
Chapter 2: Operating-System Structures

Chapter 2: Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Virtual Machines

 System Boot

Objectives

 To describe the services an operating system provides to

users, processes, and other systems

 To discuss the various ways of structuring an operating

system

 To explain how operating systems are installed and

customized and how they boot

Operating System Services

 One set of operating-system services provides functions that are
helpful to the user:

 User interface - Almost all operating systems have a user interface (UI)

 Varies between

– Command-Line (CLI),

– Graphics User Interface (GUI),

– Batch interface

 Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

 I/O operations - A running program may require I/O, which may
involve a file or an I/O device.

 File-system manipulation - The file system is of particular interest.
Obviously, programs need to read and write files and directories, create
and delete them, search them, list file Information, permission
management.

Operating System Services (Cont.)

 One set of operating-system services provides functions that are

helpful to the user (Cont):

 Communications – Processes may exchange information, on the same

computer or between computers over a network

 Communications may be

– via shared memory or

– through message passing (packets moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors

May occur in the CPU and memory hardware, in I/O devices, in user

program

 For each type of error, OS should take the appropriate action to

ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system

Operating System Services (Cont.)

 Another set of OS functions exists for ensuring the efficient

operation of the system itself via resource sharing

 Resource allocation - When multiple users or multiple jobs

running concurrently, resources must be allocated to each of

them

Many types of resources - Some (such as CPU cycles,

main memory, and file storage) may have special allocation

code, others (such as I/O devices) may have general request

and release code.

 Accounting - To keep track of which users use how much and

what kinds of computer resources

Operating System Services (Cont.)

 Protection and security - The owners of information stored

in a multiuser or networked computer system may want to

control use of that information, concurrent processes should

not interfere with each other

 Protection involves ensuring that all access to system

resources is controlled

 Security of the system from outsiders requires user

authentication, extends to defending external I/O devices

from invalid access attempts

 If a system is to be protected and secure, precautions must

be instituted throughout it. A chain is only as strong as its

weakest link.

A View of Operating System Services

Chapter 2: Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Virtual Machines

 System Boot

User Operating System Interface - CLI

 CLI is also called command interpreter

 CLI allows direct command entry

 Sometimes implemented in kernel, sometimes by systems

program

Windows XP and Unix treat CLI as special programs

 Sometimes multiple flavors implemented – shells

 UNIX and Linux: Bourne Shell or C Shell

 Primarily fetches a command from user and executes it

 Sometimes commands built-in, sometimes just names of

programs

 If the latter, adding new features doesn’t require shell

modification

 UNIX command to delete a file

 rm filename.txt (e.g. bankaccounts.txt)

Shell

3-12

Shells

Bourne Shell Command Interpreter

User Operating System Interface - GUI

 User-friendly desktop metaphor interface

 Usually mouse, keyboard, and monitor

 Icons represent files, programs, actions, etc

 Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute function,
open directory (known as a folder)

 Invented at Xerox PARC 1973

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI ―command‖ shell

 Apple Mac OS X as ―Aqua‖ GUI interface with UNIX kernel
underneath and shells available

 Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

 GNU project: KDE and GNOME

 Run on Linux and various versions of UNIX

Touchscreen Interfaces

 Touchscreen devices require

new interfaces

 Mouse not possible or not desired

 Actions and selection based on

gestures

 Virtual keyboard for text entry

 Voice commands.

Chapter 2: Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Virtual Machines

 System Boot

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Sometimes, if hardware access is necessary, these are written in
assembly language.

 Mostly accessed by programs via a high-level Application Program
Interface (API) rather than direct system call use

 Three most common APIs:

 Win32 API for Windows,

 POSIX API for POSIX-based systems (including virtually all versions
of UNIX, Linux, and Mac OS X)

 Java API for the Java virtual machine (JVM)

 Why use APIs rather than system calls?

(Note that the system-call names used throughout this course are generic)

Example of System Calls

 System call sequence to copy the contents of one file to another

file

Example of Standard API

System Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table indexed according to
these numbers

 An API function is typically implemented by invoking a system call.

 Win32: CreateProcess() invokes NTCreateProcess in the Windows
Kernel.

 The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values

 The caller need know nothing about how the system call is
implemented

 Just needs to obey API and understand what OS will do as a result
of call

 Most details of OS interface hidden from programmer by API

Managed by run-time support library (set of functions built into
libraries included with compiler)

 If any other system supports the same API then an application can
run normally among different architectures.

API – System Call – OS Relationship

System Call Interface

Standard C Library Example

 C program invoking printf() library call, which calls write() system call

System Call Parameter Passing

 Often, more information is required than simply identity of desired

system call

 Exact type and amount of information vary according to OS

and call

 Three general methods used to pass parameters to the OS

 Simplest: pass the parameters in registers

 In some cases, there may be more parameters than

registers

 Parameters stored in a block, or table, in memory, and

address of block passed as a parameter in a register

This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the

program and popped off the stack by the operating system

 Block and stack methods do not limit the number or length of

parameters being passed

Parameter Passing via Table

Chapter 2: Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Virtual Machines

 System Boot

Types of System Calls

 Process control

 End, abort, execute, create, wait for time, allocate and free
memory

 File management

 create file, delete file, open close, read, write, get file attributes

 Device management

 Request device, release device, read, write, logically attach or
detach devices

 Information maintenance

 Get time or date, set time and date

 Communications

 Create or delete communication connection

 Transfer status information

 Attach or detach remote devices

Process Control

 A running program normally terminates with “end()”.

 If the program causes a problem an error message is

generated and

 The execution is halted with “abort()”

 A dump in memory is taken

 The debugger may be started to correct bugs

 The OS transfers control to the invoking command

interpreter

 Execution then depends on the type of the interaction:

 Interactive systems: user is given a pop-window for

feedback

 Batch: the command interpreter terminates the entire job

and continues with the next job.

Process Control

 After creating a process we need to control it’s execution

 get process attributes

 set process attributes

 terminate process

 Waiting before terminating

 wait time

 wait event

 signal event

 Time profile

 Indicates the amount of time a process spends executing at

particular locations.

Examples of Windows and Unix System Calls

Example: MS-DOS

 Single-tasking

 Shell invoked when

system booted

 Simple method to run

program

 No process created

 Single memory space

 Loads program into

memory, overwriting all

but the kernel

 Program exit -> shell

reloaded At system startup running a program

Example: FreeBSD

 Unix variant

 Multitasking

 User login -> invoke user’s choice of

shell

 Shell executes fork() system call to

create process

 Executes exec() to load program

into process

 Shell waits for process to

terminate or continues with user

commands

 Process exits with:

 code = 0 – no error

 code > 0 – error code

Chapter 2: Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Virtual Machines

 System Boot

System Programs

 System programs provide a convenient environment for program

development and execution. These can be divided into:

 File manipulation

 Status information

 File modification

 Programming language support

 Program loading and execution

 Communications

 Application programs

 Most users’ view of the operation system is defined by system

programs, not the actual system calls

System Programs

 Provide a convenient environment for program development and

execution

 Some of them are simply user interfaces to system calls; others

are considerably more complex

 File management - Create, delete, copy, rename, print, dump, list,

and generally manipulate files and directories

 Status information

 Some ask the system for info - date, time, amount of available

memory, disk space, number of users

 Others provide detailed performance, logging, and debugging

information

 Typically, these programs format and print the output to the

terminal or other output devices

 Some systems implement a registry - used to store and

retrieve configuration information

System Programs (cont’d)

 File modification

 Text editors to create and modify files

 Special commands to search contents of files or perform

transformations of the text

 Programming-language support - Compilers, assemblers,

debuggers and interpreters sometimes provided

 Program loading and execution - Absolute loaders, relocatable

loaders, linkage editors, and overlay-loaders, debugging systems for

higher-level and machine language

 Communications - Provide the mechanism for creating virtual

connections among processes, users, and computer systems

 Allow users to send messages to one another’s screens, browse

web pages, send electronic-mail messages, log in remotely,

transfer files from one machine to another

Chapter 2: Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Virtual Machines

 System Boot

Operating System Design and Implementation

 Design and Implementation of OS not ―solvable‖, but some

approaches have proven successful

 Internal structure of different Operating Systems can vary widely

 Start by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals – operating system should be convenient to use, easy

to learn, reliable, safe, and fast

 System goals – operating system should be easy to design,

implement, and maintain, as well as flexible, reliable, error-free,

and efficient

 Implementing an OS is highly creative but no book will tell you how

to do it 

 However, principles of software engineering still hold 

Operating System Design and Implementation (Cont.)

 Important principle to separate

 Policy: What will be done?

Mechanism: How to do it?

 Mechanisms determine how to do something, policies

decide what will be done

 The separation of policy from mechanism is a very

important principle, it allows maximum flexibility if policy

decisions are to be changed later

OS implementation

 Once an OS is designed it must be implemented

 Once written in assembly language, now most often in C and C++

 The first system not written in assembly was MCP (Master Control

Program) written in ALGOL.

 MULTICS was written in Pl/1

 Linux and Windows are mostly written in C, some parts in assembly

regarding device drivers and register state restore.

 An OS is more portable if written in high-level language

 MS-DOS was written in Intel 8088 assembly language

 Linux written in C: available on Intel80x86, Motorola 680X0. SPARC

and MIPS RX000.

More portable, but slower and increased storage requirements

 Emulation can allow an OS to run on non-native hardware

Chapter 2: Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Virtual Machines

 System Boot

Simple Structure

 MS-DOS – written to provide the most functionality in the

least space

 Not divided into modules (monolithic)

 Although MS-DOS has some structure, its interfaces and

levels of functionality are not well separated

For example, application program can access basic

I/O routines to write directly to the display and disk

drives.

This makes MS-DOS vulnerable since a program can

cause a crash of the system

 Basic hardware is accessible from high levels!

MS-DOS Layer Structure

UNIX structure

 UNIX – limited by hardware functionality, the original UNIX

operating system had limited structuring. The UNIX OS

consists of two separable parts

 Systems programs

 The kernel

Consists of everything below the system-call interface

and above the physical hardware

Provides the file system, CPU scheduling, memory

management, and other operating-system functions; a

large number of functions for one level

UNIX System Structure

Two parts:

system

programs

and the

kernel

Kernel is

further

separated in

a set of

interfaces

and device

drivers

• Everything below the system call interface and above the physical hardware is

the Kernel

Layered Approach

 The operating system is divided into a number of layers (levels), each

built on top of lower layers.

 The bottom layer (layer 0), is the hardware; the highest (layer N) is the

user interface.

 With modularity, layers are selected such that each uses functions

(operations) and services of only lower-level layers

 Advantages

 Simplicity of construction and debugging

 Each layer is implemented only with the operations provided by the

lower level

 Information hiding

 Disadvantages

 Appropriately defining of various layers

 Planning of layers

 Tend to be less efficient: each layer adds overhead to the system

call

Layered Operating System

Venus Layer Structure

OS/2 layer structure

Microkernel System Structure

 Carnegie Mellon University, mid-1980s, OS called Mach

 Modularize the kernel

 Moves as much from the kernel into “user” space

 Take out of the kernel the nonessential parts and implement them as system
and user-level programs

 Little consensus on what remains in the kernel and what in the user space

 The main function of the microkernel is to provide communication facility between
the client program and the various services that are running in the user space

 Communication takes place between user modules using message passing

 A client and a server communicate with MP through the microkernel

 Benefits:

 Easier to extend a microkernel

 Easier to port the operating system to new architectures

 More reliable (less code is running in kernel mode)

 More secure

 Detriments:

 Performance overhead of user space to kernel space communication

 Windows NT was initially layered microkernel but then was changed in Windows
4.0

 Tru64 UNIX

Microkernel System Structure

Application

Program

File

System

Device

Driver

Interprocess

Communication

memory

managment

CPU

scheduling

messagesmessages

microkernel

hardware

user

mode

kernel

mode

Windows NT Structure

Modular Kernels:

Modules

 Most modern operating systems implement kernel modules

 Uses object-oriented approach

 Each core component is separate

 Each talks to the others over known interfaces

 Each is loadable as needed within the kernel

 Overall, similar to layers but in a more flexible schema

Solaris Modular Approach

Modular Kernels

 Advantages

 Certain features can be implemented dynamically,

 Device and bus drivers can be added to the kernel.

 Support for different files systems can be added as

loadable modules.

 Primary module has only core functions and knowledge of

how to load and communicate with other modules

Modules do not need to invoke message passing in order to

communicate.

Hybrid Systems

 Most modern operating systems are actually not one pure

model

 Hybrid combines multiple approaches to address

performance, security, usability needs

 Linux and Solaris kernels in kernel address space, so

monolithic, plus modular for dynamic loading of

functionality

 Windows mostly monolithic, plus microkernel for

different subsystem personalities

 Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa

programming environment

 Below is kernel consisting of Mach microkernel and

BSD Unix parts, plus I/O kit and dynamically loadable

modules (called kernel extensions)

Mac OS X Structure

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

iOS

 Apple mobile OS for iPhone, iPad

 Structured on Mac OS X, added

functionality

 Does not run OS X applications natively

Also runs on different CPU

architecture (ARM vs. Intel)

 Cocoa Touch Objective-C API for

developing apps

 Media services layer for graphics,

audio, video

 Core services provides cloud

computing, databases

 Core operating system, based on Mac

OS X kernel

Android

 Developed by Open Handset Alliance (mostly Google)

 Open Source

 Similar stack to IOS

 Based on Linux kernel but modified

 Provides process, memory, device-driver management

 Adds power management

 Runtime environment includes core set of libraries and Dalvik

virtual machine

 Apps developed in Java plus Android API

 Java class files compiled to Java bytecode then translated

to executable than runs in Dalvik VM

 Libraries include frameworks for web browser (webkit), database

(SQLite), multimedia, smaller libc

Android Architecture
Applications

Application Framework

Android runtime

Core Libraries

Dalvik

virtual machine

Libraries

Linux kernel

SQLite openGL

surface

manager

webkit libc

media

framework

Chapter 2: Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Operating Systems Debugging

 Virtual Machines

 System Boot

Operating-System Debugging

 Debugging is finding and fixing errors, or bugs

 OS generate log files containing error information

 Failure of an application can generate core dump file capturing

memory of the process

 Operating system failure can generate crash dump file

containing kernel memory

 Beyond crashes, performance tuning can optimize system

performance

 Sometimes using trace listings of activities, recorded for

analysis

 Profiling is periodic sampling of instruction pointer to look

for statistical trends

Kernighan’s Law: “Debugging is twice as hard as writing the code

in the first place. Therefore, if you write the code as cleverly as

possible, you are, by definition, not smart enough to debug it.”

Performance Tuning

 Improve

performance by

removing

bottlenecks

 OS must provide

means of computing

and displaying

measures of system

behavior

 For example, ―top‖

program or Windows

Task Manager

Dtrace (Cont.)

 DTrace code to record

amount of time each

process with UserID 101 is

in running mode (on CPU)

in nanoseconds

Chapter 2: Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Operating Systems Debugging

 Virtual Machines

 System Boot

Virtual Machines 1

 A virtual machine takes the layered approach to its logical

conclusion.

 It treats hardware and the operating system kernel as

though they were all hardware

 A virtual machine provides an interface identical to the

underlying bare hardware

 The operating system creates the illusion of multiple

processes, each executing on its own processor with its

own (virtual) memory

 A virtual machine (VM) is a software implementation

of a machine (i.e. a computer) that executes programs

like a physical machine.

Virtual Machines 2

 The resources of the physical computer are shared to

create the virtual machines

 CPU scheduling can create the appearance that users

have their own processor

 Spooling and a file system can provide virtual card

readers and virtual line printers

 A normal user time-sharing terminal serves as the virtual

machine operator’s console

 An essential characteristic of a virtual machine is that the

software running inside is limited to the resources and

abstractions provided by the virtual machine — it cannot

break out of its virtual world.

Virtual Machines 3

 (a) Nonvirtual machine (b) virtual machine

Non-virtual Machine Virtual Machine

Virtual Machines 4

 The virtual-machine concept provides complete protection of

system resources since each virtual machine is isolated from

all other virtual machines.

 This isolation, however, permits no direct sharing of

resources.

 A virtual-machine system is a perfect vehicle for operating-

systems research and development.

 System development is done on the virtual machine,

instead of on a physical machine and so does not disrupt

normal system operation.

 The virtual machine concept is difficult to implement due to the

effort required to provide an exact duplicate to the

underlying machine

Virtual Machines 5

 A System virtual machine provides a complete system

platform which supports the execution of a complete

operating system (OS).

 VMware

 Virtual PC (Microsoft)

 A process virtual machine is designed to run a single

program, which means that it supports a single process.

 This type of VM has become popular with the Java

programming language, which is implemented using the

Java virtual machine.

 Another example is the .NET Framework, which runs on

a VM called the Common Language Runtime.

The Java Virtual Machine

Virtualization 1

 The desire to run multiple operating systems was the original

motivation for virtual machines, as it allowed time-sharing a single

computer between several single-tasking OSes.

 Multiple VMs each running their own operating system (called

guest operating system) are frequently used in server

consolidation, where different services that used to run on

individual machines in order to avoid interference are instead run in

separate VMs on the same physical machine (called host

operating system).

 This technique requires a process to share the CPU resources

between guest operating systems and memory virtualization to

share the memory on the host.

Virtualization 2

 The main advantages of system VMs are:

 multiple OS environments can co-exist on the same computer,

in strong isolation from each other

 the virtual machine can provide an instruction set architecture

(ISA) that is somewhat different from that of the real machine

 application provisioning, maintenance, high availability and

disaster recovery.

 The main disadvantage of system VMs is:

 a virtual machine is less efficient than a real machine because

it accesses the hardware indirectly

 The guest OSes do not have to be all the same, making it possible to

run different OSes on the same computer (e.g., Microsoft Windows

and Linux, or older versions of an OS in order to support software that

has not yet been ported to the latest version).

VMware Architecture

System Virtual Machine Software
 ATL (A MTL Virtual Machine)

 Bochs, portable open source x86 and AMD64 PCs emulator

 CHARON-AXP, provides virtualization of AlphaServer to migrate OpenVMS or Tru64
applications to x86 hardware

 CHARON-VAX, provides virtualization of PDP-11 or VAX hardware to migrate OpenVMS or
Tru64 applications to x86 or HP integrity hardware

 CoLinux Open Source Linux inside Windows

 Denali, uses paravirtualization of x86 for running para-virtualized PC operating systems.

 eVM Virtualization Platform for Windows by TenAsys

 Hercules emulator, free System/370, ESA/390, z/Mainframe

 Microsoft Virtual PC and Microsoft Virtual Server

 OKL4 from Open Kernel Labs

 Oracle VM

 SLKVM - scripts to handle kvm and vz virtual machines in a cluster environment

 Sun xVM

 VM from IBM

 VMware (ESX Server, Fusion, Virtual Server, Workstation, Player and ACE)

 vSMP Foundation (From ScaleMP)

 Xen (Opensource)

 IBM POWER SYSTEMS

http://en.wikipedia.org/wiki/ATLAS_Transformation_Language
http://en.wikipedia.org/wiki/Model_Transformation_Language
http://en.wikipedia.org/wiki/Bochs
http://en.wikipedia.org/w/index.php?title=CHARON-AXP&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=CHARON-AXP&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=CHARON-AXP&action=edit&redlink=1
http://en.wikipedia.org/wiki/AlphaServer
http://en.wikipedia.org/w/index.php?title=CHARON-VAX&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=CHARON-VAX&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=CHARON-VAX&action=edit&redlink=1
http://en.wikipedia.org/wiki/PDP-11
http://en.wikipedia.org/wiki/PDP-11
http://en.wikipedia.org/wiki/PDP-11
http://en.wikipedia.org/wiki/VAX
http://en.wikipedia.org/wiki/CoLinux
http://en.wikipedia.org/wiki/Denali_%28operating_system%29
http://www.tenasys.com/evm
http://en.wikipedia.org/wiki/TenAsys
http://en.wikipedia.org/wiki/Hercules_emulator
http://en.wikipedia.org/wiki/Microsoft_Virtual_PC
http://en.wikipedia.org/wiki/Microsoft_Virtual_Server
http://okl4.org/
http://www.ok-labs.com/
http://en.wikipedia.org/wiki/Oracle_VM
http://solukom.com/software/slkvm
http://solukom.com/software/slkvm
http://solukom.com/software/slkvm
http://solukom.com/software/slkvm
http://en.wikipedia.org/wiki/Sun_xVM
http://en.wikipedia.org/wiki/VM_%28Operating_system%29
http://en.wikipedia.org/wiki/International_Business_Machines
http://en.wikipedia.org/wiki/VMware
http://www.scalemp.com/products
http://www.scalemp.com/
http://en.wikipedia.org/wiki/Xen

Process Virtual Machine Software

 Common Language Infrastructure - C#, Visual Basic .NET, J#, C++/CLI (formerly Managed C++)

 Dalvik virtual machine - part of the Android mobile phone platform

 Java Virtual Machine - Java, Nice, NetREXX

 Juke Virtual Machine - A public domain ECMA-335 compatible virtual machine hosted at Google
code.

 Low Level Virtual Machine (LLVM) - currently C, C++, Stacker

 Macromedia Flash Player - SWF

 Perl virtual machine - Perl

 CPython - Python

 Rubinius - Ruby

 SECD machine - ISWIM, Lispkit Lisp

 Sed the stream-editor can also be seen as a VM with 2 storage spaces.

 Smalltalk virtual machine - Smalltalk

 SQLite virtual machine - SQLite opcodes

 Tamarin (JavaScript engine) - ActionScript VM in Flash 9

 TrueType virtual machine - TrueType

 Valgrind - checking of memory accesses and leaks in x86/x86-64 code under Linux

 Virtual Processor (VP) from Tao Group (UK).

 Waba - Virtual machine for small devices, similar to Java

 Warren Abstract Machine - Prolog, CSC GraphTalk

http://en.wikipedia.org/wiki/Common_Language_Infrastructure
http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
http://en.wikipedia.org/wiki/Visual_Basic_.NET
http://en.wikipedia.org/wiki/J_Sharp
http://en.wikipedia.org/wiki/C%2B%2B/CLI
http://en.wikipedia.org/wiki/Managed_Extensions_for_C%2B%2B
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://en.wikipedia.org/wiki/Android_mobile_phone_platform
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Nice_programming_language
http://en.wikipedia.org/wiki/REXX
http://en.wikipedia.org/w/index.php?title=Juke_Virtual_Machine&action=edit&redlink=1
http://en.wikipedia.org/wiki/LLVM
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Macromedia_Flash_Player
http://en.wikipedia.org/wiki/SWF
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/CPython
http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Rubinius
http://en.wikipedia.org/wiki/Ruby_%28programming_language%29
http://en.wikipedia.org/wiki/SECD_machine
http://en.wikipedia.org/wiki/ISWIM
http://en.wikipedia.org/wiki/Lispkit_Lisp
http://en.wikipedia.org/wiki/Sed
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/SQLite
http://en.wikipedia.org/wiki/SQLite
http://en.wikipedia.org/wiki/Tamarin_%28JavaScript_engine%29
http://en.wikipedia.org/wiki/TrueType
http://en.wikipedia.org/wiki/TrueType
http://en.wikipedia.org/wiki/Valgrind
http://en.wikipedia.org/wiki/X86
http://en.wikipedia.org/wiki/X86-64
http://en.wikipedia.org/wiki/X86-64
http://en.wikipedia.org/wiki/X86-64
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Virtual_Processor
http://en.wikipedia.org/wiki/Tao_Group
http://en.wikipedia.org/wiki/United_Kingdom
http://en.wikipedia.org/wiki/Warren_Abstract_Machine
http://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/CSC
http://en.wikipedia.org/wiki/GraphTalk

System Boot 1

 Booting – starting a computer by loading the kernel

 Bootstrap program – code stored in ROM that is able to

locate the kernel, load it into memory, and start its execution

 Operating system must be made available to hardware so

hardware can start it

 Small piece of code – bootstrap loader, locates the

kernel, loads it into memory, and starts it

 Sometimes two-step process where bootstrap loader

fetches a more complex boot program from disk which in

turn loads the kernel.

 When power initialized on system, execution starts at a

fixed memory location

Firmware used to hold initial boot code

System Boot 2

 When CPU receives a reset event – power up or reboot – the

instruction register is loaded with a predefined memory location

and execution starts there.

 The location is where the initial bootstrap program resides

 Written in ROM

 RAM status is not known at the boot moment

 ROM needs no initialization and cannot be affected by

viruses

 Bootstrap program can:

 Run diagnostics to determine the state of the machine

 Initializes CPU registers, device controllers and the contents of

the main memory

 Starts the Operating System

System Boot 3

 Some systems such as cellular phones, PDAs and game consoles store
the entire OS in the ROM.

 This is convenient for small OSs and simple supporting hardware

 The problem is that changing the bootstrap code requires changing
the ROM hardware chips.

 For this reason EPROM (Erasable Programmable Read-Only
Memory) is used.

 EPROM is read-only but becomes writable if given a certain
command.

 All forms of ROM are known also as firmware

 A problem with firmware is that executing programs is slower than
RAM.

 Some systems store the OS in ROM but load it in RAM for faster
execution.

 ROM is expensive thus small amounts are available.

3-79

Figure 3.5 The booting process

System Boot 4

 Large OSs like Linux or Windows

 Store the bootstrap loader in firmware, but store the OS in disk.

 The bootstrap program runs diagnostics, reads a single block at a fixed

location form disk into memory and execute the code from that boot block.

 The program stored in the boot black may be enough sophisticated to

load the entire operating system in to RAM and begin its execution.

 This program is usually very simple code since it fits in a single disk

block.

 It only knows the address on disk and length of the remainder of

the bootstrap program

 All of the disk-bound bootstrap and the OS itself can be easily

changed by writing

 A disk which has a boot partition is called a boot disk or system disk

 Only the kernel is loaded into memory the system is said to be running

3-81

Booting from a Disk in Windows 2000

System Boot 5

 Common bootstrap loader, GRUB, allows selection of kernel from

multiple disks, versions, kernel options

 Once the OS initializes it performs

 Loading the device drivers in order to control peripheral

devices, such as a printer, scanner, optical drive, mouse and

keyboard.

 This is the final stage in the boot process, after which the user

can access the system’s applications to perform tasks.

Readings

 Silberschatz - Chapter 2

End of Chapter 2

