volume contains OS, usually first block of volume

 Volume control block (superblock, master file table) contains

volume details

 Total # of blocks, # of free blocks, block size, free block

pointers or array

 Directory structure organizes the files

 Names and inode numbers, master file table

File-System Implementation (Cont.)

 Per-file File Control Block (FCB) contains many details about

the file

 inode number, permissions, size, dates

 NFTS stores into in master file table using relational DB

structures

In-Memory File System Structures

 Mount table storing file system mounts, mount points, file

system types

 The following figure illustrates the necessary file system

structures provided by the operating systems

 Figure 12-3(a) refers to opening a file

 Figure 12-3(b) refers to reading a file

 Plus buffers hold data blocks from secondary storage

 Open returns a file handle for subsequent use

 Data from read eventually copied to specified user process

memory address

In-Memory File System Structures

Partitions and Mounting

 Partition can be a volume containing a file system (“cooked”) or

raw – just a sequence of blocks with no file system

 Boot block can point to boot volume or boot loader set of blocks that

contain enough code to know how to load the kernel from the file

system

 Or a boot management program for multi-os booting

 Root partition contains the OS, other partitions can hold other

Oses, other file systems, or be raw

 Mounted at boot time

 Other partitions can mount automatically or manually

 At mount time, file system consistency checked

 Is all metadata correct?

 If not, fix it, try again

 If yes, add to mount table, allow access

Virtual File Systems

 Virtual File Systems (VFS) on Unix provide an object-oriented

way of implementing file systems

 VFS allows the same system call interface (the API) to be used

for different types of file systems

 Separates file-system generic operations from

implementation details

 Implementation can be one of many file systems types, or

network file system

 Implements vnodes which hold inodes or network file

details

 Then dispatches operation to appropriate file system

implementation routines

Virtual File Systems (Cont.)

 The API is to the VFS interface, rather than any specific type of

file system

Virtual File System Implementation

 For example, Linux has four object types:

 inode, file, superblock, dentry

 VFS defines set of operations on the objects that must be

implemented

 Every object has a pointer to a function table

 Function table has addresses of routines to implement that

function on that object

 For example:

 • int open(. . .)—Open a file

 • int close(. . .)—Close an already-open file

 • ssize t read(. . .)—Read from a file

 • ssize t write(. . .)—Write to a file

 • int mmap(. . .)—Memory-map a file

Directory Implementation

 Linear list of file names with pointer to the data blocks

 Simple to program

 Time-consuming to execute

 Linear search time

 Could keep ordered alphabetically via linked list or use

B+ tree

 Hash Table – linear list with hash data structure

 Decreases directory search time

 Collisions – situations where two file names hash to the

same location

 Only good if entries are fixed size, or use chained-overflow

method

Allocation Methods - Contiguous

 An allocation method refers to how disk blocks are allocated for

files:

 Contiguous allocation – each file occupies set of contiguous

blocks

 Best performance in most cases

 Simple – only starting location (block #) and length (number

of blocks) are required

 Problems include finding space for file, knowing file size,

external fragmentation, need for compaction off-line

(downtime) or on-line

Contiguous Allocation

 Mapping from logical to physical

LA/512

Q

R

Block to be accessed = Q +

starting address

Displacement into block = R

Extent-Based Systems

 Many newer file systems (i.e., Veritas File System) use a

modified contiguous allocation scheme

 Extent-based file systems allocate disk blocks in extents

 An extent is a contiguous block of disks

 Extents are allocated for file allocation

 A file consists of one or more extents

Allocation Methods - Linked

 Linked allocation – each file a linked list of blocks

 File ends at nil pointer

 No external fragmentation

 Each block contains pointer to next block

 No compaction, external fragmentation

 Free space management system called when new block

needed

 Improve efficiency by clustering blocks into groups but

increases internal fragmentation

 Reliability can be a problem

 Locating a block can take many I/Os and disk seeks

Allocation Methods – Linked (Cont.)

 FAT (File Allocation Table) variation

 Beginning of volume has table, indexed by block number

 Much like a linked list, but faster on disk and cacheable

 New block allocation simple

Linked Allocation

 Each file is a linked list of disk blocks: blocks may be scattered

anywhere on the disk

pointer block =

 Mapping

Block to be accessed is the Qth block in the linked chain of blocks

representing the file.

Displacement into block = R + 1

LA/511

Q

R

Linked Allocation

File-Allocation Table

Allocation Methods - Indexed

 Indexed allocation

 Each file has its own index block(s) of pointers to its data blocks

 Logical view

index table

Example of Indexed Allocation

Indexed Allocation (Cont.)

 Need index table

 Random access

 Dynamic access without external fragmentation, but have overhead
of index block

 Mapping from logical to physical in a file of maximum size of 256K
bytes and block size of 512 bytes. We need only 1 block for index
table

LA/512

Q

R

Q = displacement into index table

R = displacement into block

Indexed Allocation – Mapping (Cont.)

 Mapping from logical to physical in a file of unbounded length (block
size of 512 words)

 Linked scheme – Link blocks of index table (no limit on size)

LA / (512 x 511)

Q1

R1

Q1 = block of index table

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:

Indexed Allocation – Mapping (Cont.)

 Two-level index (4K blocks could store 1,024 four-byte pointers in outer

index -> 1,048,567 data blocks and file size of up to 4GB)

LA / (512 x 512)

Q1

R1

Q1 = displacement into outer-index

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:

Indexed Allocation – Mapping (Cont.)

Combined Scheme: UNIX UFS

More index blocks than can be addressed with 32-bit file pointer

4K bytes per block, 32-bit addresses

Performance

 Best method depends on file access type

 Contiguous great for sequential and random

 Linked good for sequential, not random

 Declare access type at creation -> select either contiguous or

linked

 Indexed more complex

 Single block access could require 2 index block reads then

data block read

 Clustering can help improve throughput, reduce CPU

overhead

Performance (Cont.)

 Adding instructions to the execution path to save one disk I/O is

reasonable

 Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000

MIPS

 http://en.wikipedia.org/wiki/Instructions_per_second

 Typical disk drive at 250 I/Os per second

 159,000 MIPS / 250 = 630 million instructions during one

disk I/O

 Fast SSD drives provide 60,000 IOPS

 159,000 MIPS / 60,000 = 2.65 millions instructions during

one disk I/O

Free-Space Management

 File system maintains free-space list to track available blocks/clusters

 (Using term “block” for simplicity)

 Bit vector or bit map (n blocks)

…

0 1 2 n-1

bit[i] =





1  block[i] free

0  block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

Free-Space Management (Cont.)

 Bit map requires extra space

 Example:

 block size = 4KB = 212 bytes

 disk size = 240 bytes (1 terabyte)

 n = 240/212 = 228 bits (or 32MB)

 if clusters of 4 blocks -> 8MB of memory

 Easy to get contiguous files

Linked Free Space List on Disk

 Linked list (free list)

 Cannot get contiguous
space easily

 No waste of space

 No need to traverse the
entire list (if # free blocks
recorded)

Free-Space Management (Cont.)

 Grouping

 Modify linked list to store address of next n-1 free blocks in first
free block, plus a pointer to next block that contains free-block-
pointers (like this one)

 Counting

 Because space is frequently contiguously used and freed, with
contiguous-allocation allocation, extents, or clustering

 Keep address of first free block and count of following free
blocks

 Free space list then has entries containing addresses and
counts

Free-Space Management (Cont.)

 Space Maps

 Used in ZFS

 Consider meta-data I/O on very large file systems

 Full data structures like bit maps couldn’t fit in memory ->
thousands of I/Os

 Divides device space into metaslab units and manages metaslabs

 Given volume can contain hundreds of metaslabs

 Each metaslab has associated space map

 Uses counting algorithm

 But records to log file rather than file system

 Log of all block activity, in time order, in counting format

 Metaslab activity -> load space map into memory in balanced-tree
structure, indexed by offset

 Replay log into that structure

 Combine contiguous free blocks into single entry

Efficiency and Performance

 Efficiency dependent on:

 Disk allocation and directory algorithms

 Types of data kept in file’s directory entry

 Pre-allocation or as-needed allocation of metadata

structures

 Fixed-size or varying-size data structures

Efficiency and Performance (Cont.)

 Performance

 Keeping data and metadata close together

 Buffer cache – separate section of main memory for frequently

used blocks

 Synchronous writes sometimes requested by apps or needed

by OS

 No buffering / caching – writes must hit disk before

acknowledgement

 Asynchronous writes more common, buffer-able, faster

 Free-behind and read-ahead – techniques to optimize

sequential access

 Reads frequently slower than writes

Page Cache

 A page cache caches pages rather than disk blocks using virtual

memory techniques and addresses

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the buffer (disk) cache

 This leads to the following figure

I/O Without a Unified Buffer Cache

Unified Buffer Cache

 A unified buffer cache uses the same page cache to cache

both memory-mapped pages and ordinary file system I/O to

avoid double caching

 But which caches get priority, and what replacement

algorithms to use?

I/O Using a Unified Buffer Cache

Recovery

 Consistency checking – compares data in directory structure

with data blocks on disk, and tries to fix inconsistencies

 Can be slow and sometimes fails

 Use system programs to back up data from disk to another

storage device (magnetic tape, other magnetic disk, optical)

 Recover lost file or disk by restoring data from backup

Log Structured File Systems

 Log structured (or journaling) file systems record each metadata

update to the file system as a transaction

 All transactions are written to a log

 A transaction is considered committed once it is written to the

log (sequentially)

 Sometimes to a separate device or section of disk

 However, the file system may not yet be updated

 The transactions in the log are asynchronously written to the file

system structures

 When the file system structures are modified, the transaction is

removed from the log

 If the file system crashes, all remaining transactions in the log must

still be performed

 Faster recovery from crash, removes chance of inconsistency of

metadata

The Sun Network File System (NFS)

 An implementation and a specification of a software system

for accessing remote files across LANs (or WANs)

 The implementation is part of the Solaris and SunOS

operating systems running on Sun workstations using an

unreliable datagram protocol (UDP/IP protocol and Ethernet

NFS (Cont.)

 Interconnected workstations viewed as a set of independent machines
with independent file systems, which allows sharing among these file
systems in a transparent manner

 A remote directory is mounted over a local file system directory

 The mounted directory looks like an integral subtree of the local
file system, replacing the subtree descending from the local
directory

 Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to be
provided

 Files in the remote directory can then be accessed in a
transparent manner

 Subject to access-rights accreditation, potentially any file system
(or directory within a file system), can be mounted remotely on top
of any local directory

NFS (Cont.)

 NFS is designed to operate in a heterogeneous environment of

different machines, operating systems, and network architectures;

the NFS specifications independent of these media

 This independence is achieved through the use of RPC primitives

built on top of an External Data Representation (XDR) protocol

used between two implementation-independent interfaces

 The NFS specification distinguishes between the services provided

by a mount mechanism and the actual remote-file-access services

Three Independent File Systems

Mounting in NFS

Mounts Cascading mounts

NFS Mount Protocol

 Establishes initial logical connection between server and client

 Mount operation includes name of remote directory to be mounted

and name of server machine storing it

 Mount request is mapped to corresponding RPC and forwarded

to mount server running on server machine

 Export list – specifies local file systems that server exports for

mounting, along with names of machines that are permitted to

mount them

 Following a mount request that conforms to its export list, the

server returns a file handle—a key for further accesses

 File handle – a file-system identifier, and an inode number to

identify the mounted directory within the exported file system

 The mount operation changes only the user’s view and does not

affect the server side

NFS Protocol

 Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

 searching for a file within a directory

 reading a set of directory entries

 manipulating links and directories

 accessing file attributes

 reading and writing files

 NFS servers are stateless; each request has to provide a full set
of arguments (NFS V4 is just coming available – very different,
stateful)

 Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching)

 The NFS protocol does not provide concurrency-control
mechanisms

Three Major Layers of NFS Architecture

 UNIX file-system interface (based on the open, read, write, and

close calls, and file descriptors)

 Virtual File System (VFS) layer – distinguishes local files from

remote ones, and local files are further distinguished according to

their file-system types

 The VFS activates file-system-specific operations to handle

local requests according to their file-system types

 Calls the NFS protocol procedures for remote requests

 NFS service layer – bottom layer of the architecture

 Implements the NFS protocol

Schematic View of NFS Architecture

NFS Path-Name Translation

 Performed by breaking the path into component names and

performing a separate NFS lookup call for every pair of

component name and directory vnode

 To make lookup faster, a directory name lookup cache on the

client’s side holds the vnodes for remote directory names

NFS Remote Operations

 Nearly one-to-one correspondence between regular UNIX system

calls and the NFS protocol RPCs (except opening and closing

files)

 NFS adheres to the remote-service paradigm, but employs

buffering and caching techniques for the sake of performance

 File-blocks cache – when a file is opened, the kernel checks with

the remote server whether to fetch or revalidate the cached

attributes

 Cached file blocks are used only if the corresponding cached

attributes are up to date

 File-attribute cache – the attribute cache is updated whenever new

attributes arrive from the server

 Clients do not free delayed-write blocks until the server confirms

that the data have been written to disk

Example: WAFL File System

 Used on Network Appliance “Filers” – distributed file system

appliances

 “Write-anywhere file layout”

 Serves up NFS, CIFS, http, ftp

 Random I/O optimized, write optimized

 NVRAM for write caching

 Similar to Berkeley Fast File System, with extensive

modifications

The WAFL File Layout

Snapshots in WAFL

End of Chapter 12

